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Abstract: Uncrewed aircraft systems (UASs) are a popular tool when surveilling for invasive alien
plants due to their high spatial and temporal resolution. This study investigated the efficacy of a UAS
equipped with a three-band (i.e., red, green, blue; RGB) sensor to identify invasive Phragmites australis
in multiple Minnesota wetlands using object-based image analysis (OBIA) and machine learning (ML)
algorithms: artificial neural network (ANN), random forest (RF), and support vector machine (SVM).
The addition of a post-ML classification OBIA workflow was tested to determine if ML classifications
can be improved using OBIA techniques. Results from each ML algorithm were compared across
study sites both with and without the post-ML OBIA workflow. ANN was identified as the best
classifier when not incorporating a post-ML OBIA workflow with a classification accuracy of 88%.
Each of the three ML algorithms achieved a classification accuracy of 91% when incorporating the
post-ML OBIA workflow. Results from this study suggest that a post-ML OBIA workflow can increase
the ability of ML algorithms to accurately identify invasive Phragmites australis and should be used
when possible. Additionally, the decision of which ML algorithm to use for Phragmites mapping
becomes less critical with the addition of a post-ML OBIA workflow.
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1. Introduction

Although the attribution of invasive species as a primary driver of extinction is de-
bated [1], invasive species have undoubtably had a negative impact on many ecological
systems. The United Nation (UN)’s Intergovernmental Platform for Biodiversity and
Ecosystem Services (IPBES) estimates that roughly 20% of the Earth is at risk from biologi-
cal invasions [2]. Monetary estimates on the combined annual damage done by invasive
species are estimated anywhere from tens of billions (USD) globally [3] to USD 120 billion
in the United States alone [4], with the cost estimated to increase three-fold every decade [3].
A number of human health and ecological impacts from invasive species have been docu-
mented, including: loss of biodiversity [5,6], increased fire frequency [7], decreased water
quality [8], increased air temperature through tree canopy removal [9], and higher air
pollution levels [10]. Invasive species management strategies, broadly speaking, can be
broken into three groups: (1) prevention; (2) early detection and rapid response (EDRR);
and (3) long-term management [11]. One challenge with EDRR and long-term management
is that successful removal or control efforts depend on knowing the geographic location
and extent of target species, which can be challenging due to the cryptic nature of some
biological invasions [12,13].

Traditional methods for identifying infestations typically include in situ methods.
Physical mapping can prove difficult, however, due to limited access to private land,
physical inaccessibility of target areas, and, at larger geographic scales, the intra- and
interannual change in species distribution. Remote sensing offers a potential solution
for these mapping limitations with regard to the monitoring and surveillance of invasive
plant species. Today, satellite and airborne imagery are widely available for download.
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Data users can gather imagery from open data sources (Sentinel, Landsat, NAIP, etc.),
through government or university affiliations (Planet, Maxar, etc.), purchase commercial
satellite or aerial imagery, or purchase the platforms to collect the imagery themselves
(uncrewed aircraft systems; UASs). Many have researched the application of remote sensing
for invasive species mapping with satellite imagery [14–16], aerial imagery [17–19], and
UASs [20–22]. UASs in particular have become a popular choice for conservation science
despite their upfront cost and lack of spectral resolution compared to satellite platforms.
This is due to their high spatial resolutions (pixel size smaller than 10 cm) and their ability
for flexible data acquisition. Depending on the platform, UASs can collect frequent, high-
accuracy data over tens to hundreds of acres, which could allow resource managers to
quickly survey areas for target species and monitor treatment results.

One invasive plant species transforming plant communities across the United States is
Phragmites australis (Cav.) Trin. Ex Steud. Ssp. Australis (hereafter Phragmites). Phragmites
is a perennial grass that was likely introduced to the United States through contaminated
ballast material in the 18th or 19th centuries [23]. Populations of Phragmites have since been
reported to the Early Detection and Distribution Mapping System (EDDMapS) [24] in each
of the 48 conterminous states. It can rapidly produce dense, monotypic stands with stem
heights of up to 5 m tall in wetlands, along shorelines, and along roadsides. Phragmites’s
fast growth rates [25], salinity tolerance [26], and ability to take advantage of human-caused
habitat change [27] give it the capability to quickly become the dominant species in the plant
communities it invades. Established populations have been documented with changing
the hydrologic [28] and nutrient cycles [29–31] within wetlands and leading to losses in
biodiversity [32,33]. A native Phragmites genotype (Phragmites australis Trin. Ex. Steud. ssp.
americanus Saltonst., P.M. Peterson and Soreng) exists in Minnesota as well as other Great
Lakes states [23]. However, the native Phragmites genotype generally does not exhibit the
same physical traits and aggressiveness as the invasive Phragmites genotype. Moreover, it
commonly has a smaller stature and grows intermixed with native wetland plant species.
The state of Minnesota has identified the invasive Phragmites genotype as a prohibited
control species [34]. This legal designation bans the importation, sale, and transport of the
plant in addition to legally requiring the removal of identified populations. Due to the
difficulty of physical surveying in wetland habitats, identification of Phragmites populations
for removal can be challenging. UASs can provide a more efficient method for Phragmites
surveying in wetland cover types than traditional in situ methods.

The application of UASs for Phragmites surveying has been investigated by others.
Samiappan et al. (2016) [35] explored the application of a texture-based strategy for map-
ping Phragmites in Louisiana, USA. Their combination of texture layers and spectral bands
with a support vector machine (SVM) achieved an average accuracy of 85% across all study
sites. Abeysinghe et al. (2019) [36] incorporated a normalized difference vegetation index
(NDVI) and a canopy height model (CHM) in addition to image texture layers to classify
Phragmites near Lake Erie in Ohio, USA. They had the greatest success when mapping
Phragmites using a pixel-based approach with a neural network (NN). Additionally, they
noted the importance of a CHM for identifying Phragmites, which is taller than most other
herbaceous wetland vegetation. The importance of a CHM for mapping Phragmites has
been further supported by others [37]. Brooks et al. (2021) [38] tested the ability of UASs
for identifying live and dead Phragmites stems in actively managed sites. Their object-based
image analysis (OBIA) workflow with a nearest neighbor classifier attained an overall
accuracy greater than 91%. The results from Brooks et al. (2021) [38] suggest that UASs can
be used for both the surveillance and monitoring of Phragmites.

These studies demonstrate that several different classification methods can be utilized
to accurately identify Phragmites. However, studies that implement OBIA and ML often
view the image objects classified by the ML algorithm as the final product [22,36,39].
Doing so does not allow for the inclusion of contextual information that can be helpful
for differentiating cover types. In this study, image objects are created from UAS imagery
and classified using an ML algorithm. A post-ML OBIA rule set is then applied to the
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ML-classified objects to further refine the Phragmites classification. The OBIA rule set is not
meant to complete the identification of Phragmites in place of an ML algorithm. Instead,
it acts as a pseudo image interpreter that removes misidentified objects and refines class
extents based on a series of contextually based rules. The goal of this study is to explore
the effectiveness of using a post-ML OBIA workflow to improve an ML classification of
Phragmites. Three ML algorithms will be tested: artificial neural network (ANN), SVM, and
random forest (RF). The objectives of this study are: (i) determine the effectiveness of three
ML algorithms for Phragmites surveillance; (ii) explore the effects of using OBIA to refine
ML classifications; and (iii) assess the transferability of classification workflows to new
study areas.

2. Materials and Methods
2.1. Study Area

Seven wetland complexes, located in Minnesota, USA, were used in this study
(Figure 1). These study sites consisted of a combination of wastewater treatment facil-
ities (WWTFs), city parks, wetland management areas, and private land. Site A is the
Delano WWTF in Delano, Minnesota (Figure 2A). The south fork of the Crow River and
its floodplain runs to the north and west of the Delano WWTF. Land surrounding the
Delano WWTF is otherwise urban. A city park is located directly south of the WWTF, and
residential neighborhoods are present to the south. Two roads border the WWTF to the
north and southwest, and paved paths run between several different buildings on-site.
Vegetation at the Delano WWTF is fairly uniform. Two reed beds that have been planted
with invasive Phragmites (Figure 3A) are present to the north and northeast. An escaped
population of Phragmites is present along the perimeter of a small wetland to the southwest
of the planted reed beds. Phragmites is the dominant species in this wetland, which also
has a limited distribution of cattails (Typha sp.). A majority of the Delano WWTF is mowed
grass with scattered trees. There is a contiguous patch of trees that borders the WWTF to
the east and southeast.

Located directly south of the Delano WWTF is Site B, Delano City Park (Figure 2B).
Land surrounding the city park has been heavily modified. Multiple baseball fields are
present to the west, residential housing borders the park to the northeast and southwest,
and the Delano Middle and High School campus sits to the southeast. The park itself is
dominated by a wetland complex that is split by a paved walking path. Multiple Phragmites
patches of varying sizes (Figure 3B) exist within this wetland complex. Three large patches
exist in the northeast and southeast portions of the park. Several smaller, more dispersed
patches are present as well. Herbaceous wetland vegetation dominates a significant portion
of the study area in addition to scattered groups of trees and shrubs. Dominant species
include reed canary grass (Phalaris arundinacea) and cattails (Typha sp.). Areas of mowed
grass exist in the center portion of the park along the walking path and around residential
homes. This study area contains a small portion of the neighboring residential homes to
the east and northeast.

The third study area is located on private property near Chisago City, Minnesota
(Figure 2C). This study area is a small portion of a large wetland complex located to the
south of the Sunrise River, and a tributary to the Sunrise River flows through the middle
of the study area. Land surrounding the wetland complex is largely rural, consisting of
fields of row crops and hay fields. Phragmites is the dominant species within the study area
site (Figure 3C). The wetland portions of the site otherwise contain relatively high-quality
wetland species with an assortment of native grasses, sedges, rushes, and flowers. Large
patches of forest are present on the northeast and southeast edges of the study site. Smaller,
linearly shaped patches of trees are situated on the western side of the site. This study site
has experienced habitat disturbance. The property owner has a sandpit in the northwest
corner of the site. Additionally, there are a high-voltage powerline running north to south
through the site and a two-track access road running from west to east.



Remote Sens. 2023, 15, 989 4 of 36

Remote Sens. 2023, 15, x FOR PEER REVIEW 4 of 37 
 

 

 

Figure 1. Study sites located in Minnesota, USA: (A) Delano wastewater treatment facility, (B) 

Delano City Park, (C) Chisago City, (D) Wabasha, (E) Chatfield wastewater treatment facility, (F) 

Swan Lake Wildlife Management Area, and (G) Grassy Point Park. 

