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Abstract: With the rapid development of urban ground transportation, lane line detection is gradually
becoming a major technological direction to help to realize safe vehicle navigation. However, lane
line detection results may have incompleteness issues, such as blurry lane lines and disappearance of
the lane lines in the distance, since the lane lines may be heavily obscured by vehicles and pedestrians
on the road. In addition, low-visibility environments also pose a challenge for lane line detection. To
solve the above problems, we propose a dynamic data augmentation framework based on imitating
real scenes (DDA-IRS). DDA-IRS contains three data augmentation strategies that simulate different
realistic scenes (i.e., shadows, dazzle, and crowded). In this way, we expand from a limited scene
dataset to realistically fit multiple complex scenes. Importantly, DDA-IRS is a lightweight framework
that can be integrated with a variety of training-based models without modifying the original model.
We evaluate the proposed DDA-IRS on the CULane dataset, and the results show that the data-
enhanced model outperforms the baseline model by 0.5% in terms of F-measure. In particular, the
F-measure of the “Normal”, “Crowded”, “Shadow”, “Arrow”, and “Curve” achieve a 0.4%, 0.1%,
1.6%, 0.4%, and 1.4% improvement, respectively.

Keywords: dynamic data augmentation; imitating real scene; lane line detection; vehicle navigation;
urban ground transportation

1. Introduction

With the development of modern urban transportation, the road network is becoming
more and more complex. Relying on human memory to guide the traffic driving routes to
their destinations is becoming unrealistic, so car navigation plays an increasingly important
role. Conventional car navigation is based on GPS, which first locates the user’s vehicle on
the road network map, then plans the driving routes according to the selected destinations
and guides the user to the destination through on-screen displays and voice announcements.
Emerging car navigation incorporates GPS and self-driving technology, which automatically
helps drivers make reasonable decisions by combining navigation information with real
road scenario information, and then allows the car to take part in the navigation driving
function, thereby reducing the driver’s driving and understanding costs. In particular, real-
time lane line detection provides the emerging navigation engine with information such as
the current lane width and lane line properties that enables the car to drive automatically
into the correct lane.

Lane line detection is one of the most fundamental tasks of perception for both self-
driving and advanced driver assistant systems (ADAS). By identifying the lane lines of the
current vehicle driving environment, navigation paths can be provided for vehicle route
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planning, allowing vehicles to move safely and controllably in a standard road model.
Given the advantages of visual sensors and the feasibility of image processing technology,
the use of visual navigation has become an important development direction in intelligent
vehicle navigation research. Compared to a variety of other sensors, such as LiDAR,
ultrasonic and millimeter-wave radar, visual sensors are low-cost and extremely rich in
image information [1]. Furthermore, the existing public datasets for lane line detection are
mostly visible images. Therefore, there is a wide range of applications for visual navigation
in intelligent vehicle navigation. However, vision sensors are susceptible to weather and
lighting constraints [2], lane lines are severely obscured by vehicles and pedestrians, as
frequently happens in realistic scenarios, and lane lines in the distance are always too
blurry to catch the lane line features in deep models.

In response to the above problems, a major research focus has been on designing
better network architectures, with little attention paid to data augmentation. Data aug-
mentation techniques are widely used to improve the performance of benchmark datasets,
increasing the quantity and diversity of the training dataset. While most deep learning
frameworks implement basic image transformations in the pre-processing of data stage,
these transformation operations are usually limited to some variants and combinations
of flipping, rotating, scaling, and cropping [3]. However, data augmentation methods
are not necessarily universal for different tasks and application scenes, and different data
augmentation strategies can lead to different performance variations of the model [4–6].
For example, image rotation is an effective data augmentation method on CIFAR-10 but can
have a significant negative impact on the MNIST handwritten dataset when the network
distinguishes between handwritten digits 6 and 9 [6]. Therefore, there should be suitable
data augmentation methods for different task requirements.

The target object of the lane line detection is the lane line with a slender appearance
structure. Moreover, the states of the lane lines present uncertainty, such as obscured,
worn, and discontinuity when the road changes itself. Most of the current lane line
detection models are trained on raw datasets without tailor-made pre-processing of the data.
Generally, the raw datasets do not provide enough images with interference conditions.
In the face of complex environments, such as vehicles and pedestrians blocking lane
lines, water in potholes on the road, trees or buildings shadows on both sides of the
road, the accuracy and robustness of the lane line detection model will be negatively
affected. Existing data augmentation methods with pervasive applicability basically fail to
achieve a positive augmentation effect for special lane lines. Therefore, this paper studies
a data augmentation framework for the lane line detection problem for complex road
environments. Related works are described in Section 1.1 with lane line detection and data
augmentation solutions, while Section 1.2 clarifies the paper’s contribution.

1.1. Related Works

For the task of lane line detection, how to effectively solve the problems of discontinu-
ous lane lines, the disappearance of lane lines in the distance and blurry lane lines caused
by actual road conditions (strong light, shadows, occlusions, broken road surfaces, etc.) is
very important. At present, the main methods of solving environmental interference are
improving the detection algorithm and enhancing the lane line images in the datasets.

1.1.1. Lane Line Detection

Currently, many scholars are dedicated to improving lane line detection algorithms.
Previous methods are based on hand-crafted low-level features [7]. However, to cope
with complex road scenes, designing network models based on deep learning is the cur-
rent mainstream technical solution [8]. Deep learning-based lane line detection can be
summarized into three categories, depending on the representation of the lane lines.

