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Abstract: The application of Transformer in computer vision has had the most significant influence of
all the deep learning developments over the past five years. In addition to the exceptional performance
of convolutional neural networks (CNN) in hyperspectral image (HSI) classification, Transformer has
begun to be applied to HSI classification. However, for the time being, Transformer has not produced
satisfactory results in HSI classification. Recently, in the field of image classification, the creators of
Sequencer have proposed a Sequencer structure that substitutes the Transformer self-attention layer
with a BiLSTM2D layer and achieves satisfactory results. As a result, this paper proposes a unique
network called SquconvNet, that combines CNN with Sequencer block to improve hyperspectral
classification. In this paper, we conducted rigorous HSI classification experiments on three relevant
baseline datasets to evaluate the performance of the proposed method. The experimental results
show that our proposed method has clear advantages in terms of classification accuracy and stability.

Keywords: hyperspectral image (HSI) classification; transformer; convolutional neural network
(CNN); Sequencer; long short-term memory network (LSTM)

1. Introduction

Recent improvements in hyperspectral imaging sensors have resulted in hyperspectral
images (HSI) that are rich in hundreds of contiguous and narrow spectral bands/depth.
Due to its extensive spatial-spectral data, HSI has been used for a variety of purposes,
including target detection [1], forestry [2,3], satellite calibration [4], identifying post-fire
severity [5], and mineral identification [6]. Similarly, classification of hyperspectral land-
cover information is one of the most significant application directions and has garnered a
great deal of attention.

Two of the key distinguishing features of HSI are its high spatial correlation and
an abundance of spectral information. A high spatial correlation from homogeneous ar-
eas can give secondary supplemental information for accurate mapping [7]. The ground
material comprises a significant number of representative features that enable precise
identification [8], taking advantage of the rich spectral information found in the contin-
uous spectral bands. Contrarily, the curse of dimensionality is also brought on by an
abundance of spectral information, which may have an impact on the performance of the
classification [9–11]. Utilizing dimensionality reduction techniques is a crucial step for HSI
classification, in order to improve the classification performance. The most used dimension-
ality reduction approach is Principal Component Analysis (PCA) [12]. In addition, other
key dimensionality reduction techniques in hyperspectral classification include Factor Anal-
ysis (FA) [13], Linear Discriminant Analysis (LDA) [14,15], and Independent Discriminant
Analysis (IDA) [16,17]. Early attempts at HSI classification included Support Vector Ma-
chines (SVMs) [18], Random Forest (RF) [19], K-mean clustering (KNN) [20], and Markov
Random Field (MRF) [21]. However, because these techniques don’t concentrate on spatial
correlation and local consistency, they struggle to fully utilize spatial feature information,
which leads to subpar classification performance. Recent advances in deep learning-based
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techniques, such as deep neural networks, have had a major impact on computer vision
and have also been introduced to HSI classification. A deep belief network (DBN) [22] and
stacked autoencoders (SAE) [12] are two methods that call for flattening the input data
patches into one-dimensional features. However, both techniques alter the original spatial
data, which leads to subpar performances. Hu et al. suggested five convolutional layers
to create a 1D-CNN [23] for HSI classification. It accepts spectral data as input and can
successfully extract discriminative features from the spectral data. The data conveyed by
the first few principal components after dimensionality reduction are used by a 2D-CNN
method [24], to extract spatial features. Chen et al. [25], introduced 3D-CNN to HSI clas-
sification, in order to extract both spatial and spectral information. The spectral-spatial
residual network (SSRN) [26], which was inspired by Resnet [27], creates a deeper structure
and utilizes identity mapping to connect additional three-dimensional convolutional layers.
The deep pyramidal residual network (DPRN) has also been proposed for HSI data [28].
According to [29], a hybrid-CNN model (HybridSN) is proposed, that may overcome the
failure of 2D-CNN to extract discriminative features from the spectral dimension, and
that scales back the complexity of a single 3D-CNN. In addition to the convolution neural
network, various networks with exceptional performance have been introduced to HSI
classification, such as the completely convolution network (FCN) [30,31], the generative
adversarial network (GAN) [32,33], the graph convolutional network (GCN) [34], etc.

Additionally, Transformer, the most well-liked neural network currently, has been
introduced into hyperspectral classification [35]. These include a Spatial-Spectral Trans-
former (SST) [36], an upgraded transformer (SAT) [37], a restructured transformer encoder
with a cross-layer model (SpectralFormer) [38], and a Spectral-Spatial Feature Tokenization
Transformer (SSFTT) [39]. However, the performance of these Transformer-based methods
is inferior to that of CNN-based methods.