Figure 1. Study sites located in Minnesota, USA: (A) Delano wastewater treatment facility, (B) Delano
City Park, (C) Chisago City, (D) Wabasha, (E) Chatfield wastewater treatment facility, (F) Swan Lake
Wildlife Management Area, and (G) Grassy Point Park.

Located near Wabasha, Minnesota, the fourth study area (Figure 2D) resides on
private property adjacent to both the Upper Mississippi River National Wildlife and Fish
Refuge (United States Fish and Wildlife Service) and the Pool 4 Wildlife Management
Area (Minnesota Department of Natural Resources). A tributary to the Mississippi River
flows northward along the western edge of the study area into the Upper Mississippi
River National Wildlife and Fish Refuge. Portions of this site are actively farmed. Fields
of row crops are located on each side of the study area except the northern edge, and the
surrounding land is heavily farmed. The central portion of the site is dominated by a
wetland. Six Phragmites patches are present (Figure 3D) within this wetland. Three patches
are growing between the two agricultural fields on the western side of the site. One patch is
found in the center of the site growing next to a large stand of willows (Salix sp.) just to the
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north of the soybean field. Lastly, two patches are positioned just north of the soybean field
on the east side of site. The wetland complex is otherwise dominated by shorter, native
herbaceous wetland vegetation. A second, large willow stand is positioned in the northeast
corner of the site just south of a paved road.
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Figure 3. Location of Phragmites in each study area (highlighted in red): (A) Delano wastewater
treatment facility, (B) Delano City Park, (C) Chisago City, (D) Wabasha, (E) Chatfield wastewater
treatment facility, (F) Swan Lake Wildlife Management Area, and (G) Grassy Point Park.

The Chatfield WWTF and neighboring land is the fifth study area (Figure 2E). This
WWTF is located in Chatfield, Minnesota, which is a small town in southern Minnesota.
Land surrounding Chatfield is dominated by agriculture. The WWTF is bordered by Mill
Creek and the north branch of the Root River to the east and south. The land directly north
of the WWTF is residential housing. A single reed bed planted with invasive Phragmites
(Figure 3E) is operated by the city of Chatfield. Seeds from this reed bed have traveled
to the neighboring property and established satellite populations. One large patch of
Phragmites exists on the eastern side of the site with multiple, smaller patches situated
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around it. The site is otherwise a mixture of different vegetation types. Mowed grass is the
dominant vegetation type around the WWTF. Herbaceous wetland vegetation as well as
stands of willows and sumac (Rhus sp.) are present to the east of the WWTF. This site has
experienced some impact from agricultural practices. The land directly southeast of the
WWTF operates as a pasture for cattle, while the land south of the escaped Phragmites is an
old agricultural field.

The sixth study area is the Swan Lake Wildlife Management Area (WMA): Nicollet Bay
Main Unit (Figure 2F). This site is located near Nicollet, Minnesota, and it is managed by
the Minnesota Department of Natural Resources. Swan Lake is directly north of the study
area, and the land in this region of Minnesota is dominated by agriculture. A significant
portion of this study area is restored tall grass prairie. Areas not restored consist of an
old agricultural field on the eastern side of the study site and an agricultural field on the
western side of the study site. Seasonally flooded emergent wetland vegetation is found
along the roadside in the southern part of the study area as well as in the northern quarter
of the site. Two patches of invasive Phragmites exist within the Swan Lake WMA (Figure 3F).
These two patches are present along the road at the southern end of the site. Three patches
of the native Phragmites are present as well. Two patches are growing around a seasonally
flooded basin in the northern half of the site, and the third patch is located at the far
northern edge. The native Phragmites at this site is oddly robust. Native Phragmites stems
are as dense and as tall as the invasive Phragmites at the southern edge of the study site.

Grassy Point Park (Figure 2G), the final study area, is located in Duluth, Minnesota.
This site is situated roughly six kilometers from Lake Superior within the Saint Louis River
Estuary. It is at the intersection of the Keene Creek and the Saint Louis River. Grassy
Point Park has been heavily impacted by industrial land use. Wood waste from sawmilling
operations was dumped into the estuary at this location during the 19th century [40].
Today, Grassy Point Park is bordered by a coal dock, railroad line, and a shipping channel.
Multiple plant communities exist within Grassy Point Park, including: shallow marsh,
deep marsh, wooded swamp, and shrub swamp. Cattail (Typha sp.) is the most dominant
vegetation type within the site, and alders (Alnus sp.) are present throughout the northern
half of the site. Three populations of Phragmites are present within Grassy Point Park
(Figure 3G). First, a large, circular patch is located in the bottom center of the park. Second,
a linearly shaped patch is present along the shoreline of the basin in the northwest corner
of Grassy Point Park. The final patch is located at the end of the canal, and it is intermixed
with alder trees.

2.2. Image Preprocessing
2.2.1. Optical Imagery

Image acquisition was completed between July and August of 2021 (Table 1) for six
of the seven study areas. Each study area was flown with a Microdrones MD4-1000. The
vehicle was equipped with a Sony Rx1RII camera coupled with an Applanix APX-15 IMU
fitted to a gravity (nadir) gimbal. The sensor collected image data in three bands in the
visible spectrum (i.e., red, green, blue; RGB) at roughly 121 m above ground level (AGL).
Images were acquired using 85% endlap and 70% sidelap. The resulting imagery had a
ground sampling distance between 1.6 and 1.7 cm. The vehicle used for the 2021 acqui-
sitions had postprocessing kinematic (PPK) capabilities. Two Emlid RS2 multifrequency
receivers were used for real-time GNSS measurement and data collection. A base was
established approximately 15 min prior to flight, recorded measurements in Static mode,
and continued collection for 15 min postflight. The base station was deployed as backup to
the Minnesota Department of Transportation-managed Continuously Operating Reference
Stations (CORS) network (MnCORS) that was used for GNSS postprocessing. An RTK
rover was used to collect control point coordinates. The control points were used in geo-
metric accuracy validation. Navigation of the study area during placement of the control
points allowed for a better understanding of which plant species were present and their
distribution throughout the site.
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Table 1. UAS collections at each study area. All imagery in 2021 was acquired at 121 m above ground
level with 85% endlap and 70% sidelap. Grassy Point Park was collected in 2018 with 85% endlap
and 65% sidelap.

Study Area Collection Date Acres Resolution Weather

Delano WWTF 22 July 2021 26.6 1.65 cm Overcast, light precipitation, and gusting winds
Delano City Park 22 July 2021 27.1 1.67 cm Overcast and gusting winds

Chisago City Property 29 July 2021 24.4 1.61 cm Hazy from wildfire smoke
Wabasha Property 12 August 2021 28.7 1.66 cm Clear skies and moderate wind
Chatfield WWTF 3 August 2021 38.1 1.61 cm Clear skies with light haze from wildfire smoke
Swan Lake WMA 19 July 2021 38.2 1.68 cm Mostly clear and light wind
Grassy Point Park 10 August 2018 71 2.64 cm Clear skies and minimal wind

GNSS postprocessing of event positions was completed using the Applanix POSPac
software. Base station files from the nearest CORS station were used to correct the multifre-
quency GNSS from the UAS and georeference the imagery. Pix4Dmapper [41] was used
to generate an orthorectified mosaic image, a 3D point cloud, and a digital surface model
(DSM) from the georeferenced imagery. Data were projected into UTM WGS84 Zone 15N
referencing the EGM96 geoid. All DSMs except the DSM for the Chisago City study site
were used directly from Pix4D. The Chisago City study area has a high-voltage powerline
running north to south through the middle of the site. Points generated on the powerlines
were manually removed from the Chisago City point cloud and a new DSM was created
using Quick Terrain Modeler [42].

A small portion of the Wabasha study area was removed from the UAS mosaic, which
contained a segment of the neighboring corn field. This was removed from the mosaic
because it was determined that the total area of corn was not large enough to support
effective training of a corn class with a machine learning classifier.

Image acquisition for Grassy Point Park varied compared to the other study areas.
Grassy Point Park was flown in 2018 with a Microdrones MD4-1000 without PPK or
RTK capabilities. A Sony A6300 camera collected images with an endlap of 85% and a
sidelap of 65%. No ground control points were placed during image acquisition. Due to
these differences, the created DSM did not align with lidar-derived ground elevation over
bare earth. The Grassy Point Park point cloud was co-registered to the lidar by selecting
20 points with the Align tool in CloudCompare [43] to account for the elevation difference.
A DSM was created with rapidlasso LAStools [44] using the co-registered point cloud.

2.2.2. Lidar

Minnesota has a publicly available lidar dataset through MnTOPO (http://arcgis.dnr.
state.mn.us/maps/mntopo/ (accessed on 1 September 2021)). Counties were flown at
different times between 2007 and 2012. Although Phragmites stays standing year-round, the
lidar over the study areas was collected in the spring or fall leaf-off periods of the respective
year (Table 2). Phragmites has less aboveground biomass during these times, which allowed
for the lidar to better circumvent the vegetative canopy and interact with the ground
surface. Visual interpretation of the lidar data indicated that vegetation returns were not
being incorrectly classified as ground returns over these areas. A digital elevation model
(DEM) was created for each study area using exclusively the classified ground returns,
except for Grassy Point Park. The lidar vendor misclassified the ground points from the
southeast island in Grassy Point Park as water returns. These misclassified points were
included in the Grassy Point Park DEM. DEMs were made using rapidlasso LAStools [44]
and had a spatial resolution of 1.0 m2. The Minnesota lidar data reported elevations using
the North American Vertical Datum of 1988 (NAVD88) referencing Geoid09. The raster
DEMs were converted using the Geospatial Data Abstraction Library (GDAL) [45] to match
the horizontal and vertical coordinate system of the UAS data.

http://arcgis.dnr.state.mn.us/maps/mntopo/
http://arcgis.dnr.state.mn.us/maps/mntopo/
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Table 2. Lidar collection periods for each study area.