Segmentation-based lane line detection. Pixel-based prediction method classifies
each pixel as a lane line or background. Spatial CNN (SCNN) transforms the traditional
deep layer-by-layer convolutions into slice-by-slice convolutions in the feature map [9],
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which is suitable for detecting long-distance continuous shape targets with extremely strong
spatial relationships. Hou et al., proposed self-attentive distillation (SAD) [10], which
allows the model to learn from itself, guaranteeing real-time efficiency while achieving
high performance without any additional supervision or labeling. Furthermore, a network
of teachers and students was used to convey structural relationships between lane lines by
constructing inter-regional affinity distillation maps [11]. Zheng et al., continued the idea
of SCNN and went on to use a novel module named Recurrent feature-shift aggregator
to convey information more efficiently [12]. However, algorithms based on the idea of
semantic segmentation use only local features and may miss parts of the lane lines, so these
algorithms may not be able to detect inconspicuous lane lines in complex scenes.

Anchor-based lane line detection. Line-CNN, proposed by Li et al., is a pioneering
work on the use of line proposal units in lane line detection [13]. Attention-guided lane
detection (LaneATT) was proposed with a new anchor-based attention mechanism for lane
line detection [14]. Qin et al., first proposed a row-anchor-based lane line detection method
that converts lane line detection into a row classification task [15], achieving the fastest lane
line detection speed available. CondLaneNet introduces a conditional lane line detection
strategy based on conditional convolution and a row-anchor-based representation [16].
However, in some complex scenes, the starting point of lane lines is often difficult to
identify, which leads to relatively poor detection performance of the model.

Parametric regression-based lane line detection. Wang et al., proposed a three-
branch network to regress the polynomial coefficients on each lane line and estimate
its starting and ending points [17]. Tabelini et al., output polynomials to represent each
lane marker in the image by polynomial regression [18]. Long short-term transformer
(LSTR) considers the road structure together with the camera pose to model the shape of
the lane lines [19]. Feng et al., proposed a lane line detection model based on 3rd-order
Bessel curves to improve the curve fitting ability [20]. Jin et al., introduced the concept of
feature lanes to determine the optimal set of lanes by clustering the training lanes into the
feature lane space and generating a set of candidate lanes [21]. Current algorithms for lane
line detection do not propose tailor-made data pre-processing methods for interference
problems such as shadows, occlusions, and glare and do not propose substantial solutions
to environmental interference problems.

1.1.2. Data Augmentation

Data augmentation is an effective method to solve the problem of limited training
data for deep learning models. Most data augmentation methods have been proposed to
augment the training dataset and improve the generalization ability of neural networks.

Single-sample image space data augmentation. Common image augmentation meth-
ods are based on image transformations such as flipping, rotating, cropping, dithering, and
blurring [22–26]. Zhong et al., proposed random erasing to achieve augmentation of the
training image set for deep learning [27]. The main implementation of this method is to
perform a rectangular crop of the image and then replace the pixels within the rectangular
area with random values. Unlike random erasing, cutout considers the area of the erased
region to be more important than the shape [28], and the erased region is not required to be
a rectangle or other regularized shape. Also, for filling the erased region, cutout advocates
using a 0 mask for filling rather than using random noise. Another similar research idea is
the DropRegion data augmentation applied to Chinese character recognition [29].

Synthetic-sample image space data augmentation. As the number of layers of deep
neural networks continues to expand and the expressive power of models continues to
increase, synthetic sample data augmentation methods [30–33], represented by mixup [34],
have emerged to better prevent model overfitting. Guo et al., argued that the effectiveness of
pixel-blending image augmentation, such as mixup, has not been fully demonstrated [35].
To this end, Guo et al., proposed adversarial domain adaptation with domain mixup
(AdaMixup) as an adaptive version and considered the method as a hybrid strategy for
adaptively learning mixup with regularization techniques outside of neural networks [35].
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To further improve the performance of blended sample image augmentation, Summers
et al., proposed a multiple non-linear blending method [36]. Other derivative studies
about mixup include feature layer mixing [37], manifold mixup [38], etc. Random image
cropping and patching (RICAP) is a novel image augmentation method proposed by
Takahashi et al. [39]. The idea of RICAP is to randomly select four samples of images,
crop a portion of each and put them together to form a new sample. Inspired by the ideas
of cutout image masking and mixup image blending, Yun et al., proposed a cut-and-mix
image augmentation method [40]. Cut, paste and learn is an effective image augmentation
method for target detection, as proposed by Dwibedi et al. [41]. The idea of this method is
to randomly select regions of example pixels and superimpose them randomly onto the
background images.

Feature space data augmentation. Devries and Taylor proposed a scheme for data
augmentation in the dataset feature space [42]. Liu et al., argued that data augmentation
methods in image space produced very limited reasonable data and proposed an adversarial
autoencoder image augmentation method with linear interpolation [43]. Research has
shown that generative adversarial networks (GANs) are an effective unsupervised method
for image data augmentation [44–46]. To be able to provide more auxiliary information for
semi-supervised training, Odena et al., proposed an auxiliary classifier GAN (ACGAN) [47],
which adds an additional classification task to the discriminator of conditional generative
adversarial networks. Huang et al., proposed actor-critic GAN based on the ACGAN to
address the problem of intra-class data imbalance in image classification applications [48].
Singh et al., proposed malware image synthesis using GANs based on the ACGAN to solve
the problem of lack of image data with labels [49]. Tran et al., proposed a bayesian data
augmentation approach based on GANs [50], for which the sample generation module
can be flexibly replaced with a different generative network model. In summary, data
augmentation in feature space is as effective as the image space augmentation methods
described above.