Transformer still has certain limitations regarding the extraction of local spectral and
local information disparities, which causes performance bottlenecks. Convolutional neural
networks perform well in HSI classification, although there are still a number of problems.
The first is that the ground’s irregular shape prevents the convolution kernel from being
able to capture all of its features [40]. The second is caused by the fact that the small convo-
lutional kernels prevent convolutional neural networks’ receptive fields from matching the
hyperspectral features across the whole bandwidth [37]. Recently, Yuki and Masato [41]
proposed Sequencer, a unique and straightforward architecture that uses LSTM for image
classification. Sequencer uses a BiLSTM2D layer to replace the multi-head attention layer
in the transformer encoder to create Sequencer block. Experiments reveal that self-attention
is not required for modeling remote dependencies, and that competitive performance
can be attained using the LSTM instead. As a supplement to convolutional neural net-
works, we have developed Sequencer, a Sequencer made up of vertical and horizontal
bidirectional LSTMs, based on the context of the aforementioned problems and inspired by
Sequencer [41]. Similar to the convolutional layer, we take a pixel as the center, regard the
vertical and horizontal directions as sequences, and simultaneously expand the pixel to
form a spatially significant receptive field. Contrary to the convolutional layer, however,
the timed information capacity of LSTM gives the Sequencer the ability to blend spatial
information memory, which we feel can be employed as a supplement to the convolutional
layer’s shortcomings. As a result, we suggest SquconvNet, a network integrating CNN with
Sequencer2D block for HSI Classification, as being inspired by Sequencer. The proposed
network in this study consists of three modules: the Spectral-Spatial Feature Extraction
(SSFE) module, the Sequencer module, and the Auxiliary Classification (AC) module. The
dimensionally reduced 3D-Patches input will be passed through the Sequencer module
first, to capture long-term feature information, then the SSFE module will extract spatial
features, and finally the AC module will further improve the classification performance.
The LSTM shows a strong performance in utilizing long-range information to compensate
for CNN’s shortcomings, and our proposed model has demonstrated good results on three
standard datasets.
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The following is a summary of this paper’s significant contributions and work:

(1) We introduce the BiLSTM2D layer and Sequencer module for the first time, and
combine them with CNN to compensate for CNN’s shortcomings and improve the
performance of HSI classification.

(2) A supplementary classification module comprised of two convolutional layers and a
fully connected layer is proposed, with the dual purpose of decreasing the network
parameters and assisting the network in classification.

(3) Using three typical baseline datasets, we performed qualitative and quantitative
evaluation studies (IP, UP, SA). The experimental findings show that, in terms of
classification accuracy and stability, our proposed model verifies its superiority.

Next, Section 2 introduces in detail the illustration of the proposed SquconvNet
architecture and its three modules. Section 3 describes the baseline datasets and presents
an analysis of the experimental results. Ablation experiments and time loss are discussed
in Section 4. Ultimately, the conclusion is drawn in Section 5.

2. Materials and Methods
2.1. Overview of SquconvNet

The proposed SquconvNet’s general structure is shown in Figure 1. It is composed of
three modules: the Spectral-Spatial Feature Extraction Module, the Sequencer2D Module,
and the Auxiliary Classification Module.
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2.2. Spectral-Spatial Feature Extraction Module

The Spectral-Spatial Feature Extraction (SSFE) module is where the proposed Squcon-
vNet starts. HybridSN [29] and SSFTT [39] served as the inspiration for the SSFE module’s
design. Here, we adopt a comparable structure to them and improve its properties. The
SSFE module primarily consists of a 3D-convolution layer and a 2D-convolution layer
to reduce the amount of computation. Each convolution layer is followed by a batch
normalization (BN) layer, a Relu non-linear activation, and another layer.
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Firstly, an original HSI dataset is defined as X ∈ RW×H×D, where D is the number
of spectral bands, W is the width, and H is the height. Each HSI pixel forms a one-hot
vector Y = (y1, y2, . . . , yC) ∈ R1×1×C, where C is the classes of land-cover. However, since
D bands make up the HSI data, they only add a lot of unnecessary calculations and non-
useful information. To eliminate redundant spectral information and preserve the same
spatial dimensions, the principle component analysis (PCA) is performed on the HSI data,
reducing the number of bands from D to b. Next, 3D-patches P ∈ Rs×s×b are created from
XPCA ∈ RM×N×b, where s× s is the window size of 3D-patch. Besides, when a single pixel
is extracted, the edge pixels perform padding of s−1

2 . Then, the true label is determined by
the original label of the center pixel.

Secondly, each 3D-Patch, of size s× s× b, is used as the input to the SSFE module, to
extract spectral-spatial features. In the operation of the 3D convolution layer, the value at
the (x, y, z) position on the jth feature cube of the ith layer is calculated by:

vx,y,z
i,j = f

(
bi,j + ∑k ∑α

h=−α ∑β

w=−β ∑γ

c=−γ
ph,w,c

i,j,k vx+h,y+w,z+c
i−1,k

)
(1)

where f (·) defines the activation function; bi,j defines the bias; 2α + 1, 2β + 1 and 2γ + 1
respectively represent the height, width, and depth of the convolution kernel; ph,w,c

i,k,k is
the weight parameter of the jth convolution kernel in the ith layer, and the kth feature
of the previous layer at position (h, w, c); vx+h,y+w,z+c

i−1,k represents the value at the position
(x + h, y + w, z + c).