Study Area County Collection Period

Delano WWTF Wright 23 April–28 May 2008
Delano City Park Wright 23 April–28 May 2008

Chisago City Property Chisago 18–28 April 2007
Wabasha Wabasha 18–24 November 2008

Chatfield WWTF Olmsted 18–24 November 2008
Swan Lake WMA Nicollet 8 April–5 May; 2–19 November 2010
Grassy Point Park St. Louis 29–31 October; 2 and 8 November 2012

2.3. Classification

An OBIA workflow with a machine learning classifier was selected for this study
(Figure 4). OBIA incorporates the size, shape, and contextual information of image features
in addition to their spectral and textural properties for feature identification. It also provides
the ability to use data inputs from different sensors and varying resolutions. These abilities
allow OBIA to frequently produce results with higher mapping accuracies than pixel-based
classifiers, and better approximates of the shape of real-world features [46,47]. Three
different machine learning algorithms were tested during this study for their ability to
identify Phragmites: ANN, RF, and SVM.

Remote Sens. 2023, 15, x FOR PEER REVIEW 10 of 37 
 

 

[46,47]. Three different machine learning algorithms were tested during this study for 

their ability to identify Phragmites: ANN, RF, and SVM. 

 

Figure 4. Classification workflow used in this study. The UAS mosaic was segmented to produce 

image objects, the image objects were classified using an ML algorithm, and then the classified ob-

jects were further refined using a post-ML OBIA rule set in eCognition. 

Using an ML algorithm to classify image objects has been a popular technique for 

feature extraction and land cover classification [48–50]. This technique combines the ben-

efits of image segmentation to create image objects from OBIA and the data fitting capa-

bilities of ML algorithms. However, this technique frequently is used on image objects 

created from segmenting an image at a single scale, which lacks the use of contextual in-

formation for image object classification generally found within OBIA rule sets. We be-

lieve that the mapping accuracy of a classification derived from an ML classifier can be 

improved by applying an OBIA workflow to image objects that have had an initial class 

assigned by an ML algorithm. In this sense, a post-ML OBIA rule set is used to clean up, 

or remove errors, from the initial ML classification. This allows for the application of con-

textual information to separate cover types, which is otherwise lost when incorporating 

only the segmentation step from OBIA workflows. 

2.3.1. OBIA Workflow 

Classification was completed using a combination of the Trimble eCognition Devel-

oper software [51] and Python [52]. First, image layers were loaded into eCognition and 

temporary raster layers were created. The first temporary layer created was a normalized 

digital surface model (nDSM), which was created by subtracting the lidar-derived DEM 

from the UAS-derived DSM. The second temporary layer created was the visible-band 

difference vegetative index (VDVI). This index estimates vegetative health similar to a 

normalized difference vegetative index (NDVI), however, the VDVI utilizes the red, 

green, and blue spectral bands [53]. The VDVI was calculated using the following formula: 

𝑉𝐷𝑉𝐼 =  
(2 ∗ 𝑔𝑟𝑒𝑒𝑛) − 𝑟𝑒𝑑 − 𝑏𝑙𝑢𝑒

(2 ∗ 𝑔𝑟𝑒𝑒𝑛) + 𝑟𝑒𝑑 + 𝑏𝑙𝑢𝑒
  

The third temporary layer generated was the normalized difference between the red 

and blue spectral bands (Red-Blue ratio). Visual interpretation of the imagery showed 

lower values in the blue spectral band over woody vegetation than over Phragmites stands. 

This difference was further highlighted by creating a normalized difference index with 

the red spectral band because the values of the red band were fairly consistent across all 

vegetation types. The Red-Blue ratio was calculated using the following formula: 

𝑅𝑒𝑑 − 𝐵𝑙𝑢𝑒 𝑅𝑎𝑡𝑖𝑜 =  
𝑟𝑒𝑑 − 𝑏𝑙𝑢𝑒

𝑟𝑒𝑑 + 𝑏𝑙𝑢𝑒
  

Lastly, the visible atmospherically resistant index (VARI) has been used by others for 

identifying Phragmites from UAS imagery [38]. This index provides an estimate of vegeta-

tion fraction. VARI was calculated using the following formula: 

𝑉𝐴𝑅𝐼 =  
𝑔𝑟𝑒𝑒𝑛 −  𝑟𝑒𝑑

𝑔𝑟𝑒𝑒𝑛 +  𝑟𝑒𝑑 − 𝑏𝑙𝑢𝑒
  

The optical imagery was then segmented in eCognition once the temporary layers 

had been created. Image objects were generated using the multiresolution segmentation 

algorithm. Multiresolution segmentation in eCognition allows for the specification of 

three parameters: scale, shape, and compactness. Scale controls the size of the image 

Figure 4. Classification workflow used in this study. The UAS mosaic was segmented to produce
image objects, the image objects were classified using an ML algorithm, and then the classified objects
were further refined using a post-ML OBIA rule set in eCognition.

Using an ML algorithm to classify image objects has been a popular technique for
feature extraction and land cover classification [48–50]. This technique combines the
benefits of image segmentation to create image objects from OBIA and the data fitting
capabilities of ML algorithms. However, this technique frequently is used on image objects
created from segmenting an image at a single scale, which lacks the use of contextual
information for image object classification generally found within OBIA rule sets. We
believe that the mapping accuracy of a classification derived from an ML classifier can
be improved by applying an OBIA workflow to image objects that have had an initial
class assigned by an ML algorithm. In this sense, a post-ML OBIA rule set is used to clean
up, or remove errors, from the initial ML classification. This allows for the application of
contextual information to separate cover types, which is otherwise lost when incorporating
only the segmentation step from OBIA workflows.

2.3.1. OBIA Workflow

Classification was completed using a combination of the Trimble eCognition Devel-
oper software [51] and Python [52]. First, image layers were loaded into eCognition and
temporary raster layers were created. The first temporary layer created was a normalized
digital surface model (nDSM), which was created by subtracting the lidar-derived DEM
from the UAS-derived DSM. The second temporary layer created was the visible-band
difference vegetative index (VDVI). This index estimates vegetative health similar to a
normalized difference vegetative index (NDVI), however, the VDVI utilizes the red, green,
and blue spectral bands [53]. The VDVI was calculated using the following formula:

VDVI =
(2 ∗ green)− red − blue
(2 ∗ green) + red + blue
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The third temporary layer generated was the normalized difference between the red
and blue spectral bands (Red-Blue ratio). Visual interpretation of the imagery showed
lower values in the blue spectral band over woody vegetation than over Phragmites stands.
This difference was further highlighted by creating a normalized difference index with
the red spectral band because the values of the red band were fairly consistent across all
vegetation types. The Red-Blue ratio was calculated using the following formula:

Red − Blue Ratio =
red − blue
red + blue

Lastly, the visible atmospherically resistant index (VARI) has been used by others
for identifying Phragmites from UAS imagery [38]. This index provides an estimate of
vegetation fraction. VARI was calculated using the following formula:

VARI =
green − red

green + red − blue

The optical imagery was then segmented in eCognition once the temporary layers
had been created. Image objects were generated using the multiresolution segmentation
algorithm. Multiresolution segmentation in eCognition allows for the specification of three
parameters: scale, shape, and compactness. Scale controls the size of the image objects.
Larger values for scale will produce larger image objects and vice versa. Shape determines
the impact of shape and color on image object creation. A higher value for the shape
parameter gives more influence to shape than color. Smaller values for the shape parameter
provide color with a higher influence than shape. Compactness controls the smoothness or
compactness of an image object. Using a higher value for the compactness parameter will
result in more compact objects, while lower values will produce smoother objects. A scale
parameter value of 50, a shape parameter value of 0.3, and a compactness parameter value
of 0.5 were used for the multiresolution segmentation. These values were selected through
trial and error. Objects created from the multiresolution segmentation were exported and
classified using each of the three specified ML classifiers in Python. Six cover types were
predicted: tree, short tree, wetland vegetation, mowed grass, agriculture, and Phragmites.

After the image objects were assigned a class by an ML classifier, they were subjected
to another OBIA workflow in eCognition (Figure 5). This workflow began with the removal
of image objects not containing vegetation. A mean VDVI value of 0.05 was used for
this separation. Next, a series of rules were employed to remove classification errors
around fences. Objects with a shape index value greater than 3.5 were designated to a
temporary class. Shape index is calculated by dividing the length of an object’s border by
four times the square root of the object’s area. A value of one represents a square object
with the value increasing as the object becomes more irregularly shaped. A threshold
of 3.5 corresponds to long, linearly shaped objects. Image objects within the temporary
class were then subjected to a series of rules to classify them into the correct cover class.
Specifically, four iterations of the “relative border to” algorithm assigned image objects to
the classes of neighboring objects. The relative border algorithm calculates the ratio of a
shared border between two objects to the length of the entire object’s border. For example, a
ratio of 1 corresponds to an object being completely surrounded by objects of a single class.
A ratio of 0 corresponds to an object having no shared border with objects of a particular
class. Any image object not removed from the temporary class after four rounds of the
relative border algorithm were merged into whichever cover class they shared the highest
relative border with. Scattered individual objects completely surrounded by a single class
were then reclassified. For example, a single object classified as wetland vegetation within
a stand of Phragmites is most likely also Phragmites. These scattered objects were reclassified
using the relative border algorithm to reassign their class to the cover class with the longest
shared border length.
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loading in the image objects classified by a machine learning algorithm, reduces classification error
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Next, a sequence of rules was applied to manage objects incorrectly classified as
Phragmites. To begin, all touching Phragmites objects were merged together. Image objects
assigned to the tree class with a mean nDSM value of less than 0.25 m were then assigned
to a temporary class. This was carried out to remove objects mostly containing herbaceous
vegetation at the borders of tree stands, which allowed for the better performance of the
subsequent steps. Next, Phragmites objects with a relative border to tree objects greater than
0.75 were reassigned to the tree class. The VDVI layer was then used to remove Phragmites
objects with a low VDVI value. Those objects with a mean VDVI value below 0.1 were
assigned to the temporary class. Phragmites objects were further split using the nDSM layer.
The 25th and 90th quantiles of the nDSM values within an object were used to capture the
distribution of heights. Phragmites image objects with a 25th quantile value less than 0.75 m
and a 90th quantile value less than 1.4 m were reassigned to the temporary class. Objects
in the temporary class were then assigned to the wetland vegetation class if they shared
more than 50% of their border. If objects in the temporary class shared 50% or more of their
border with the tree class, they were reassigned to the tree class.

Classification errors around dead trees and herbaceous vegetation were then reme-
diated. Dead vegetation was initially classified as not vegetation due to its VDVI value.
Patches of dead vegetation were merged into their respective cover classes using the rel-
ative border algorithm. Objects containing dead trees were assigned to the tree class by
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using a mean nDSM value of 2 m as well as the relative border algorithm. Reassigning
dead vegetation to the correct class allowed for the further classification of objects in the
temporary class. Objects in the temporary class were reassigned to a cover class if they
shared 50% or more of their border.