1.1.3. Data Augmentation for the Lane Line Detection

Strategies and approaches to data augmentation vary across application datasets and
scenes. Therefore, the best data augmentation method needs to be found for a specific
image dataset and application scene. However, these data augmentation methods often
fail to achieve good augmentation results when applied to lane line detection. For lane
line detection, Gu et al., proposed an improved color balance data augmentation algorithm
based on the adaptive local tone mapping (ALTM) algorithm [51], which facilitates the
extraction of lane line features. Zheng et al., used a generative adversarial network-
based data augmentation method to convert the daytime environment into a nighttime
environment in the same scene to improve the accuracy of lane line detection in low-light
environments [52]. Liu et al., improved the RandAugment data augmentation algorithm
and then applied it to lane line detection and obtained an enhancement effect [53]. There are
very few data augmentation methods for lane line detection in existing research, especially
for special occlusion scenes. Therefore, it makes sense to design a realistic scene-oriented
data augmentation framework for lane line detection.

1.2. Paper Contribution

We propose a dynamic data augmentation framework to alleviate the problems faced
in open-world lane line detection. By dynamically simulating the occlusion and low
visibility existing in the real road environment, the road conditions in the open datasets
are made closer to the real environment. Furthermore, the data-enhanced images are
dynamically trained in each batch to improve detection accuracy. This paper provides the
following contributions:

• A dynamic data augmentation framework based on imitating real scene is proposed.
The framework can be integrated with a variety of training-based models without
changing the learning strategy, any additional parameter learning or memory con-
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sumption, and is a lightweight and plug-and-play framework. It complements existing
data augmentation methods for lane line detection.

• Three dynamic data augmentation strategies that simulate different realistic scenes are
contained in the framework. Different simulation styles are added to the dynamically
selected training dataset in different ways to simulate the three scenes of crowded,
shadow and dazzle. Experiment results show that our strategies can improve the
robustness of the lane line detection model to detect partially obscured samples. For
example, the lane lines in the long distance are effectively extended in the test results.

2. Methods

The proposed framework contains three dynamic data augmentation strategies for
simulating different scenes: dynamic simulate shadows (DSS), dynamic simulate highlight
(DSH), and dynamic simulate occlusion (DSO). Through the above strategies, different
effects are added to the training images to solve the problems of discontinuous, inaccurate
and blurry detection results. Figure 1 shows an overview of the proposed framework. First,
some images are selected in the training dataset with a random probability. The DSS adds
shadows of different sizes and shapes dynamically to both sides of the selected images to
simulate a situation where the lane lines are obscured by the shadows of trees or buildings
on the sides of the road. Second, a different number of training images are selected in a
similar way. The DSH adds several elliptical spots of different sizes with a dazzling effect
dynamically to specific areas of the selected images to simulate the reflected brightness of
potholes or strong light at the far end of the road. Third, a portion of the training images is
selected in a similar way for the next image processing operation. The DSO adds square
shapes of different scales and areas dynamically at reasonable locations in the selected
images, which are filled with adaptive pixel values, to simulate the situation where the lane
lines are blocked by vehicles and pedestrians. Our proposed framework dynamically uses
three data augmentation strategies in each epoch of the training process. The probability of
randomly selecting images in each epoch varies among strategies.

Remote Sens. 2023, 15, 1212 6 of 19 
 

 

Dynamic Image Selection

Training Datasets X

Datasets A

Dynamic training datasets

DSS

Datasets (X−A)Generated Datasets

DSH

DSO

Lane detection model

Result
 

Figure 1. Overview of the proposed framework. 

2.1. DDA-IRS-DSS 
In the training images of the existing dataset, most of the images are captured on 

wide roads without trees or buildings on both sides. However, in real complex road envi-
ronments, there are shadows on the road surface caused by cars, trees and buildings. To 
improve the effect of shadows on lane line features in such scenes, we propose the DSS 
dynamically simulates the shadows on the sides of the road. First, some of the training 
images are selected adaptively during the training process. Then, random shadows are 
added to the selected images to extend the original dataset. In this way, we obtain training 
images adapted to the shaded scenes. Algorithm 1 shows the dynamic simulation of road 
shadows procedure. 

In training, the shadow content in the image is analyzed by histogram. Random shad-
ows are added with probability sp  at reasonable locations in the images where the shadow 
content is below a threshold. The shadows are superimposed on the original image as a 
translucent black mask. That is, the probability that the image will remain unchanged is 
−1 sp . Specifically, we suppose the size of the training image is W H× , and the area of the 

image is S W H= × . We initialize the area of the random shadow mask to sS , where /sS S  

is within the range specified by the minimum lS  and the maximum hS . A random point 
is selected in the edge area on both sides of the road of the image, and its coordinates are set 
to ( ,  )s sx y , which satisfies (0 / 3 and 3 / )s s s sx W x y H W x≤ ≤ ≤ ≤ × ×  or 

( 2 / 3  and 3 / ( ))s s s sW x W W x y H W W x× ≤ ≤ − ≤ ≤ × × − . We adaptively resize the range of 

lS  and hS  by the value of the vertical coordinate sy  to ensure that the further away the 

shadow mask is, the smaller its size will be. A randomly shaped shadow of the area sS  

containing n  vertices is made clockwise with ( ,  )s sx y  as the starting point. We set this 
shadow area as the mask area and use adaptive semi-transparent black as the mask color. 