Similarly, for the 2D convolution layer, its formula can be expressed as:

vx,y
i,j = f

(
bi,j + ∑k ∑α

h=−α ∑β

w=−β
ph,w

i,j,kvx+h,y+w
i−1,k

)
(2)

The 3D convolution layer and 2D convolution layer in the two convolution models
discussed above have different features. The convolution kernel of the 3D convolution
layer is k1 × k2 × k3, forming a rectangular body that can cover the spectrum- spatial
information. The convolution kernel of the two-dimensional convolutional layer is k1 × k2,
which forms a rectangular body to extract spatial information. In other words, while 2D
convolution layers are unable to extract spectral correlations, 3D convolution layers may
extract both spectral and spatial information simultaneously. On the other hand, a 3D
convolution layer typically has parameters that are much higher than a 2D convolution
layer. Therefore, the use of 3D-convolution layers alone may lead to performance reduction
due to an excessive number of parameters, and the use of 2D convolution layers alone may
lead to an insufficient ability to extract spatial features, so a hybrid 3D-2D convolution
layer is considered here, to extract spectral-spatial features.

Lastly, in our SSFE module, the dimensions of the 3D convolution kernels are
8 × 3 × 7 × 7 × 1, where 1 is the number of spectral bands of the input data, 8 is the
number of channels produced by the convolution, and (3× 7× 7) is the size of the convolv-
ing kernel. The sizes of the 2D convolution kernels are 64× 3× 3× (8× (b− 2)), where
8× (b− 2) is the number of spectral bands of the input data, 64 is the number of channels
produced by the convolution, and (3× 3) is the size of the convolving kernel. Assuming
that the input patch size is s× s× b, then the output patch size is (s− 8)× (s− 8)× 64.

2.3. Sequencer Module

The Sequencer (SDB) module is used to extract the spatial features after the spectral-
spatial features have been extracted by the SSFE module. We integrate the Sequencer
into the HSI classification process and perform an adaptive transformation on it in order
to address the proposed solution for the traditional image classification problems [41].
The Sequencer module’s BiLSTM2D core, which consists of vertical BiLSTM, horizontal
BiLSTM, and channel fusion, is its most significant component. Contrarily, the BiLSTM is
made up of two standard LSTM. Figure 2 depicts the precise LSTM structure and describes
the BiLSTM2D layer.
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The LSTM [42] has an input gate it, a forget gate ft, and an output gate ot. Where the
input gate controls the storage of the input, the forget gate controls the forgetting of the
previous cell state, and the output gate controls the cell output ht of the current cell state ct.
As a review, the original LSTM is formulated as:

it = σ(bi + Wxixt + Whiht−1)

ft = σ
(

b f + Wx f xt + Wh f ht−1

)
ot = σ(bo + Wxoxt + Whoht−1)

ct = ct−1
⊙

ft + it
⊙

tanh(ba + Wxaxt + Whaht−1)
ht = ottanh

⊙
(ct)

tanh(x) = 1−e−2x

1+e−2x

σ(x) = 1
1+e−x

(3)

where
⊙

is the Hadamard product,bk (k = i, f , o) is the offset, Wxj and Whj (j = a, f , i, o)
are the weight matrices.

A BiLSTM consists of two LSTMs, which is formulated as:

h = concatenate
(

LSTM f or(
→
x ), LSTMback

(
↼
x
))

(4)

where
→
x is the input series,

↼
x is the rearrangement of

→
x in reverse order, and h is a 2D

dimensional vector output.
Consisting of a vertical BiLSTM and a horizontal BiLSTM, the BiLSTM2D layers are a

technique for efficiently mixing 2D spatial information. Let X ∈ RH×W×C be the input of
the Sequencer module, the BiLSTM2D can be formulated as:

H = concatenate(BiLSTM(Xh,W,C), BiLSTM(XH,w,C)), X̂ = FC(H) (5)

where
{

Xh,W,C ∈ RW×C}H
h=1 and

{
XH,w,C ∈ RH×C}W

w=1 can be viewed as a set of sequences,
and FC(·) is the fully-connected layer with weight W ∈ RC×4D.

In this process, X is the input 2D-patches, and its horizontal and vertical directions are
treated separately, as sequences, as input to the LSTM.

Figure 3 demonstrates that the Transformer block contains multi-head attention, while
the Sequencer module contains BiLSTM2D. In place of the multi-head self-attention in the
Transformer block, the Sequencer module uses BisLSTM2D, as seen in Figure 3. Multi-head
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self-attention is thought to have had a significant role in the success of the Transformer.
In contrast, multi-head self-attention is less memory and parameter efficient than LSTM,
which is also equally capable of learning long-term dependencies. The Sequencer module
is utilized in this case to extract additional discriminative spatial features. Specifically, the
output, O ∈ Rs−8×s−8×64, for the previous module does not change its size in this module.
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2.4. Auxiliary Classification Module

We suggest the Auxiliary Classification (AC) module, which is based on further
extracting feature information and minimizing the number of parameters in fully connected
layers. The AC module, the final module in the proposed model, consists of two 2D-
convolution layers, a flattened layer and a fully connected layer. A BN layer, followed by a
relu non-linear activation function, comes after each convolution layer. Direct classification
will not be as successful as it could be after the previous two modules, despite the fact
that numerous discriminative features have been retrieved and the patch size is still quite
high. As a result, two 2D convolutional layers are utilized to reduce the size of the patches
and the number of parameters. These layers’ convolutional kernel sizes are (7× 7) and
(3× 3), with 128 and 256 kernels, respectively. The last input channel in the last fully
connected layer is 256 if the initial input patch size is (17× 17× b). Finally, the label will
be expressed as the predicted category of the sample after passing the softmax function of
the AC module the highest probability value.