The next chain of rules focused on misclassification between the Phragmites, tree, and
short tree classes. First, Phragmites objects with a mean Red-Blue ratio greater than 0.1,
sharing at least 33% of their border with tree objects, and having an area of less than
200,000 pixels were reassigned to the tree class. Designating a large area threshold allowed
for the exclusion of large patches adjacent to stands of trees while still permitting the
reassignment of smaller, misclassified objects. Next, objects in the short tree class with
a 90th nDSM quantile value less than 5 m, a Red-Blue ratio less than 0.15, and a 25th
nDSM quantile greater than 0.5 m were assigned to a temporary class. Objects within the
temporary class with a mean nDSM value greater than 1 m and a Red-Blue ratio less than
0.1 were reassigned as Phragmites.

Lastly, misclassification at the border of short tree, tree, and Phragmites stands was
addressed. Phragmites objects that shared at least 90% of their border with tree objects were
then delegated to the tree class. Short tree objects with a mean Red-Blue ratio less than
0.15, a 50th nDSM quantile value less than 5 m, and sharing 33% or more of their border
with Phragmites objects were transferred to the Phragmites class. Phragmites objects with a
mean Red-Blue ratio greater than 0.2 and Phragmites objects sharing a minimum of 90% of
their border with short tree objects were placed in a temporary class. Objects within the
temporary class were then reassigned to the short tree class if they shared at least 50% of
their border with short tree objects. Lastly, Phragmites objects sharing 80% or more of their
border with tree objects were reassigned to the tree class, and objects sharing a minimum
of 60% of their border with objects that do not contain vegetation were removed. All
cover classes other than the Phragmites class were merged together to form one class, Not
Phragmites. The resulting classified image had two classes, Phragmites and Not Phragmites.

2.3.2. Machine Learning Classifiers

RF, SVM, and ANN classifiers were tested in this study. RF uses an ensemble of
decision tree classifiers where each decision tree is fit on a subsample of the provided
training data [54]. Prediction of a class is determined by the majority vote of all individual
decision trees within the ensemble. RF classifiers have been used successfully for land
cover classification and invasive species mapping [55–57]. We used the scikit-learn imple-
mentation of a random forest classifier [58]. A grid search was performed to select the
best values for the number of trees, maximum depth, minimum samples for a split, and
minimum samples for a leaf. The tuned values, however, did not outperform the default
scikit-learn random forest during the training phase of the study. We instead elected to use
the default algorithm parameters except for the number of decision trees within the forest
(Table 3). A total of 500 trees were used.

Table 3. Parameters values used for the random forest classifier algorithm in scikit-learn. All values
are the default options except for the number of trees.

Parameter Value

Number of Trees 500
Maximum Depth None

Minimum Samples for Split 2
Minimum Samples for Leaf 1

Minimum Weighted Fraction for Leaf Node 0
Number of Features to Consider During Search for Best Split

√
Number o f Features

Maximum Number of Leaf Nodes None
Minimum Decrease in Impurity to Induce Split 0
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SVM is a machine learning algorithm that has been used effectively for image classi-
fication and invasive species mapping [21,59–61]. SVMs are different from RF classifiers
in that they are not an ensemble of decision trees. Instead, SVMs transform input data
into a higher-dimensional feature space and then fit a hyperplane that best separates the
classes [62]. The separating hyperplane looks to maximize the gap, or margin, between
data points of classes. Since perfect separability between classes is unlikely, a parameter
is specified that determines the amount of acceptable violations. This parameter is called
the soft margin. Finally, SVMs require the use of a kernel function. Kernel functions map
data into a higher-dimensional feature space with the idea that the classes will be linearly
separable in that high-dimensional space [63,64]. Different kernel functions can be selected
depending on whether classes are linearly or non-linearly separable. Our study used the
scikit-learn implementation of an SVM, which uses LibSVM internally [65]. The default
options with a radial basis function (RBF) kernel were selected (Table 4). Two parameters
are required when using an RBF kernel: C and gamma. C determines the relationship
between misclassification of training data and the complexity of the hyperplane. Low C
values will create a smooth hyperplane, while high C values will create a complex hyper-
plane looking to classify all training data correctly. Gamma determines the influence of
individual training samples. A grid search was conducted to determine the best values
for C and gamma for our application. A C value of 2154.43 and a gamma value of 0.1
were selected.

Table 4. Parameters values used for the support vector machine classifier algorithm in scikit-learn.
All values are the default options except for C and gamma.

Parameter Value

Kernel Radial Basis Function
C 2154.43

Gamma 0.1
Use Shrinking Heuristic True

Tolerance for Stopping Criterion 0.001
Maximum Iterations No Limit

Decision Function Shape One vs. Rest

ANNs have become a popular choice for image classification and feature extraction [66–68].
An ANN is a machine learning algorithm designed to mimic the way in which a human brain
completes tasks. Input data are initially passed to an input layer, which contains a series of nodes
that determine which data to pass along to the hidden layer through an activation function.
Data passed from a node in the input layer to a node in the hidden layer have a numerical
weight applied to them. Input values from all input nodes that pass data to a single hidden layer
node are summed and a bias term is added. This summed value is then passed to an activation
function that applies a mathematical function to the value before sending it to the next node.
The passing of data between nodes of different layers creates a network of interconnected nodes
where different weights are applied to the input values at each step. Data are eventually passed
to the final output layer, which, for classification tasks, computes the probability of the original
input data being from each class. The class with the highest probability is then assigned to the
input data. During the training phase of ANNs, the magnitude and direction of classification
errors can be used to alter the weights applied to the data within the neural network using
a method called back propagation. The ANN will continue to train and adjust weights until
a designated threshold is met. Our study used the scikit-learn implementation of a neural
network classifier called MLPClassifier. We elected to use the default neural network options
while specifying a random state value of one (Table 5).
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Table 5. Parameters values used for the artificial neural network classifier algorithm in scikit-learn.
All values are the default options except for the random state.

Parameter Value

Number of Hidden Layers 1
Neurons per Hidden Layer 100

Activation Function Rectified Linear Unit (relu)
Optimizer Adam

Learning Rate 0.001
Number of Epochs 200

Tolerance 0.0001
Random State 1

2.4. Training and Validation
2.4.1. Model Training

Three sites were selected for training and the remaining four sites were withheld
for validation. The three training sites were: Delano WWTF, Wabasha, and the Chatfield
WWTF. These sites were selected for a few reasons: (1) the reed beds at the WWTFs
provide a large area of Phragmites, which is otherwise limited in Minnesota; (2) although
the reed beds provide good training data, validation using the installed reed beds would
be counterproductive since they are growing in a managed environment; and (3) combined,
these three study sites provide good coverage of each cover class while also providing
variability within each cover class.

Limited accessibility to all the patches of Phragmites in each study site excluded the
possibility of delineating patch boundaries with a handheld global positioning system
(GPS). Instead, each site was navigated to the extent possible to determine Phragmites
distribution. A combination of field knowledge and image interpretation was then used to
manually digitize Phragmites patches in each training area using its corresponding UAS
mosaic. In total, 26 Phragmites polygons were digitized across all training sites (Table 6).
Multiple polygons were sometimes required to accurately digitize a single Phragmites patch.
Training polygons were then digitized for each of the cover classes to be used in the machine
learning classification: agriculture, mowed grass, herbaceous wetland vegetation, tree, and
short tree. The short tree cover class included shorter trees and shrubs such as willow
(Salix sp.) and sumac (Rhus sp.).

Table 6. Number of Phragmites polygons digitized and the total area in acres of Phragmites per
study area.

Study Area Number of Phragmites Polygons Total Area (Acres)

Delano WWTF 11 1.76
Wabasha 6 0.63

Chatfield WWTF 9 1.38

Image objects were created in each of the training polygons within the three training
sites using a multiresolution segmentation in eCognition. The same parameters described
in the Classification section were selected. The image objects were exported and used to
train the ML classifiers. Nineteen parameters were included in the training data (Table 7).
Brightness is an estimate on how bright an object is, e.g., black objects will have a lower
value than white objects. Edge contrast compares the pixel values of the area surrounding
an image object to the mean intensity of a specific image layer within that image object.
We used a window size of 10 for calculating the edge contrast for the red, green, blue,
and nDSM layers. Two gray-level co-occurrence matrix (GLCM) values were calculated
for each image object: homogeneity and contrast. GLCM homogeneity identifies areas of
similar textures while GLCM contrast identifies areas of dissimilar textures [69]. Lastly,
maximum difference quantifies the differences between all image layers for an image
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object and its neighboring image objects. Both ANN and RF were trained using the entire
training dataset (Table 8). SVM, however, was unable to train on the entire dataset due
to processing time limitations. Instead, roughly 5000–7000 image objects were randomly
selected for each cover class to be used for model training (Table 8). A trial was completed
to determine if using a balanced number of training samples per cover class resulted in
a better classification than an imbalanced dataset. Each ML algorithm was trained on
9000 training samples from each cover class and compared to the classifications using the
imbalanced dataset. As expected, underrepresented classes, i.e., mowed grass and short
tree, had increased representation in the classifications resulting from the balanced dataset.
However, this resulted in more misclassification of Phragmites as short tree. We elected to
proceed with the imbalanced datasets due these errors.

Table 7. Parameters exported from eCognition to be used in machine learning classifiers.

Parameter Source

Brightness [70]

Edge Contrast of Blue Band (Window: 10) [70]

Edge Contrast of Green Band (Window: 10) [70]

Edge Contrast of nDSM (Window: 10) [70]

Edge Contrast of Red Band (Window: 10) [70]

Gray-Level Co-occurrence Matrix: Contrast [69]

Gray-Level Co-occurrence Matrix:
Homogeneity [69]

Maximum Difference [70]

Mean of Blue Band

Mean of Green Band

Mean of nDSM DSM − DEM

Mean of Red Band

Mean Red-Blue Ratio red−blue
red+blue

Mean VARI green−red
green+red−blue

Mean VDVI (2∗green)−red−blue
(2∗green)+red+blue

Standard Deviation of nDSM

Standard Deviation of Red-Blue Ratio

25th Quantile of nDSM

90th Quantile of nDSM

Table 8. Number of training samples per cover class for each machine learning model.