  

Figure 1. Overview of the proposed framework.

2.1. DDA-IRS-DSS

In the training images of the existing dataset, most of the images are captured on
wide roads without trees or buildings on both sides. However, in real complex road
environments, there are shadows on the road surface caused by cars, trees and buildings.
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To improve the effect of shadows on lane line features in such scenes, we propose the DSS
dynamically simulates the shadows on the sides of the road. First, some of the training
images are selected adaptively during the training process. Then, random shadows are
added to the selected images to extend the original dataset. In this way, we obtain training
images adapted to the shaded scenes. Algorithm 1 shows the dynamic simulation of road
shadows procedure.

In training, the shadow content in the image is analyzed by histogram. Random
shadows are added with probability ps at reasonable locations in the images where the
shadow content is below a threshold. The shadows are superimposed on the original image
as a translucent black mask. That is, the probability that the image will remain unchanged
is 1− ps. Specifically, we suppose the size of the training image is W × H, and the area of
the image is S = W × H. We initialize the area of the random shadow mask to Ss, where
Ss/S is within the range specified by the minimum Sl and the maximum Sh. A random
point is selected in the edge area on both sides of the road of the image, and its coordinates
are set to (xs, ys), which satisfies (0 ≤ xs ≤ W/3 and xs ≤ ys ≤ 3 × H/W × xs) or
(W × 2/3 ≤ xs ≤ W and W − xs ≤ ys ≤ 3× H/W × (W − xs)). We adaptively resize the
range of Sl and Sh by the value of the vertical coordinate ys to ensure that the further away
the shadow mask is, the smaller its size will be. A randomly shaped shadow of the area
Ss containing n vertices is made clockwise with (xs, ys) as the starting point. We set this
shadow area as the mask area and use adaptive semi-transparent black as the mask color.

Algorithm 1: Dynamic Simulation of Road Shadows Procedure

Input: Input image I;
Image size W and H;
Area of image S;
Simulating road shadows probability ps;
Simulating road shadows area ratio range Sl and Sh;
Number of vertices n.

Output: Simulated image I∗.
Initialization: p1 ← Rand (0, 1) .

1 if p1 ≥ ps then
2 I∗ ← I ;
3 return I∗.
4 else
5 while True do
5 Ss ← Rand(Sl , Sh)× S ;
7 xs ← Rand(0, W/3) and ys ← Rand(xs, 3× H/W × xs) or

xs ← Rand(W × 2/3, W) and ys ← Rand(W − xs, 3× H/W × (W − xs)) ;
8 Is ← (xs, ys, n, Ss) ;
9 Is ← (0, 0, 0) ;
10 I∗ ← pro1 × Is + pro2 × I , where pro1 + pro2 = 1;
11 return I∗.
12 end
13 end

The degree of translucency of the black shadows varies from image to image. Dy-
namic data augmentation is achieved by adding shadows of different shapes, areas and
transparency in different images. Overlaying the mask on the original image preserves the
features of this area of the original image to achieve a realistic shadow effect.

2.2. DDA-IRS-DSH

For the real scene of lane line detection, we propose DSH to simulate the light spots
caused by sunlight reflections from the road puddles or the shooting camera, too much
light at the end of the road, etc. We dynamically acquire a part of the training images in
each epoch in a random way and dynamically add oval light spots with dazzling effects
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at reasonable locations on the image. Algorithm 2 shows the dynamic simulation of
highlights procedure.

Algorithm 2: Dynamic Simulation of Highlights Procedure

Input: Input image I;
Image size W and H;
Simulating highlights probability ph;

Output: Simulated image I∗.
Initialization: p2 ← Rand (0, 1) .

1 if p2 ≥ ph then
2 I∗ ← I ;
3 return I∗.
4 else
5 while True do
6 xh ← Rand(W/3, W × 2/3), yh ← Rand(H/4, H/2) ;
7 axesl ← Rand(a, b), axess← Rand(c, d) , where a, b, c, d depend on yh;
8 if xh + axesl/2 ≤W & xh − axesl/2 ≥ 0 & yh + axess/2 ≤ H & yh − axess/2 ≥ 0 then
9 Ih ← (xh, yh, axesl, axess) ;
10 strength← Rand(250, 350) ;
11 radius← max(axesl, axess) ;

12 d←
√
(x− xh)

2 + (y− yh)
2 , where (x, y) is in the Ih;

13 V ← strength×
(
1−
√

d/radius
)

;
14 R(Ih)← min(255, max((R(I) + V), 0) ;
15 G(Ih)← min(255, max((G(I) + V), 0) ;
16 B(Ih)← min(255, max((B(I) + V), 0) ;
17 I∗ ← pro× Ih + I , where pro ← Rand(0.3, 0.7) ;
18 return I∗.
19 end
20 end
21 end