3. Experiment and Analysis
3.1. Hyperspectral Image Datasets Description

To examine the effectiveness and stability of our suggested SquconvNet model, we
take into account three publicly available standard hyperspectral image datasets: Indian
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Pines (IP), University of Pavia (UP), and the Salians Scene (SA). The three datasets are
summarized in Table 1.

Table 1. Summary of the Characteristics of the IP, the UP, and the SA Datasets.

Description
Datasets

IP UP SA

Spatial Size 145× 145 610× 340 512× 217
Spectral Band 224 103 204
No of Classes 16 9 16

Total sample pixels 10,249 42,776 54,129
Sensor AVIRIS ROSIS AVIRIS

Spatial Resolution (m) 20 1.3 3.7

3.1.1. Indian Pines Dataset (IP)

The IP dataset was acquired by the AVIRIS sensor in northwest Indiana, and consists
of 145 × 145 pixels and 224 spectral reflectance bands in the wavelength range 400 nm
to 2500 nm, 24 of which, covering the region of water absorption, have been eliminated.
Figure 4 depicts the false-color image and the image of the real world. For training,
we randomly chose 30% of the data, and for testing, we randomly chose the remaining
70%. The category names, training samples, test samples, and the number of samples per
category are listed in Table 2.
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Table 2. Training and Test Samples for the IP Dataset.

Category Category Name Training Samples Test Samples Number of Samples
per Category

1 Alfalfa 14 32 46
2 Corn-notill 431 997 1428
3 Corn-mintill 250 580 830
4 Corn 71 166 237
5 Grass-pasture 145 338 483
6 Grass-trees 219 511 730
7 Grass-pasture-mowed 8 20 28
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Table 2. Cont.

Category Category Name Training Samples Test Samples Number of Samples
per Category

8 Hay-windrowed 143 335 478
9 Oats 6 14 20
10 Soybean-nottill 292 680 972
11 Soybean-mintill 736 1719 2455
12 Soybean-clean 178 415 593
13 Wheat 62 143 205
14 Woods 381 884 1265
15 Building-Grass-Trees-Drives 117 269 386
16 Stone-Steel-Towers 28 65 93

Total. 3081 7168 10,249

3.1.2. University of Pavia Dataset (UP)

The UP dataset includes imagery of 610 × 340 pixels, 103 spectral depths, and a
wavelength range of 430∼ 860nm , and was collected by the ROSIS sensor during a flight
campaign above Pavia University. There are 42,776 labeled pixels altogether, divided
into nine classes of urban land-cover. Figure 5 displays the ground truth image and the
false-color image. In the UP dataset, the entire set is divided into two separate datasets
at random, with 10% of the samples utilized for training and the remaining 90% for
classification evaluation. Table 3 provides further details on each category as well as
general information.
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Table 3. Training and Test Samples for UP.

Category Category Name Training Samples Test Samples Number of Samples per Category

1 Asphalt 663 5968 6631
2 Meadows 1865 16,784 18,649
3 Gravel 210 1889 2099
4 Trees 306 2758 3064
5 Painted metal sheets 134 1211 1345
6 Bare Soil 503 4526 5029
7 Bitumen 133 1197 1330
8 Self-Blocking Bricks 368 3314 3682
9 Shadows 95 852 947

Total. 4277 38,499 42,776

3.1.3. Salians Scene Dataset (SA)

The SA dataset, acquired by the AVRIS sensor, consists of 512 × 217 spatial sizes and
224 spectral depths in the wavelength range of 360 to 2500 nm; 20 of the spectral bands,
spanning the region of water absorption, have been eliminated. With the category names,
training samples, test samples, and the number of samples per category indicated in Table 4,
the false-color image and ground truth map are shown in Figure 6 along with the false-color
image itself. Of the samples, 10% are randomly chosen for training and the remaining 90%
are used for the classification evaluation.

Table 4. Training and Testing Samples for SA.

Category Category Name Training Samples Test Samples Number of Samples per Category

1 Brocoli_green_weeds_1 201 1808 2009
2 Brocoli_green_weeds_2 372 3354 3726
3 Fallow 197 1779 1976
4 Fallow_rough_plow 139 1255 1394
5 Fallow_smooth 268 2410 2678
6 Stubble 396 3563 3959
7 Celery 358 3221 3579
8 Grapes_untrained 1127 10,144 11,271
9 Soil_vineyard_develop 620 5583 6203

10 Corn_senesced_green_weeds 328 2950 3278
11 Lettuce_romaine_4wk 107 961 1068
12 Lettuce_romaine_5wk 193 1734 1927
13 Lettuce_romaine_6wk 91 825 916
14 Lettuce_romaine_7wk 107 963 1070
15 Vineyard_untrained 727 6541 7268
16 Vineyard_vertical_trellis 181 1626 1807