Cover Class

Model Mowed Grass Phragmites Tree Short Tree Wetland Agriculture

ANN 9312 51,510 31,591 15,223 141,382 69,057
RF 9312 51,510 31,591 15,223 141,382 69,057

SVM 4656 5151 6318 7612 7069 6951

To create the final eCognition rule set, the entire UAS mosaic from each training site
was segmented and classified using the RF model. The classified UAS mosaics were then
used to develop the eCognition rule set, which was completed through trial and error.
The results from the training phase were: (1) an eCognition rule set for breaking the UAS
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mosaic into image objects; (2) three ML classifiers trained to identify Phragmites (ANN, RF,
and SVM); and (3) an eCognition rule set designed to further refine the ML classifications.

2.4.2. Model Validation

The four study sites not selected for the training phase of the study were used to
validate the classifications. These sites included: Delano City Park, Chisago City, the Swan
Lake WMA, and Grassy Point Park. Creation of the validation points was a multistep
process. Similar to the training sites, each validation site was navigated to the extent
possible to determine the location of Phragmites patches. A combination of field knowledge,
GPS locations of verified patches through EDDMapS, and image interpretation was used
to digitize rough boundaries around each Phragmites patch. Rough boundaries were used
to ensure the edges of each patch were included, which also resulted in the inclusion
of non-Phragmites vegetation within the boundaries. These boundaries were used to
randomly generate 150 points in ESRI’s ArcGIS Pro software [71]. Each of the 150 Phragmites
validation points were manually verified through image interpretation. Points falling on an
individual Phragmites plant where retained, while points not falling on a Phragmites plant
were removed from the validation point database. Seventy-five of the verified Phragmites
validation points were then randomly selected to be used for the accuracy assessment. For
the Not Phragmites cover class, 200 points were randomly generated within each validation
site without excluding the Phragmites patches. This was carried out to allow for the inclusion
of non-Phragmites vegetation around or within a Phragmites patch. Each of the 200 Not
Phragmites validation points was manually verified through image interpretation. Points
falling on a Phragmites plant were removed, while points falling on anything else were
retained. One hundred of the verified Not Phragmites validation points were randomly
selected to be used in the accuracy assessment. This process was completed for each of the
three validation sites (Table 9).

Table 9. Validation points per cover class for each validation site. The total number of points
randomly generated, the number manually verified through image interpretation, and the number
selected from the verified points are provided.

Phragmites Class Generated Verified Selected

Delano City Park 150 115 75
Chisago City Property 150 146 75

Swan Lake WMA 150 88 75
Grassy Point Park 150 77 75

Not Phragmites Class Generated Verified Selected

Delano City Park 200 185 100
Chisago City Property 200 123 100

Swan Lake WMA 200 191 100
Grassy Point Park 200 143 100

The final number of validation points for each study area was 175 (Figure 6). A confu-
sion matrix was created from the 175 validation points in each study area by comparing
the predicted cover class at each validation point to the true cover class. Producer’s and
user’s accuracies were calculated for the two classes for each validation site [72]. Validation
points from the Delano City Park, Chisago City property, and the Swan Lake WMA were
then merged to create a combined confusion matrix from all three study areas. The com-
bined producer’s, user’s, and overall accuracy were reported. Additionally, the individual
site and combined errors of commission (ECs), errors of omission (EOs), and Matthews
correlation coefficient (MCC) scores were provided. MCC gives an estimate on how well a
prediction performs compared to a random prediction, and it ranges from −1 to 1 [73]. An
MCC value of one indicates a perfect prediction, a value of zero indicates a prediction no
better than random, and a value of negative one indicates complete disagreement. MCC is
a commonly used metric for assessing binary classifications, and it provides a more reliable
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metric than the F1 score because the F1 score can provide falsely high scores when only
one of the two classes is predicted correctly [74]. Accuracy was calculated twice: (1) after
the ML classification, but before the final OBIA rule set; and (2) after the application of the
post-ML OBIA rule set. This was carried out to determine the impact the post-ML OBIA
rule set had on classification accuracy. Classification accuracy for each classifier at Grassy
Point Park was held separate from the other three validation sites. The training data used
in this study were collected from the southern half of Minnesota, while Grassy Point Park
is a coastal wetland located in the northern half of Minnesota. Instead, Grassy Point Park
was used to test the transferability of this approach to a completely new wetland type.

Remote Sens. 2023, 15, x FOR PEER REVIEW 18 of 37 
 

 

the post-ML OBIA rule set had on classification accuracy. Classification accuracy for each 

classifier at Grassy Point Park was held separate from the other three validation sites. The 

training data used in this study were collected from the southern half of Minnesota, while 

Grassy Point Park is a coastal wetland located in the northern half of Minnesota. Instead, 

Grassy Point Park was used to test the transferability of this approach to a completely new 

wetland type. 

 

Figure 6. Location of validation points by cover class for Delano City Park (B), Chisago City (C), the 

Swan Lake WMA (F), and Grassy Point Park (G). Seventy-five Phragmites validation points were 

randomly selected, and one hundred Not Phragmites validation points were randomly selected. 

3. Results 

3.1. Artificial Neural Network 

Each of the three validation sites were classified using an ANN both with and with-

out the post-ML OBIA rule set (Figure 7). The ANN performed well without the post-ML 

OBIA rule set (Tables 10 and 11). A combined accuracy of 88% was achieved (Figure 8), 

while the Phragmites class attained a combined producer’s accuracy of 73% and a user’s 

accuracy of 98%. The Not Phragmites class performed well with a combined producer’s 

accuracy of 99% and user’s accuracy of 83%. Chisago City had the lowest classification 

accuracy of the three sites. An accuracy of 86% was achieved, but the Phragmites class had 

a producer’s accuracy of 67%. The user’s accuracy for the Phragmites class at the Chisago 

City property was 100% while the user’s accuracy of the Not Phragmites class was 80%. 

This was lower due to the misidentification of Phragmites. The producer’s accuracy of the 

Not Phragmites class was 100%. Classification accuracy was similar for the Swan Lake 

WMA, 87%, while the Delano City Park had the highest overall classification accuracy of 

90%. MCC values were 0.79 for the Delano City Park, 0.73 for the Chisago City property, 

0.76 for the Swan Lake WMA, and 0.76 for the combined sites. 

Figure 6. Location of validation points by cover class for Delano City Park (B), Chisago City (C), the
Swan Lake WMA (F), and Grassy Point Park (G). Seventy-five Phragmites validation points were
randomly selected, and one hundred Not Phragmites validation points were randomly selected.

3. Results
3.1. Artificial Neural Network

Each of the three validation sites were classified using an ANN both with and without
the post-ML OBIA rule set (Figure 7). The ANN performed well without the post-ML OBIA
rule set (Tables 10 and 11). A combined accuracy of 88% was achieved (Figure 8), while
the Phragmites class attained a combined producer’s accuracy of 73% and a user’s accuracy
of 98%. The Not Phragmites class performed well with a combined producer’s accuracy of
99% and user’s accuracy of 83%. Chisago City had the lowest classification accuracy of the
three sites. An accuracy of 86% was achieved, but the Phragmites class had a producer’s
accuracy of 67%. The user’s accuracy for the Phragmites class at the Chisago City property
was 100% while the user’s accuracy of the Not Phragmites class was 80%. This was lower
due to the misidentification of Phragmites. The producer’s accuracy of the Not Phragmites
class was 100%. Classification accuracy was similar for the Swan Lake WMA, 87%, while
the Delano City Park had the highest overall classification accuracy of 90%. MCC values
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were 0.79 for the Delano City Park, 0.73 for the Chisago City property, 0.76 for the Swan
Lake WMA, and 0.76 for the combined sites.
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Figure 7. Classification of Phragmites (red) using an artificial neural network with and without the
post-ML OBIA rule set at the three validation sites: Delano City Park (B), Chisago City property
(C), and the Swan Lake Wildlife Management Area (F). Everything not identified as Phragmites was
classified as Not Phragmites. The true Phragmites location is provided as a reference (orange).

Table 10. Validation assessment points for each of the three validation sites for the artificial neural
network classification without the post-ML OBIA rule set.

Phragmites Class Not Phragmites Class

Site Correct Incorrect Correct Incorrect

Delano City Park 61 14 96 4
Chisago City Property 50 25 100 0

Swan Lake WMA 53 22 100 0
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Table 11. Errors of commission (EC), errors of omission (EO), and Matthews correlation coefficient
(MCC) values for the artificial neural network classification without the post-ML OBIA rule set.

Phragmites Class Not Phragmites Class

Site EC EO EC EO MCC

Delano City Park 6% 19% 13% 4% 0.79
Chisago City Property 0% 33% 20% 0% 0.73

Swan Lake WMA 0% 29% 18% 0% 0.76

Combined 2% 27% 17% 1% 0.76
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Figure 8. Combined confusion matrix for the three validation sites classified using an artificial neural
network without the post-ML OBIA rule set. A classification accuracy of 88% was achieved. The
Phragmites class had a producer’s accuracy of 73% and a user’s accuracy of 98%. The Not Phragmites
class had a producer’s accuracy of 99%, while achieving a user’s accuracy of 83%.

Inclusion of the post-ML OBIA rule set improved the classification accuracy at two
of the three validation sites (Tables 12 and 13). Combined overall accuracy improved to
91% (Figure 9). The combined producer’s accuracy for the Phragmites class increased to
79%. Combined user’s accuracy for the Phragmites class remained similar with an accuracy
of 99%. A marginal improvement was seen for the Not Phragmites class. A combined
producer’s accuracy of 100% was achieved, while the user’s accuracy was 86%. The
Chisago City property experienced the largest increase in classification accuracy. Accuracy
for the Chisago City property increased from 86% to 92% with the inclusion of the post-ML
OBIA rule set. The producer’s accuracy of the Phragmites class increased from 73% to
81%. Classification accuracy improved from 90% to 93% at the Delano City Park. No
improvement in classification accuracy was seen at the Swan Lake WMA with the addition
of the post-ML OBIA rule set. MCC values improved with the post-ML OBIA rule set for
the Delano City Park and the Chisago City property. Delano City Park achieved an MCC
of 0.85, the Chisago City property had an MCC of 0.84, and the Swan Lake WMA had an
MCC of 0.76. The combined MCC value improved to 0.82 with the post-ML OBIA rule set.
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Table 12. Validation assessment points for each of the three validation sites for the artificial neural
network classification with the post-ML OBIA rule set.

Phragmites Class Not Phragmites Class

Site Correct Incorrect Correct Incorrect

Delano City Park 63 12 99 1
Chisago City Property 61 14 100 0

Swan Lake WMA 53 22 100 0

Table 13. Errors of commission (EC), errors of omission (EO), and Matthews correlation coefficient
(MCC) values for the artificial neural network classification with the post-ML OBIA rule set.