In order to adjust the dynamic effect of the data augmentation, the operation of adding
an elliptical spot with a dazzling effect is performed with a certain probability in training.
For n training images in an epoch, n× ph training images are selected in a random way
with probability ph. The operation of adding an elliptical spot with a dazzling effect is
done in the selected training images. That is, the probability that the image is not modified
in any way is 1− p. Assuming that the size of the training image is W × H, the DSH
selects a region H/4 ≤ h ≤ H/2 and W/3 ≤ w ≤W × 2/3, chooses a random coordinate
(xh, yh) within this region, makes an ellipse region Ih with this coordinate as the central
point, and makes a flare effect within this ellipse. The long axis of the ellipse is initialized
as axesl and the short axis is initialized as axess. The values of both the long and short
axes are taken as random numbers within a certain range, where the upper and lower
values of this range are related to the coordinates (xh, yh). For a more realistic dazzle of
light, then the different positions correspond to different sizes of the ellipse. We adaptively
adjust the range of values for the long and short axes in terms of the size of the vertical
coordinate yh, ensuring that the more distant the ellipsoidal spot is, the smaller the size. If
xh + axesl/2 ≤ W, yh + axess/2 ≤ H, xh − axesl/2 ≥ 0 and yh − axess/2 ≥ 0, we set the
region, Ih = (xh, yh, axesl, axess), as the selected ellipse region. In addition, the angle of
the ellipse is also randomized, with most images guaranteed to have an ellipse angle of
90 degrees. For the fill values of the pixels within the ellipse, we first use a semi-transparent
white effect for the pixel fill. In this way, a certain degree of original image features can be
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preserved. Next, we adjust the level of glare according to the distance of the pixel point
within the ellipse from the central point of the ellipse:

V = strength×
(

1−
√

d/radius
)

(1)

where V denotes the value of pixels to be added for different pixel points, strength denotes
the intensity value of the dazzle presented, d denotes the distance of the pixel point from
the central point of the ellipse and radius is the larger between axesl and axess.

Once the value V has been obtained, the value V is added to three channels of each
pixel in the ellipse, which gives this pixel a translucent effect. Each channel compares the
summed value with 255, the smaller number being retained in this channel for that pixel,
in this way preventing the pixel value from crossing the boundary.

2.3. DDA-IRS-DSO

Random erasing [27] and cutout [28] are used in image processing for data augmenta-
tion in various scenes. Based on the idea of such data augmentation methods, we propose
a strategy to simulate the congestion of vehicles, pedestrians, buildings, etc., in real road
scenes, by dynamically acquiring part of training images in a random way and dynamically
adding adaptive boxes to the acquired images. The distribution of vehicles on the image is
used to determine the size of the added boxes. The colors and shapes of the interior of the
added boxes depend on the colors and outlines of the real vehicles. Algorithm 3 shows the
dynamic simulation of road vehicles procedure.

Algorithm 3: Dynamic Simulation of Road Vehicles Procedure

Input: Input image I;
Image size W and H;
Area of image S;
Simulating road vehicles probability po;
Simulating road vehicles area ratio range Sl and Sh;
Simulating road vehicles aspect ratio range r1 and r2.

Output: Simulated image I∗.
Initialization: p3 ← Rand (0, 1) .

1 if p3 ≥ po then
2 I∗ ← I ;
3 return I∗.
4 else
5 while True do
6 xo ← Rand(0 , W), yo ← Rand(0 , H) ;
7 So ← Rand(Sl , Sh)× S , where Sl and Sh depend on yo;
8 ro ← Rand(r1, r2) ;
9 Ho =

√
So × ro, Wo =

√
So/ro;

10 if xo + Wo ≤W and yo + Ho ≤ H then
11 Io = (xo, yo, xo + Wo, yo + Ho), I(Io)← Random ;
12 I∗ ← I ;
13 return I∗.
14 end
15 end
16 end

A count of all types of vehicles on the road from the driver’s point of view, counting
their shape, color and characteristics in order to simulate a more realistic scene of vehicle
congestion on the road. In training, simulated vehicles are added with a certain probability
in order to achieve a dynamic addition effect. For an image I in a batch, the probability
that it will do the simulation of adding a vehicle is po, and the probability that it will be
held constant is 1− po. The DSO selects a random coordinate (xo, yo) in the image, makes
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a rectangular region Io of area initialized by So with this coordinate as the top left point,
and overlays the original rectangular region with a set value. The coordinates (xo, yo) are
set in the lower middle region of the image to avoid the simulated vehicles appearing in
unreasonable locations, such as the sky or the sides of the road. The size of the training
image is assumed to be W × H, and the area of the image is S = W × H. So/S is in the
range between the minimum Sl and the maximum Sh, where the values of Sl and Sh are
related to the coordinates (xo, yo). In order to simulate road vehicles more realistically,
then the location varies corresponding to the size of the vehicle. We adaptively adjust
the size of the rectangular area So by the size of the vertical coordinate yo to ensure that
the size of the rectangle is smaller the more distant it is while satisfying the various types
of vehicles at the time of the count. The aspect ratio of the rectangular area is initialized
randomly between r1 and r2, and we set the initialized aspect ratio to ro. The length of the
rectangular area is Ho =

√
So × ro and the width is Wo =

√
So/ro. If xo + Wo ≤ W and

yo + Ho ≤ H, we set the region, Io = (xo, yo, xo +Wo, yo + Ho), as the selected rectangular
region. Each pixel value in Io is adaptively aligned with the statistically derived pixel value
of the simulated real vehicle.