Total. 5412 48,717 54,129

3.2. Experimental Settings

In order to make a fair comparison, both our proposed model and the compared meth-
ods were tested in the PyTorch environment on a GPU server equipped with an NVIDIA
GeForce GTX 3060 12 GB. With a 256-miniature batch size, we decided to use the Adam
optimizer, an optimizer with an adaptable learning rate, to improve the proposed model.
According to classification performance, 1× 10−3 is chosen as the initial learning rate. There
are 100 training epochs applied to each dataset. The 3D patches of 17× 17× 30 for IP, and
17× 17× 15 for UP and SA, are used for a fair comparison. To test the performance of our
experiment, four important and common measurements are used: each class accuracy, the
Overall Accuracy (OA), the Average Accuracy (AA), and the Kappa Coefficient (Kappa/k).
To reduce the error associated with the randomly selected training samples, each model is
run ten times to compute the average accuracy and standard deviation.
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3.3. Experimental and Evaluation on Three Datasets

For a better demonstration of the superiority and stability of the proposed SquconvNet,
it is compared with some representative methods: Resnet [27], 3D-CNN [25], SSRN [26],
HybridSN [29], SPRN [43], and SSFTT [39]. For the Resnet, we use an optimal method, that
is consistent with our model. The 3D-CNN, SSRN, HybridSN, SPRN, and SSFTT are set up
as described in their corresponding references.

3.3.1. Experiment on IP Dataset

The methods of each classification are shown in Table 5. The table highlights the
optimal outcomes. Particularly, HybirdSN, 3D-CNN, Resnet, etc., fared worse than our
suggested method in order of best average OA value, which was 99.87%. Additionally,
the performance of our proposed method is the best. The differences between the mean
and the suboptimal methods of the proposed method for the evaluation of the OA, AA,
and Kappa are +0.1, +0.24, and +0.11, respectively, as shown in Table 5. Additionally,
the standard deviation of our proposed method is also the smallest, demonstrating our
method’s higher level of stability. But it is important to remember that SSRN and SPRN’s
volatility is what led to their poor classification performance. In our ten studies, the best
OA achieved by SSRN and SPRN were 99.87% and 99.72%, respectively. In comparison
to Resnet and SSFTT, both methods have a higher upper bound, but due to the high
sample imbalance in the IP dataset, their average effectiveness is very low. The deep
learning-based methods discussed above have all achieved quite good results, particularly
HybridSN, based on 3D-2D convolutional architecture. However, convolutional neural
networks have difficulties in classifying when the ground is irregularly shaped. In terms of
the convolutional architecture, our proposed SquconvNet complements the convolution
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layer; by transmitting “memory” information in the horizontal and vertical directions, it is
possible to overcome, to a certain extent, the convolution kernel’s inability to capture all
the features in the convolution layer due to the uneven shape of the ground. For the SSFTT
based on the convolution-Transformer framework, even if it can supplement the inadequacy
of the global information extraction of the convolutional layer, it is also constrained by the
issue that the Transformer finds it challenging to perform better on tiny data samples and
has a constrained accuracy. The classification map of Ground Truth and all methods is
shown in Figure 7a–h. The classification map illustrates how our proposed model produces
a classification map that is not only smoother but also better in terms of texture and edge
features. This demonstrates even more how effective Sequencer is at handling unusual
ground forms. The proposed method SquconvNet, and the HybridSN-based classification
map, outperform other methods in terms of visual performance. In conclusion, on the IP
dataset, our proposed method of merging 3D-2DCNN and LSTM2D outperforms its rivals
in terms of accuracy and stability.

Table 5. Results of the various methods for IP using 30% training data (Highest performance is
in Boldface).

NO. Resnet 3D-CNN SSRN HybridSN SPRN SSFTT Proposed

1 99.69 ± 0.936 100 ± 0 99.69 ± 0.936 99.69 ± 0.936 97.5 ± 6.527 99.38 ± 1.248 100 ± 0
2 99.23 ± 0.237 99.16 ± 0.398 95.54 ± 12.69 99.64 ± 0.237 79.56 ± 33.04 99.32 ± 0.496 99.87 ± 0.11
3 99.8 ± 0.168 99.72 ± 0.520 98.24 ± 4.936 99.64 ± 0.598 87.77 ± 29.73 98.86 ± 0.712 100 ± 0
4 99.32 ± 0.351 100 ± 0 100 ± 0 100 ± 0 91.08 ± 22.41 99.31 ± 0.728 100 ± 0
5 99.76 ± 0.553 99.70 ± 0.400 99.67 ± 0.362 99.67 ± 0.598 98.25 ± 0.018 97.62 ± 3.56 99.94 ± 0.12
6 99.32 ± 0.351 99.86 ± 0.197 99.90 ± 0.158 99.98 ± 0.06 97.04 ± 7.517 99.65 ± 0.325 100 ± 0
7 98.5 ± 2.29 100 ± 0 99 ± 2 99.5 ± 1.5 94.5 ± 11.5 99.85 ± 0.447 100 ± 0
8 100 ± 0 100 ± 0 100 ± 0 99.91 ± 0.27 96.63 ± 6.803 74.76 ± 17.73 100 ± 0
9 94.29 ± 4.286 99.29 ± 2.142 97.86 ± 4.574 93.57 ± 7.458 80.71 ± 38.61 98.79 ± 0.746 99.29 ± 2.142
10 99.63 ± 0.165 99.57 ± 0.309 99.50 ± 0.466 99.84 ± 0.364 88.44 ± 29.58 98.79 ± 0.746 99.62 ± 0.256
11 99.76 ± 0.099 99.92 ± 0.118 91.83 ± 21.039 99.78 ± 0.18 86.95 ± 19.72 99.56 ± 0.37 99.92 ± 0.063
12 98.22 ± 0.763 98.91 ± 0.500 98.91 ± 0.571 99.69 ± 0.241 95.25 ± 11.66 97.73 ± 1.876 99.11 ± 0.343
13 99.51 ± 0.77 99.65 ± 0.472 99.86 ± 0.28 100 ± 0 97.48 ± 6.64 99.2 ± 0.94 100 ± 0
14 100 ± 0 100 ± 0 99.98 ± 0.069 99.94 ± 0.117 99.82 ± 0.543 99.83 ± 0.192 100 ± 0
15 99.96 ± 0.111 99.85 ± 0.342 99.18 ± 1.835 99.63 ± 0.409 92.89 ± 10.91 98.38 ± 2.313 100 ± 0
16 99.23 ± 1.033 98.31 ± 2.790 99.38 ± 0.754 99.08 ± 1.411 96.31 ± 6.123 94.58 ± 6.193 100 ± 0