Phragmites Class Not Phragmites Class

Site EC EO EC EO MCC

Delano City Park 2% 16% 11% 1% 0.85
Chisago City Property 0% 19% 12% 0% 0.84

Swan Lake WMA 0% 29% 18% 0% 0.76

Combined 1% 21% 14% 0% 0.82
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Figure 9. Combined confusion matrix for the three validation sites classified using an artificial
neural network with the post-ML OBIA rule set. A classification accuracy of 91% was achieved. The
Phragmites class had a producer’s accuracy of 79% and a user’s accuracy of 99%. The Not Phragmites
class had a producer’s accuracy of 100%, while achieving a user’s accuracy of 86%.

3.2. Random Forest

The three validation sites were classified using an RF both with and without the post-
ML OBIA rule set (Figure 10). Classification using an RF without the post-ML OBIA rule
set attained a lower classification accuracy than the ANN (Tables 14 and 15). Combined
classification accuracy was 84% (Figure 11). The Phragmites class had a combined producer’s
accuracy of 64% and a combined user’s accuracy of 98%. Misclassification of Phragmites
resulted in lower overall accuracies for the Not Phragmites class. The combined producer’s
accuracy for the Not Phragmites class was 99%, however, the combined user’s accuracy
was 79%. Similar to the ANN results without the post-ML OBIA rule set, the Chisago City
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property had the lowest classification accuracy with a value of 78%. The Phragmites class
performed poorly with a producer’s accuracy of 48%. This resulted in a user’s accuracy of
72% for the Not Phragmites class. Classification accuracy was significantly higher for the
Swan Lake WMA, 86%, and Delano City Park, 89%, compared to the Chisago City property.
MCC values for the RF classification without the post-ML OBIA rule set were lower than
the ANN classification for the Chisago City property and Swan Lake WMA. An MCC of
0.79 was achieved at the Delano City Park, 0.59 at the Chisago City property, and 0.73 at
the Swan Lake WMA. The combined MCC value for all three sites was 0.7.
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Figure 10. Classification of Phragmites (red) using a random forest with and without the post-ML
OBIA rule set at the three validation sites: Delano City Park (B), Chisago City property (C), and the
Swan Lake Wildlife Management Area (F). Everything not identified as Phragmites was classified as
Not Phragmites. The true Phragmites location is provided as a reference (orange).
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Table 14. Validation assessment points for each of the three validation sites for the random forest
classification without the post-ML OBIA rule set.

Phragmites Class Not Phragmites Class

Site Correct Incorrect Correct Incorrect

Delano City Park 58 17 98 2
Chisago City Property 36 39 100 0

Swan Lake WMA 51 24 99 1

Table 15. Errors of commission (EC), errors of omission (EO), and Matthews correlation coefficient
(MCC) values for the random forest classification without the post-ML OBIA rule set.

Phragmites Class Not Phragmites Class

Site EC EO EC EO MCC

Delano City Park 3% 23% 15% 2% 0.79
Chisago City Property 0% 52% 28% 0% 0.59

Swan Lake WMA 2% 32% 20% 1% 0.73

Combined 2% 36% 21% 1% 0.7
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Figure 11. Combined confusion matrix for the three validation sites classified using a random forest
without the post-ML OBIA rule set. A classification accuracy of 84% was achieved. The Phragmites
class had a producer’s accuracy of 64% and a user’s accuracy of 98%. The Not Phragmites class had a
producer’s accuracy of 99%, while achieving a user’s accuracy of 79%.

Improvement in classification accuracy was seen with the incorporation of the post-ML
OBIA rule set (Tables 16 and 17). RF with the post-ML OBIA rule set attained a combined
classification accuracy of 91% (Figure 12). Producer’s accuracy for the combined Phragmites
class increased significantly to 81%. User’s accuracy for the combined Phragmites class
had a marginal improvement to 99%. The combined producer’s accuracy for the Not
Phragmites class had no improvement with an accuracy of 99%. However, the combined
user’s accuracy showed improvement with a value of 87%. The Chisago City property
showed the largest increase in classification accuracy. The producer’s accuracy for the
Phragmites class improved to 89%, while the user’s accuracy of the Not Phragmites class
increased to 93%. Slight increases in classification accuracy were attained for both Delano
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City Park, 92%, and Swan Lake WMA, 87%. MCC values showed improvement with the
addition of the post-ML OBIA rule set. The Delano City Park achieved an MCC of 0.84, the
Chisago City property achieved an MCC of 0.86, and the Swan Lake WMA achieved an
MCC of 0.76. An MCC of 0.83 was achieved for the combined sites.

Table 16. Validation assessment points for each of the three validation sites for the random forest
classification with the post-ML OBIA rule set.

Phragmites Class Not Phragmites Class

Site Correct Incorrect Correct Incorrect

Delano City Park 61 14 100 0
Chisago City Property 67 8 99 1

Swan Lake WMA 54 21 99 1

Table 17. Errors of commission (EC), errors of omission (EO), and Matthews correlation coefficient
(MCC) values for the random forest classification with the post-ML OBIA rule set.

Phragmites Class Not Phragmites Class

Site EC EO EC EO MCC

Delano City Park 0% 19% 12% 0% 0.84
Chisago City Property 1% 11% 7% 1% 0.86

Swan Lake WMA 2% 28% 17% 1% 0.76

Combined 1% 19% 1% 13% 0.83
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Figure 12. Combined confusion matrix for the three validation sites classified using a random forest
with the post-ML OBIA rule set. A classification accuracy of 91% was achieved. The Phragmites class
had a producer’s accuracy of 81% and a user’s accuracy of 99%. The Not Phragmites class had a
producer’s accuracy of 99%, while achieving a user’s accuracy of 87%.

3.3. Support Vector Machine

All the validation sites were classified using an SVM with and without the post-
ML OBIA rule set (Figure 13). Except for the Delano City Park, SVM classifications
performed poorer than both ANN and RF models without the post-ML OBIA rule set
(Tables 18 and 19). The SVM classification had the lowest combined classification accuracy
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of 80% (Figure 14). A combined producer’s accuracy of 57% was attained for the Phragmites
class. The Phragmites class had a combined user’s accuracy of 94%. Combined producer’s
and user’s accuracies for the SVM classification were lower than their ANN and RF coun-
terparts. The Not Phragmites class had a combined producer’s accuracy of 97% and a user’s
accuracy of 75%. The SVM performed the poorest at the Chisago City property with a
classification accuracy of 67%. Only 20 of the 75 Phragmites validation points were correctly
identified. This resulted in the Phragmites class having a producer’s accuracy of 27% and
a user’s accuracy of 91%. Classification accuracies attained at the Delano City Park and
Swan Lake WMA were similar to the ANN and RF results with overall accuracies of 89%
and 84%, respectively. MCC values for the SVM classifications were marginally smaller
than the ANN and RF MCC values for the Delano City Park and the Swan Lake WMA. An
MCC of 0.77 was attained at the Swan Lake WMA, and an MCC of 0.69 was attained at the
Swan Lake WMA. The Chisago City property achieved the lowest MCC of 0.37. An MCC
of 0.61 was achieved for the combined sites.
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Figure 13. Classification of Phragmites (red) using a support vector machine with and without the
post-ML OBIA rule set at the three validation sites: Delano City Park (B), Chisago City property
(C), and the Swan Lake Wildlife Management Area (F). Everything not identified as Phragmites was
classified as Not Phragmites. The true Phragmites location is provided as a reference (orange).
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Table 18. Validation assessment points for each of the three validation sites for the support vector
machine classification without the post-ML OBIA rule set.

Phragmites Class Not Phragmites Class

Site Correct Incorrect Correct Incorrect

Delano City Park 58 17 97 3
Chisago City Property 20 55 98 2

Swan Lake WMA 50 25 97 3

Table 19. Errors of commission (EC), errors of omission (EO), and Matthews correlation coefficient
(MCC) values for the support vector machine classification without the post-ML OBIA rule set.

Phragmites Class Not Phragmites Class

Site EC EO EC EO MCC

Delano City Park 5% 23% 15% 3% 0.77
Chisago City Property 9% 73% 36% 2% 0.37

Swan Lake WMA 6% 33% 20% 3% 0.69

Combined 6% 43% 25% 3% 0.61
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Figure 14. Combined confusion matrix for the three validation sites classified using a support vector
machine without the post-ML OBIA rule set. A classification accuracy of 80% was achieved. The
Phragmites class had a producer’s accuracy of 54% and a user’s accuracy of 94%. The Not Phragmites
class had a producer’s accuracy of 97%, while achieving a user’s accuracy of 75%.

Classifications incorporating the post-ML OBIA rule set with the SVM showed im-
provement (Tables 20 and 21). These improvements resulted in a combined accuracy of
91% (Figure 15). The combined producer’s accuracy for the Phragmites class improved to
81%, while the combined user’s accuracy increased to 98%. Combined accuracies for the
Not Phragmites improved as well. The Not Phragmites class had a combined producer’s
accuracy of 99% and a user’s accuracy of 88%. The Chisago City property saw the largest
increase in classification accuracy compared to the other two validation sites. A producer’s
accuracy of 92% and a user’s accuracy of 97% were achieved by the Phragmites class. The
Not Phragmites class achieved a producer’s accuracy of 98% along with a user’s accuracy
of 94%. Classification accuracy of the Delano City Park was 93% with the addition of the



Remote Sens. 2023, 15, 989 26 of 36

post-ML OBIA rule set. The Swan Lake WMA attained a classification accuracy of 85%.
MCC values improved with the post-ML OBIA rule set, with the largest improvement at
Chisago City property. An MCC of 0.91 was attained at the Chisago City property, 0.86 at
the Delano City Park, and 0.72 at the Swan Lake WMA. The MCC value for the combined
sites increased to 0.83.

Table 20. Validation assessment points for each of the three validation sites for the support vector
machine classification with the post-ML OBIA rule set.

Phragmites Class Not Phragmites Class

Site Correct Incorrect Correct Incorrect

Delano City Park 64 11 99 1
Chisago City Property 69 6 98 2

Swan Lake WMA 50 25 99 1

Table 21. Errors of commission (EC), errors of omission (EO), and Matthews correlation coefficient
(MCC) values for the support vector machine classification with the post-ML OBIA rule set.