3. Experimental Results
3.1. Datasets

CULane [9]: This is a generic dataset for lane line detection and contains approximately
130 k images. The dataset is divided into 88,880 training, 9675 validation, and 34,680 testing
images. Of these, the testing images are divided into a “Normal” category and eight
challenging categories, including “Crowded”, “Night”, “No line”, “Shadow”, “Arrow”,
“Dazzle”, “Curve”, and “Crossroad”. For some categories, the lane lines are heavily
obscured and even invisible. For each image, there are up to four-lane lines labeled. Most
of the dataset is straight lanes, with few curved roads.

3.2. Evaluation Metrics

For the CULane dataset, each lane line is treated as a thin line of equal width of
30 pixels. Intersection-over-union (IoU) between the predicted result and the ground truth
is calculated. If the value of IoU is greater than a threshold of 0.5, the predicted lane lines
are considered true positives (TP). The precision and the recall are computed by

Precision =
TP

TP + FP
, Recall =

TP
TP + FN

(2)

where TP is the number of correctly detected lanes, FP is the number of false positives, and
FN is that of false negatives. Then, the F-measure is computed by

F−measure =
2× Precision× Recall

Precision + Recall
(3)

3.3. Experimental Settings

To evaluate the effectiveness of the proposed DDA-IRS, we compare the detection
results of DDA-IRS with several representative methods. All the networks in this article are
implemented on the Pytorch platform. The equipment used in the following experiments
consists of an Intel (R) Core (TM) CPU i5-9400F @ 2.90 GHz and one NVIDIA GeForce RTX
2060 GPU with 6 GB of memory. We choose ResNet-18 as the backbone for experiments.
We train 300 epochs for CULane with a batchsize of 2 per GPU. The proposed DDA-IRS
is applied to the training phase, including DSS with a probability of 0.4, DSH with a
probability of 0.3, and DSO with a probability of 0.2.

3.4. Comparative Assessment

Table 1 compares the F-measure performances on the CULane dataset and shows that
the model with data augmentation by DDA-IRS outperforms the baseline model and all
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traditional algorithms. Our DDA-IRS achieves the state-of-the-art result on the CULane
dataset with 76.5% F-measure. The data-enhanced model outperforms the baseline model
by 0.5% in terms of F-measure. And the F-measure under the “Normal”, “Crowded”,
“Shadow”, “Arrow”, and “Curve” categories achieves a 0.4%, 0.1%, 1.6%, 0.4% and 1.4% im-
provement, respectively. Besides, the “Crossroad” category in the evaluation metrics of the
CULane dataset does not calculate the values of TP, Precision and Recall but only evaluates
the performance of this category by the value of FP. The smaller the value of FP, the better
the performance in this category. Compared with the base model, although our framework
performs better, only 0.5% of F1-measure since CULane is a simpler dataset with many
straight lines, it has considerable improvements in “Shadow” and “Curve” scenes, which
demonstrates that imitating real scenes can strengthen local location connectivity. This
shows that DDA-IRS purposefully improves the detection performance under occlusion
in realistic scenes. For the challenging categories of “Night”, “No line”, and “Dazzle”,
the F-measure drops slightly or stays the same. However, it is not that our method is not
applicable to these scenes, but rather that the testing images for these scenes have a partial
labeling bias as well as contain a large number of non-labeled images. The correct detection
results for such test images cannot be classified as TP, leading to a decrease in values when
calculating the F-measure.

To analyze this performance degradation, we visualized the recognition results for
these three categories, as shown in Figure 2. The visualization results show that DDA-IRS
identifies the lane lines more completely compared to the baseline in all three categories,
i.e., “Night”, “No line”, and “Dazzle”. Meanwhile, we can see that the labels are missing
or incomplete, while the data-enhanced model can detect the unlabeled lane lines and
effectively extend lane lines that are incompletely labeled. Therefore, although the detection
results obtained are correct, the calculation of the IoU will result in a calculated result that
is less than the threshold value. Then, such a test result cannot be classified as TP, and
the value of the F-measure obtained in the evaluation metric is slightly reduced. This
does not mean that DDA-IRS is ineffective in these scenes. On the contrary, DDA-IRS is
equally effective in the “Night”, “No line”, and “Dazzle” categories. By DDA-IRS, clearer
and more complete results are still obtained under these categories, and there are fewer
missed detections.
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Table 1. Comparison of the F-measure performances (%) on the CULane dataset with other detection
models. ˆ means that the encoder backbone is ResNet18.

Category Normal Crowded Night No Line Shadow Arrow Dazzle Curve Crossroad Total

SCNN [9] 90.6 69.7 66.1 43.4 66.9 84.1 58.5 65.7 1990 71.6
SAD [10] 90.7 70.0 66.3 43.5 67.0 84.4 59.9 65.7 2052 71.8

Curve-Nas [54] 90.7 72.3 68.9 49.4 70.1 85.8 67.7 68.4 1746 74.8
LaneATT ˆ [14] 91.1 73.0 69.0 48.4 70.9 85.5 65.7 63.4 1170 75.1

UFast ˆ [15] 87.7 66.0 62.1 40.2 62.8 81.0 58.4 57.9 1743 68.4
Baseline ˆ [21] 91.1 74.7 69.5 50.9 71.8 87.3 69.8 60.8 1568 76.0

DDA-IRS (ours) ˆ 91.5 74.8 69.4 49.5 73.4 87.7 69.8 62.2 1350 76.5

For the “Crossroad” category, only FP is reported.