OA (%) 99.6 ± 0.05 99.69 ± 0.083 97.09 ± 7.261 99.77 ± 0.095 90.57 ± 12.81 99.09 ± 0.434 99.87 ± 0.034
AA (%) 99.22 ± 0.287 99.62 ± 0.182 98.66 ± 2.481 99.35 ± 0.459 92.51 ± 10.77 96.94 ± 1.566 99.86 ± 0.125
k × 100 99.54 ± 0.064 99.64 ± 0.095 96.77 ± 8.027 99.74 ± 0.111 89.35 ± 14.46 98.96 ± 0.496 99.85 ± 0.041

3.3.2. Experimental on UP Dataset

The average OA, AA, and Kappa (k) on the PU dataset are shown in Table 6 along
with their standard deviations. Overall, the proposed SquconvNet performs better in terms
of OA, AA, and Kappa than all the other methods utilized for comparison. Our method
performs best in eight of the nine categories, and the standard deviation for these eight
categories is the lowest of any method. On the UP dataset, the proposed method achieved
an excellent OA performance of 99.93%, an improvement of +0.24 over the less-than-ideal
method SSRN. On the PU dataset, 3D-CNN, SSRN, HybridSN, and SSFTT all outperformed
Resnet and SPRN. With the minimum standard deviation of all the methods, the proposed
SquconvNet has also shown an addition in stability. The classification maps of the UP
dataset using Ground Truth and several of the methods is shown in Figure 8. Our suggested
model performs better on this dataset. This outcome, from the accuracy level, is difficult to
explain. It is clear that the UP dataset’s distribution is less homogeneous, and its ground
shape is more erratic, than for the IP dataset. As a result, other methods have trouble in
capturing discriminative features. However, the Sequencer created by LSTM performs
better in the results, and is more resistant to ground shape anomalies. Additionally, the
classification map’s shape is smoother, includes less noise, and has clearer bounds. Resnet
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and SPRN, in contrast, find it difficult to extract the most discriminative feature information,
and as a result have more salt-pepper noise and incorrectly categorized area blocks. Despite
having nice visual effects, the other methods still contain a lot of point noise.
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Table 6. Results of various methods for UP using 10% training data (Highest performance is
in Boldface).

NO. Resnet 3D-CNN SSRN HybridSN SPRN SSFTT Proposed

1 99.42 ± 0.558 99.81 ± 0.160 99.91 ± 0.190 99.98 ± 0.023 99.5 ± 0.948 99.61 ± 0.298 99.99 ± 0.006
2 99.75 ± 0.177 99.99 ± 0.003 99.98 ± 0.252 99.99 ± 0.005 96.14 ± 10.36 99.94 ± 0.121 100 ± 0
3 98.39 ± 1.395 99.32 ± 0.484 99.30 ± 0.395 99.15 ± 0.798 91.71 ± 22.28 98.98 ± 0.644 99.48 ± 0.266
4 99.41 ± 0.277 98.77 ± 0.260 100 ± 0 98.95 ± 1.052 99.99 ± 0.024 98.73 ± 0.542 99.80 ± 0.128
5 99.92 ± 0.105 99.92 ± 0.154 100 ± 0 99.65 ± 0.624 96.96 ± 7.054 99.37 ± 0.677 100 ± 0
6 99.77 ± 0.471 99.99 ± 0.012 99.9 ± 0.203 100 ± 0 96.96 ± 7.054 99.98 ± 0.024 100 ± 0
7 96.3 ± 3.819 99.89 ± 0.129 98.33 ± 3.506 99.48 ± 0.773 94.55 ± 10.92 99.63 ± 0.531 99.99 ± 0.024
8 96.94 ± 4.011 98.99 ± 0.420 99.97 ± 0.742 98.81 ± 0.659 92.05 ± 14.43 98.66 ± 0.995 99.71 ± 0.158
9 96.44 ± 1.714 95.56 ± 1.967 99.79 ± 0.321 94.52 ± 3.216 98.78 ± 0.44 97.46 ± 0.007 99.85 ± 0.211