Phragmites Class Not Phragmites Class

Site EC EO EC EO MCC

Delano City Park 2% 15% 10% 1% 0.86
Chisago City Property 3% 8% 6% 2% 0.91

Swan Lake WMA 2% 33% 20% 1% 0.72

Combined 2% 19% 12% 9% 0.83
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Figure 15. Combined confusion matrix for the three validation sites classified using a support vector
machine with the post-ML OBIA rule set. A classification accuracy of 91% was achieved. The
Phragmites class had a producer’s accuracy of 81% and a user’s accuracy of 98%. The Not Phragmites
class had a producer’s accuracy of 99%, while achieving a user’s accuracy of 88%.

3.4. Site G: Grassy Point Park

Grassy Point Park was classified using each of the three ML algorithms both with and
without the post-ML OBIA rule set (Figure 16). RF performed the best compared to ANN
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and SVM without the post-ML OBIA rule set (Tables 22 and 23). The Phragmites class for the
RF classification achieved a producer’s accuracy of 71% and a user’s accuracy of 65%. The
Not Phragmites class had a producer’s accuracy of 71% and a user’s accuracy of 76%. An
MCC of 0.41 was attained by the RF classification. SVM performed worse for the Phragmites
class compared to RF. The SVM classification attained a producer’s accuracy of 45% and a
user’s accuracy of 61% for the Phragmites class. A producer’s accuracy of 78% and a user’s
accuracy of 66% were achieved for the Not Phragmites with the SVM classification. The SVM
classification achieved an MCC of 0.25. ANN performed the poorest at Grassy Point Park.
A producer’s accuracy of 24% and a user’s accuracy of 40% were attained by the Phragmites
class. The Not Phragmites class had a producer’s accuracy of 73% and a user’s accuracy of
56%. ANN achieved the lowest F1 score at Grassy Point Park with a value of −0.03.
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Figure 16. Classification of Phragmites (red) at Grassy Point Park using (B) an artificial neural network
(ANN), (C) random forest (RF), and (D) support vector machine (SVM) without the post-ML OBIA
rule set. The post-ML OBIA rule set was applied to the (E) ANN classification, (F) RF classification,
and (G) SVM classification. Everything not identified as Phragmites was classified as Not Phragmites.
The true Phragmites location is provided as a reference (orange).
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Table 22. Validation assessment points for Grassy Point Park for each of the classification methods.

Phragmites Class Not Phragmites Class

Method Correct Incorrect Correct Incorrect

ANN 18 57 73 27
ANN/OBIA 73 2 89 11

RF 53 22 71 29
RF/OBIA 73 2 91 9

SVM 34 41 78 22
SVM/OBIA 69 6 89 11

Table 23. Errors of commission (EC), errors of omission (EO), and F1 scores for Grassy Point Park for
each of the classification methods.

Phragmites Class Not Phragmites Class

Site EC EO EC EO F1 Score

ANN 60% 76% 44% 27% −0.03
ANN/OBIA 13% 3% 2% 11% 0.86

RF 35% 29% 24% 29% 0.7
RF/OBIA 11% 3% 2% 9% 0.88

SVM 39% 55% 34% 22% 0.25
SVM/OBIA 14% 8% 6% 11% 0.8

Including the post-ML OBIA rule set provided significant improvement for the Phrag-
mites class. ANN saw the largest improvement compared to the classification without the
post-ML OBIA rule set. Fifty-five additional Phragmites validation points were correctly
identified with the addition of the post-ML OBIA rule set. A producer’s accuracy of 97%
and a user’s accuracy of 87% were attained by the Phragmites class. The Not Phragmites
class achieved a producer’s accuracy of 89% and a user’s accuracy of 98%. RF and SVM
classifications correctly identified an additional 20 and 35 Phragmites validation points,
respectively. The Phragmites class achieved a producer’s accuracy of 97% for the RF classifi-
cation and 92% for the SVM classification. User’s accuracy for the Phragmites class was 90%
for the RF classification and 86% for the SVM classification. The producer’s accuracy for the
Not Phragmites class was 91% for the RF classification and 89% for the SVM classification.
User’s accuracy for the Not Phragmites class was slightly higher for the RF classification
(98%) than the SVM classification (94%). Improvement in classification accuracy with the
post-ML OBIA rule set was reflected in the MCC values. With the post-ML OBIA rule set,
the ANN classification attained an MCC of 0.86, the RF classification achieved an MCC of
0.88, and the SVM classification had an MCC of 0.8.

4. Discussion

Classification accuracies of the three ML algorithms without the use of the post-ML
OBIA rule set were similar across the three initial validation sites except for the Chisago
City property. Producer’s accuracy for the Phragmites class varied from 77–81% at the
Delano City Park site and 67–71% for the Swan Lake WMA. Classification accuracy for the
Delano City Park varied from 89–90%, while the Swan Lake WMA varied from 84–87%.
MCC values were fairly similar at the Delano City Park with MCC values ranging from
0.78–0.79. MCC values varied more at the Swan Lake WMA with values ranging from
0.69–0.76. Both invasive and native Phragmites genotypes were identified as Phragmites
at the Swan Lake WMA. This is likely due to the mixed nature of the Phragmites stands
and the robust stature of the native Phragmites genotype in the study area. Results at
the Swan Lake WMA suggest that robust stands of the native Phragmites are likely to be
classified as the invasive Phragmites genotype. A native Phragmites cover class, which we
did not use, may help separate these genotypes. Even with a native Phragmites cover class,
however, we believe that correctly distinguishing between native and invasive Phragmites
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through remote sensing will be challenging. Reliable physical identification of these two
subspecies requires the observation of the ligule length, leaf sheaths, and stem color. These
characteristics are not visible in UAS imagery, and separation of these two Phragmites
subspecies is not consistent using the physical traits observable in RGB UAS imagery, i.e.,
color and height. Additional research is required to determine if the native and invasive
Phragmites genotypes can be distinguished using remotely sensed data.

Without the inclusion of the Chisago City property, the three ML algorithms used in
this study performed similarly during the initial validation without the post-ML OBIA rule
set. However, performance was significantly different for each of the three ML algorithms
at the Chisago City property. The ANN achieved the highest producer’s accuracy for the
Phragmites class at 67%, RF attained 48%, and SVM had a producer’s accuracy for the
Phragmites class of 27%. The low accuracy shows the failure of RF and SVM at the Chisago
City property. Both RF and SVM were able to identify Phragmites correctly on the periphery
of the large patches but were unable to identify large portions of the Phragmites in the
interior of the patch (Figure 17). SVM performed the worst by missing a majority of two
patches, including the largest patch in any of the three validation sites. The SVM attained
an MCC value of 0.25 at the Chisago City property, which indicates a predication slightly
better than random. Although the ANN was able to identify more Phragmites in the interior
of the large patches, omission errors in the center of the Phragmites patches were present at
the Chisago City property. Omission errors for each of the ML algorithms were consistent
at the other two validation sites. These errors were due to inaccuracies in estimating patch
boundaries, which is further discussed below. All but one Phragmites patch had at least
a single object inside it correctly identified as Phragmites across all study areas and ML
algorithms. RF missed a patch at the Chisago City property that is growing within a forest
canopy gap. It was not expected to identify this patch due to its location in the interior of a
woodland and the surrounding trees casting shadows. Overall, the accuracies achieved
without the use of the post-ML OBIA rule set were slightly lower than the object-based
SVM classification by Abeysinghe et al. (2019) [36] that attained an overall accuracy of
92.31%, the pixel-based SVM from Samiappan et al. (2017) [60] that attained an overall
accuracy of 91%, and the object-based nearest neighbor classification from Brooks et al.
(2021) [38] that achieved an overall accuracy of 91.7%. Unfortunately, due to the “black
box” nature of the chosen ML classifiers, we are unable to ascertain why RF and SVM failed
at the Chisago City property while ANN did not. The results at the Chisago City property
are further confusing due to all three ML algorithms performing similarly at the other two
validation sites. Further evaluation of these three ML algorithms at additional validation
sites is needed.

The amount of commission errors varied by ML algorithm and validation site. ANN
misidentified more non-Phragmites vegetation as Phragmites than the RF at the Delano
City Park and marginally more at the Chisago City property. This was not captured in
the validation due to the nature of randomly generated points but is apparent through
visual analysis. Commission errors for the three ML algorithms were generally of the
same vegetation, including: cattails (Typha sp.), reed canary grass (Phalaris arundinacea),
and herbaceous vegetation adjacent to trees and shrubs. Objects of mixed Phragmites and
non-Phragmites vegetation also resulted in commission error. Phragmites intermixed with
shrubs, such as in areas of the Chisago City property, and Phragmites mixed with shorter
non-Phragmites herbaceous vegetation, such as in the Delano City Park and Swan Lake
WMA, were the most common. RF misidentified more vegetation along the tree–herbaceous
vegetation boundary than both ANN and SVM. SVM, however, misidentified more non-
Phragmites vegetation in total than both ANN and RF. This is evident at the Swan Lake
WMA where the SVM misidentified soybeans and upland vegetation as Phragmites.
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Figure 17. Classification of Phragmites (red) using an artificial neural network, random forest, and
support vector machine without the final OBIA rule set at the three validation sites: Delano City Park
(B), Chisago City property (C), and the Swan Lake Wildlife Management Area (F). Everything not
identified as Phragmites was classified as Not Phragmites. The true Phragmites location is provided as a
reference (orange).

The inclusion of the post-ML OBIA rule set improved the ability to accurately map
Phragmites with UAS imagery at the three initial validation sites. Delano City Park and
the Chisago City property each had classification accuracies ranging from 92–95% for
each ML algorithm. Combined accuracies with the post-ML OBIA rule set were similar to
those reported by Abeysinghe et al. (2019) [36], Samiappan et al. (2017) [60], and Brooks
et al. (2021) [38]. However, accuracies were lower than those reported by Higgisson et al.
(2021) [75], 95%, and Guo et al. (2022) [76], 94%, when using convolutional neural networks.
The largest accuracy improvement was seen at the Chisago City property where MCC
values increased by as much as 0.54. This was attributed to the ability of using contextual-
based rules within an OBIA framework. Gaps within a Phragmites patch could be filled
if there was a good estimate of the patch boundary. This was seen with the RF and SVM
classifications of the Chisago City property. Nonetheless, omission errors were still present.
Phragmites was correctly identified in all but one patch across all validation sites with
each of the three ML algorithms. The Phragmites patch located within a woodland at the
Chisago City property was not identified in any classification. As discussed previously,
this patch was unlikely to be identified due to being within a forest canopy gap. Likewise,
commission errors for all ML algorithms and validation sites were reduced. Similar types
of non-Phragmites vegetation were misidentified as Phragmites with the incorporation of
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the post-ML OBIA rule set as without the post-ML OBIA rule set. However, objects
misidentified as Phragmites were readily removed through a series of contextual-based
rules, e.g., proximity to other cover types. The incorporation of rules using the 25th and
90th quantiles of relative height within an object was particularly successful in removing
misidentification of objects with skewed relative height distributions, such as the tree–
herbaceous vegetation boundary. Conversely, commission errors were increased in some
areas around Phragmites patches due to the merging of neighboring objects. This specifically
happened in the Delano City Park where woody vegetation was incorrectly merged into
the Phragmites class. Future applications of OBIA for refining ML classifications of invasive
species should predetermine the acceptable level of commission errors required to meet
project goals and OBIA rule sets should be created accordingly.