In addition, two data augmentation methods for lane line detection are replicated
on the baseline model [52,54]. Table 2 compares the F-measure performance of the three
models on the CULane dataset. The results show that DDA-IRS outperforms the other
two data augmentation methods, particularly achieving better detection results on the
challenging categories of “Crowded”, “Shadow”, “Dazzle”, “Curve”, and “Crossroad”.
Compared to the better F-measure of the other two data augmentation methods under
each category, the proposed DDA-IRS is still 0.2%, 0.8%, 1.9%, 1.1%, and 0.8% higher
under “Normal”, “Crowded”, “Shadow”, “Dazzle”, and “Curve” respectively. Of these,
“Crowded”, “Shadow”, and “Dazzle” are the main scenes simulated by DDA-IRS, and
the lane lines in these scenes are highly implicit or even invisible, demonstrating the
effectiveness of DDA-IRS.

Figure 3 compares the visual detection results in several scenes. In the “Crowded”,
“Shadow”, and “Dazzle” scenes, the data-enhanced models by other data augmentation
methods still fail to detect the highly occluded lane lines. At the same time, DDA-IRS
can detect these lane lines clearly and completely. Moreover, in the “Crowded” scene,
the data-enhanced models using other data augmentation methods produce misdetection,
which incorrectly detects the line of sunlight on the ground as a lane line, while the data-
enhanced model using the proposed DDA-IRS does not produce misdetection. This shows
that DDA-IRS provides a significant improvement in lane line detection, giving clearer and
more complete detection results in most scenes.
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Table 2. Comparison of the F-measure performances (%) on the CULane dataset with other data
augmentation methods.

Category Normal Crowded Night No Line Shadow Arrow Dazzle Curve Crossroad Total

Baseline [21] 91.1 74.7 69.5 50.9 71.8 87.3 69.8 60.8 1568 76.0
RandAugment [53] 91.1 74.0 69.4 50.5 69.5 87.3 68.7 61.4 1404 75.8

RGB-ALTM [51] 91.3 74.0 70.1 50.9 71.5 87.7 68.6 59.7 1468 75.9

DDA-IRS (ours) 91.5 74.8 69.4 49.5 73.4 87.7 69.8 62.2 1350 76.5

For the “Crossroad” category, only FP is reported.

3.5. Ablation Studies

We conduct ablation studies to analyze the efficacy of the three strategies of DDA-IRS
on the CULane dataset. Table 3 compares the F-measure performances between the baseline
model and the data-enhanced model with each of the proposed strategies. It can be seen
that using each of the strategies individually improves F-measure performance in general.

Table 3. Comparison of the F-measure performances (%) on the CULane dataset of each pro-
posed strategy.

Category Normal Crowded Night No Line Shadow Arrow Dazzle Curve Crossroad Total

Baseline [21] 91.1 74.7 69.5 50.9 71.8 87.3 69.8 60.8 1568 76.0

Proposed-DSS 91.6 74.3 70.5 50.3 71.9 87.3 69.4 62.1 1291 76.3
Proposed-DSH 91.3 74.4 71.0 50.4 70.1 87.3 70.0 63.7 1526 76.2
Proposed-DSO 91.3 73.8 70.0 50.6 72.4 87.0 69.6 60.2 1263 76.1

For the “Crossroad” category, only FP is reported.

Efficacy of DSS: Integrity and correctness are very important for lane line detection.
“Proposed-DSS” in Table 3 indicates the test results of the data-enhanced model using
DSS alone. In the experiment, the simulated shadows were added to the training images
individually with a probability of 0.4. Table 3 compares the performance of the data-
enhanced model using DSS alone with the original baseline model. The results show
that the data-enhanced model using DSS has different degrees of improvement for the
five categories of “Normal”, “Night”, “Shadow”, “Curve”, and “Crossroad”, with the
F-measure improving by 0.5%, 1.0%, 0.1%, and 1.3% for the “Normal”, “Night”, “Shadow”
and “Curve”, categories, respectively, while ensuring that the F-measure remains the same
or decreases slightly for other categories. Moreover, the value of the integrated F-measure
has been improved by 0.3%.

Figure 4 shows the visualization of the test results containing a large number of
shadows. In the testing images with a large number of shadows, the lane lines are mostly
indistinct or even invisible. The results show that DSS effectively solves the problem of
blurry and incomplete lane line detection in shaded scenes. On parts of the lane lines closer
to the horizon, the predictions are more accurate, which improves the phenomenon of
lane lines in the distance disappearing to a certain extent. Better still, DSS also solves the
problem of missed detections that exist in a normal scene to a certain extent. In summary,
the DSS strategy is effective in improving lane line detection results, especially for the
shaded scene.