OA (%) 99.19 ± 0.574 99.64 ± 0.069 99.69 ± 0.437 99.58 ± 0.165 96.55 ± 7.78 99.57 ± 0.129 99.93 ± 0.026
AA (%) 98.93 ± 0.763 99.09 ± 0.200 99.69 ± 0.402 98.88 ± 0.395 98.56 ± 1.431 99.15 ± 0.183 99.86 ± 0.049
k × 100 98.93 ± 0.763 99.53 ± 0.090 99.72 ± 0.438 99.44 ± 0.219 95.61 ± 9.772 99.43 ± 0.172 99.90 ± 0.031

3.3.3. Experiment on SA Dataset

Table 7 displays the classification results for several networks utilizing 10% training
data on the Salinas Scene Dataset. Due to instabilities and limited abilities to extract
features, Resnet and SPRN perform badly, as indicated in Table 7. In contrast, the 3D-CNN,
SSRN, HybridSN, and SSFTT algorithms all extracted Spectral-Spatial features with the
aid of 3D-convolution, and obtained better classification results. However, they can still be
made more accurate and consistent. Our proposed method achieves a mean of 99.99 on
OA, AA, and Kappa, while having a lower standard deviation, thanks to the combination
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of 3D-2D convolution and Sequencer2D block. The classification map of the SA dataset
using Ground Truth and several methods is shown in Figure 9. With large noise levels and
subsequent blocks of classification mistakes, the performance of the related classification
maps obtained by Resnet and SPRN was subpar. Improved results were obtained, less
point noise was present, and there was better continuity between different object classes
with 3D-CNN, SSRN, and HybridSN. Overall, nevertheless, our suggested approach has
less point noise and smoother bounds. Table 7 makes it clear that practically all of the
compared methods attain good accuracies. In fact, because there are more data and the
ground is flatter, it is a very simple dataset to classify. Using only 30% of the training
dataset, the HybridSN authors achieved 100% accuracy. However, in order to reduce the
expense of manual annotation, we anticipate using fewer training datasets. We used 10%
of the training dataset in the experiment to get an accuracy rate that was extremely close to
100%. This is not due to the overfitting phenomenon, rather, the model we suggested is
superior at extracting spectral-spatial features.
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Table 7. Results of various methods for SA using 10% training data (Highest performance is
in Boldface).

NO. Resnet 3D-CNN SSRN HybridSN SPRN SSFTT Proposed

1 99.13 ± 2.41 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0
2 99.76 ± 0.695 99.99 ± 0.009 100 ± 0 100 ± 0 100 ± 0 99.99 ± 0.009 100 ± 0
3 99.14 ± 1.068 100 ± 0 100 ± 0 100 ± 0 97.51 ± 7.252 99.93 ± 0.185 100 ± 0
4 99.39 ± 1.116 100 ± 0 99.95 ± 0.069 99.97 ± 0.096 99.41 ± 0.842 99.31 ± 1.131 100 ± 0
5 99.40 ± 0.905 99.32 ± 0.39 99.73 ± 0.216 99.78 ± 0.111 98.11 ± 0.525 99.42 ± 0.621 99.93 ± 0.070
6 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0 99.88 ± 0.149 100 ± 0
7 99.91 ± 0.107 99.95 ± 0.056 99.99 ± 0.020 99.99 ± 0.009 100 ± 0 99.91 ± 0.021 100 ± 0
8 84.2 ± 30.68 100 ± 0 99.98 ± 0.021 99.98 ± 0.032 92.8 ± 11.17 99.89 ± 0.148 99.99 ± 0.003
9 99.95 ± 0.112 100 ± 0 100 ± 0 100 ± 0 98.45 ± 0.046 99.99 ± 0.021 100 ± 0
10 99.78 ± 0.499 100 ± 0 99.93 ± 0.054 99.98 ± 0.028 99.92 ± 0.151 99.89 ± 0.148 99.96 ± 0.060
11 99.69 ± 0.299 99.88 ± 0.278 99.92 ± 0.205 99.32 ± 1.005 99.99 ± 0.03 99.73 ± 0.403 100 ± 0
12 99.84 ± 0.276 100 ± 0 100 ± 0 100 ± 0 99.93 ± 0.188 99.94 ± 0.124 100 ± 0
13 99.77 ± 0.536 99.92 ± 0.121 100 ± 0 100 ± 0 100 ± 0 99.21 ± 0.884 100 ± 0
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Table 7. Cont.