Results from Grassy Point Park were different than those from the other three vali-
dation sites without the use of the post-ML OBIA rule set. The MCC values for both RF
and SVM were low with value of 0.41 for RF and 0.25 for SVM. ANN, however, attained
an MCC of −0.03 at Grassy Point Park, which indicated the prediction did not perform
better than a random prediction. There was widespread misidentification of herbaceous
non-Phragmites vegetation as Phragmites. This was not surprising since the herbaceous non-
Phragmites vegetation at Grassy Point Park was significantly taller than the same species
located within the other sites. A majority of this vegetation was over one meter tall. The
height of the vegetation, combined with same misclassification of cattails as Phragmites
seen at the other sites, resulted in the lower accuracies at Grassy Point Park. Phragmites was
correctly identified within each known patch without the use of the post-ML OBIA rule set.
However, the amount of Phragmites correctly identified by each ML algorithm varied. RF
and SVM performed similarly by identifying the boundaries of each Phragmites patch except
for the patch at the end of the canal. ANN, however, failed to identify the southeastern
border of the largest Phragmites patch. Inclusion of the post-ML OBIA rule set improved
classification accuracy, which was similar to the results from the other three validation sites.
Misidentification of herbaceous non-Phragmites vegetation was significantly reduced. The
extents of identified Phragmites patches were refined, and the interior portions of the patch
were filled. Each ML algorithm except ANN did identify Phragmites at the end of the canal
but was unable to ascertain the correct extent. One unexpected result was the failure of
the ANN to properly detect the largest patch in Grassy Point Park without the post-ML
OBIA rule set. This resulted in further error in the classification with the post-ML OBIA
rule set due to the inability of the ANN to correctly identify the patch boundary. The small
number of scattered Phragmites objects identified within the patch were incorrectly grown
into neighboring Not Phragmites objects with the post-ML OBIA rule set. This result was
the opposite from the Chisago City property where the ANN was able to detect a majority
of the interior portions of the largest patch while both RF and SVM failed to do so.

A major challenge for the application of UAS for semi-automated detection of
Phragmites is the ability to transfer a classifier to new locations. Low classification ac-
curacies without the post-ML OBIA rule set at Grassy Point Park were not surprising due
to the difference in vegetation characteristics between the training sites and Grassy Point
Park. Although the UAS imagery collected at Grassy Point Park was not collected with
PPK or with the same RGB sensor as the other sites, we believe that results would have
been similar due of the previously stated vegetative differences. The results at Grassy
Point Park highlight a unique problem for the use of UAS for Phragmites detection, and
invasive species detection more broadly. Classifiers need to be trained on areas with similar
vegetation to those being surveyed. However, Phragmites may not have enough established
populations in a target region to provide a suitable amount of training data. This issue
will be most apparent at the expanding edge of the Phragmites distribution where coverage
for training data is limited. One potential solution may be to collect Phragmites training
data from the closest possible populations and combine them with the training data of
vegetation within the target region. As seen at Grassy Point Park, a classifier trained on
Phragmites from southern Minnesota was able to identify Phragmites within a costal wetland
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in northern Minnesota. The physical characteristics of Phragmites did not vary between
study sites, which allowed for its identification.

Although significant improvements in classification accuracy were not seen across all
three initial validation sites and ML algorithms, our results suggest that post-ML OBIA rule
sets can be used to increase classification accuracy of Phragmites. This is further supported
by the increase in classification accuracy at Grassy Point Park. MCC values increased by
0.89 for the ANN, 0.47 for the RF, and 0.55 for the SVM with the use of the post-ML OBIA
rule set. Resource managers require the highest classification accuracies possible to ensure
the appropriate allocation of resources apportioned to manage Phragmites infestations.
Incorporation of an OBIA rule set to further refine an ML classification will improve
classification accuracy, however marginal, and thus its inclusion has merit. Moreover,
this approach may improve transferability of Phragmites classifiers to new locations with
similar vegetative characteristics. This was seen at the Chisago City property where both
RF and SVM failed to identify significant portions of Phragmites until the application of
the post-ML OBIA rule set. OBIA is generally thought to fail when applied to new study
sites. However, the classifications in this study did not depend on the OBIA rule set for
the initial identification of Phragmites. Instead, it was used to minimize commission errors
and improve the estimated extent of already identified Phragmites patches. A reduction in
commission errors was noted at each validation site with Grassy Point Park experiencing
the largest decline in commission errors. Inclusion of an OBIA rule set to refine an ML
classification may allow for a larger margin of omission and commission error while still
permitting the accurate identification of Phragmites. Further testing at a larger number of
validation sites is needed to verify this idea.

4.1. Patch Boundary Error

A major source of omission error for classifications both with and without the post-
ML OBIA rule set was due to inaccurate estimates of patch extent. Phragmites present
within the training and validation sites had high stem densities at the center of patches
while having lower stem densities at the extremities. Areas with low stem densities were
not readily identified. This is likely due to the training data. Exact patch boundaries
were hard to determine both in the field and while interpreting the imagery. A pivotal
question while creating the training data was whether to establish the boundary at the
end of complete Phragmites canopy cover or at the last Phragmites stem. We elected to
use the end of complete Phragmites canopy cover as the training polygon boundary with
the reasoning that using the last Phragmites stem would include a large amount of non-
Phragmites vegetation. Although this may have avoided commission errors, the designation
of where a Phragmites patch boundary is located likely influenced the ability to detect areas
of low Phragmites densities. While being able to identify the central portion of a patch
is beneficial for Phragmites detection, it may not be conducive for monitoring Phragmites
patches through time. The lower stem densities present at the expanding edges of a
Phragmites patch may pose a challenge for accurate change detection. Including a separate
cover class containing the Phragmites patch boundary area may prove useful for better
detection of Phragmites stems at patch boundaries. Moreover, the post-ML OBIA rule set
used in this study was not tailored to identify individual Phragmites stems, which may
be necessary for the accurate identification of the expanding edge. Future studies should
determine the desired identification outcome, e.g., patch center or expanding edges, and
adjust training data accordingly.

4.2. Which ML for Phragmites Classification?

Determining which ML algorithm to use for classification can be a challenging decision,
especially since results vary on which ML algorithm outperforms the others [38,77–80]. The
results from our study do not make this distinction any clearer. Our results suggest that
an ANN more accurately identifies Phragmites (MCC: 0.76) than both RF (MCC: 0.7) and
SVM (MCC: 0.61) in areas similar to those used in this study without the use of a post-ML
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OBIA rule set. Nonetheless, each ML algorithm becomes a valid option in areas similar
to these after the inclusion of an OBIA rule set to further refine the ML classification with
MCC values ranging from 0.82–0.83. When determining which ML algorithm to use for
Phragmites identification, we instead suggest exploring the tradeoffs. A major benefit of
using an ANN for classification is that an ANN can train on new data even after the initial
training instance. An ANN has the capacity to make continued improvement as new data
are acquired, which could advance the ability of an ANN for Phragmites mapping as more
data become available. One barrier to using an ANN has been the programming knowledge
required to successfully utilize Python packages such as Keras and Tensorflow. However,
scikit-learn gives users the ability to easily implement ANNs while also achieving high
classification accuracies. This is demonstrated by the high classification accuracy seen with
the ANN in our study while using the default MLPClassifier options. One disadvantage
shared between all ML algorithms is their inherent “black box” nature. RF, however, reports
feature importance scores that give insight on what parameters have the most influence,
which provides some inference on how the ML algorithm makes decisions. Of the three
ML algorithms tested in this study, SVM does not contain a clear advantage for its use. In
addition to attaining the lowest overall classification accuracy without the inclusion of the
post-ML OBIA rule set, SVM was unable to operate efficiently with the large amount of
training data used in this study. This issue was noted by others [78]. Both the RF and ANN
were able to train on the entire training dataset in our study, while SVM required a smaller,
randomly sampled subset of the initial training dataset. It is possible that SVM would
have achieved higher classification accuracies if trained on a larger amount of data, but
determining the proper tradeoff between training data and processing time adds another
layer of complexity that can be avoided by using an ANN or RF. If computational resources
are not a concern, creating a classifier ensemble may be an effective way to combine the
abilities of multiple classification algorithms. This approach requires further research to
determine its applicability for Phragmites mapping.

5. Conclusions

This study examined three ML algorithms (ANN, RF, and SVM) for their ability to
identify Phragmites within four different wetland complexes in a small portion of Minnesota.
Our results suggest that, while ML algorithms may provide similar classifications in some
locations, some ML algorithms may perform unexpectedly at different sites. This was
evident at the Chisago City property where both RF and SVM failed to accurately map
the largest, continuous Phragmites patch seen across all study sites without the post-ML
OBIA rule set, and further supported by the failure of the ANN at Grassy Point Park.
The unexpected results by RF and SVM at Chisago City and ANN at Grassy Point Park
raise concerns on how a resource manager interested in using ML to identify Phragmites
from UAS imagery will have the a priori knowledge on when or where their chosen ML
algorithm might fail. Although ML algorithms are expected to fail when given data outside
of the range of their training data, resource managers controlling for Phragmites require a
classification method that can be reliably transferred to similar wetland complexes within
their given management unit. Post-ML OBIA rule sets may be an avenue to achieve
consistent high classification accuracy of Phragmites when applying trained ML classifiers
to new wetlands. Results from this study and others have shown that Phragmites can be
accurately mapped with UAS. However, before an automated or semi-automated Phragmites
mapping workflow can be a viable tool for resource managers, it must demonstrate an
ability to accurately map Phragmites in new wetlands within a similar geographic area.
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