Efficacy of DSH: The clarity of the results and the extension of the lane lines in the
distance are important for lane line detection. In the experiment, the elliptical patches of
light with dazzling effects were added to the training images individually with a probability
of 0.3. The results are shown in Table 3 under “Proposed-DSH”. Comparing the proposed
DSH and Baseline, the results show that the data-enhanced model using DSH has different
degrees of improvement for the five categories of “Normal”, “Night”, “Dazzle”, “Curve”,
and “Crossroad”, with the F-measure improving by 0.2%, 1.5%, 0.2% and 2.9%, for the
“Normal”, “Night”, “Dazzle”, and “Curve” categories respectively, while ensuring that the



Remote Sens. 2023, 15, 1212 13 of 17

F-measure remains the same or decreases slightly for other categories. Moreover, the value
of the F-measure is also improved in general by 0.2%.
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In addition, a visual comparison of the test results for images containing dazzling
lights in several different scenes is presented in Figure 5. The lights of vehicles at night
and the glare of the sun during the day can cause lane lines that would be clearly visible
to become invisible. The results show that DSH effectively solves the problem of blurry
and incomplete test results in a dazzling light scene to a certain extent. Moreover, DSH
effectively improves the disappearance of lane lines in the distance.
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Efficacy of DSO: For road environments where lane lines are heavily obscured, such as
congestion, it is important to detect lane lines under obscuration. To verify the performance
of DSO, we added multi-size boxes to the training images to enhance the data with a
probability of 0.2 individually and recorded the experimental results in Table 3 under
“Proposed-DSO”. A comparison of the proposed DSO and baseline shows that the lane line
labels are usually not accurate enough in the testing images with heavy occlusion. The data-
enhanced model with DSH has different degrees of improvement for the four categories
of “Normal”, “Night”, “Shadow,” and “Crossroad”, with the F-measure improving by
0.2%, 0.5% and 0.6% for the “Normal”, “Night”, and “Shadow” categories respectively,
while ensuring that the F-measure remains the same or decreases slightly for the other
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categories. Moreover, the value of the F-measure is improved in general by 0.1%. The drop
in F-measure for the “Crowded” category is explained in the visualization results.

Figure 6 shows a visual comparison of the test results for the congested environment.
It can be seen that the lane line labels are usually not accurate enough in the testing images
with heavy occlusion. Our strategy allows for more effective detection of obscured lane
lines in crowded environments and extends detection results of lane lines in the distance.
Furthermore, as can be seen in the figure, the data-enhanced model can detect lane lines
that are not represented in the ground truth, such that the result can lead to less than a
threshold of 0.5 when calculating the IoU between the detection result and the ground-truth,
resulting in correctly predicted lane lines not being recognized as TP, making both Precision
and Recall smaller, which in turn leads to a decrease in F-measure. However, it can be seen
that the detection results for the “Crowded” category with DSO are actually better than the
visualization results. In conclusion, the DSO strategy in DDA-IRS can effectively improve
lane line detection in occlusion scenes.
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4. Discussion

We propose a data augmentation framework for lane line detection that improves
detection when oriented to realistic road scenes (e.g., shadows, reflections, occlusions,
etc.). We considered these three most common realistic road scenes that bring about the
problem of lane lines becoming invisible. Some other complex scenarios, such as low
light and adverse meteorological conditions (e.g., snow or ice on the road, heavy snowfall,
heavy fog, etc.), were not fully taken into account for the framework. Such scenes would
likewise present highly implicit or even invisible lane lines. This leaves our method that
may not have sufficient generalization capabilities. It is also our future research direction
to extend the scenes targeted more diverse for lane line detection. In addition, when
facing the occlusions scene, we adopt the strategy of adding multiple boxes of different
colors and sizes to simulate the occlusion of vehicles or pedestrians on the road. However,
there are still gaps between the pixels of the added regions and the real occlusion colors,
and the outlines of the regions are stiff. If the added regions can be closer to the real
occlusions in terms of color and outline, the method could achieve better detection effects.
Moreover, from the experimental results, we find that in addition to the performance
improvement in scenes with occlusions, the F-measure value also increases considerably in
the “Curves” category. This enhancement is outside what we are targeting in the scenes.
Based on the results, further studies can be designed for the curve scene, which will have
research significance.
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5. Conclusions

In this paper, we propose a simple and effective dynamic data augmentation frame-
work, named DDA-IRS, to alleviate the problems faced by lane line detection in complex
scenes. DDA-IRS does not require any additional parameter learning or memory consump-
tion and can be integrated with various training-based models without modifying the
original model, making it a plug-and-play module. DDA-IRS focuses on disturbances in
complex scenes and contains three different data augmentation strategies for simulating
different realistic road scenes (i.e., shadows, reflections, occlusions). Three different data
augmentation strategies add different modules to randomly selected images, simulating
shadows through semi-transparent masks of different shapes, reflections through elliptical
patches of light with a dazzling effect, and occlusions through multi-size boxes with adap-
tive pixels. In the model training process, the different data augmentation strategies are
randomly applied to achieve a more realistic effect. We apply DDA-IRS to a model with
ResNet18 as the backbone network and conduct experiments on the CULane dataset. The
results show that DDA-IRS improves the robustness of the lane line detection model to
partially occluded samples and extends the detection results at the lane lines in the distance.
Surprisingly, we find that DDA-IRS has the ability to improve the detection of lane lines on
categories such as curves and intersections. In the future, the application of DDA-IRS to
lane lines with structural diversity, such as curves, is worthwhile research work.
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