NO. Resnet 3D-CNN SSRN HybridSN SPRN SSFTT Proposed

14 99.92 ± 0.146 99.95 ± 0.095 99.95 ± 0.139 99.97 ± 0.067 99.8 ± 0.384 99.5 ± 0.594 99.99 ± 0.030
15 99.26 ± 0.86 99.98 ± 0.020 99.74 ± 0.151 99.98 ± 0.060 95.1 ± 9.154 99.96 ± 0.025 99.99 ± 0.006
16 99.94 ± 0.186 100 ± 0 100 ± 0 100 ± 0 100 ± 0 99.72 ± 0.731 100 ± 0

OA (%) 96.44 ± 6.513 99.95 ± 0.022 99.94 ± 0.026 99.97 ± 0.028 97.46 ± 2.178 99.88 ± 0.038 99.99 ± 0.007
AA (%) 98.69 ± 2.198 99.94 ± 0.033 99.95 ± 0.026 99.94 ± 0.071 98.81 ± 0.825 99.77 ± 0.099 99.99 ± 0.009
k × 100 96.082 ± 7.15 99.95 ± 0.025 99.93 ± 0.710 99.96 ± 0.0297 97.17 ± 2.411 99.87 ± 0.044 99.99 ± 0.007

3.4. Learning Rate Experiment

An essential hyperparameter that influences how well the model fits, is the initial
learning rate. In this experiment, unlike in other experiments, our dataset is divided
into a 20% training set, a 10% validation set, and a 70% test set. And the results of this
experiment are given by the validation set. Each of the following initial learning rates
are set to 0.0001, 0.0005, 0.001, 0.005, 0.01, and 0.05 for the purposes of our experimental
investigation. Figure 10 shows the classification outcomes for the IP datasets at various
speeds. The best initial learning rate is 0.001 and the suboptimal initial learning rate is
0.0005, as seen in Figure 10. We set the initial learning rate for other experiments to 0.001
based on the classification results.
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Figure 10. The OA, AA, and Kappa of IP at different learning rates.

4. Discussion

We initially talk about the effects of the three modules on the three datasets in this
section (ablation experiment). Finally, we conduct comparison experiments for a number
of relatively advanced methods, as well as the proposed method, to compare training time,
testing time, and parameter number.

4.1. Discussion on the Ablation Experiment

To better explore the efficiency of each SquconvNet network component, a series
of ablation experiments are conducted utilizing three datasets. SDB-CNN, 3D-2DCNN,
SS-SDB, and our proposed SquconvNet are four combinations we set up based on three
modules. An example of their combination, and their best classification results on the IP
dataset, are shown in Table 8. The methods based on the SDB and SSFE modules produce
the worst outcomes. The best accuracy is attained by the proposed method. Additionally,
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for each of the four methods, we try training with fewer data to explore the stability of the
model methods. On the three standard datasets, Figures 11–13 show the overall accuracy
of each of the four methods. On 5% of the training dataset for the IP dataset, SquconvNet
outperforms SDB-CNN and SS-SDB. This is because there are not enough training samples
for some classes to learn features with effective discriminative power due to the significant
imbalance of samples (such as class.9) in the IP dataset. The experimental results also show
that when the data are balanced and sufficient, the technique we suggest can produce the
best results. It shows that, while our proposed method can withstand an imbalance caused
by insufficient data, it loses effectiveness when the amount of data falls below a particular
threshold. SDB-CNN has demonstrated a comparatively good performance while dealing
with less data. When there is a small amount of data, we speculate that spatial information
may be more significant than spectral information in our proposed model. Additionally,
the model made up of 3D-CNN and 2D-CNN had the worst outcome. We speculate that in
the case of small data, it might be brought about by the model’s poor generalization ability,
brought about by 3D-CNN’s excessive emphasis on spectral information.

Table 8. Ablation analysis of the proposed methods on the IP dataset with 30% labeled samples.

Method SSFE SDB AC OA AA Kappa

SDB-CNN
√ √

99.79 99.81 99.76

3D-2DCNN
√ √

99.87 99.91 99.86

SS-SDB
√ √

99.69 99.75 99.65

SquconvNet
√ √ √

99.94 99.96 99.94
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Figure 12. The Overall Accuracy of the different proposed models on the UP dataset at different
training samples.
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4.2. Discussion on the Time Cost

The training time, test time, and total number of parameters for the 3D-CNN, SSRN,
HybridSN, SSFTT, and SquconvNet are listed in Table 9. The slowest training speed is
shown by SSRN using deep residuals. Additionally, 3D-CNN, SSRN, and HybridSN all
struggle, with lengthy training and testing periods. Furthermore, the last three fully con-
nected layers of HybridSN have resulted in an excessive number of its overall parameters,
overburdening the system with parameters. SSFTT provides speed benefits, albeit at the
expense of accuracy. SquconvNet increases training speed by at least twelve times and
testing speed by at least four times over SSRN. SquconvNet reduced the training time
for UP and SA by a factor of three and a factor of nine, respectively, when compared to
HybridSN. SquconvNet has around six times fewer parameters than HybridSN, and is two
to three times larger than SSRN in terms of parameter number. Furthermore, there has
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been a significant improvement in the classification accuracy and stability. As a result, the
proposed method is useful and has promising application possibilities.

Table 9. Training and Test time of different methods on three datasets.

Method 3D-CNN SSRN HybridSN SSFTT SquconvNet

IP
Train(s) 174.3 498.4 318.6 38.2 35.1
Test(s) 1.80 1.67 3.4 0.32 0.37

Params. 144 k 364 k 5122 k 427 k 878 k

UP
Train(s) 120.2 495.5 106.7 52.6 35.24
Test(s) 4.48 6.0 3.97 1.75 1.33

Params. 135 k 217 k 4845 k 427 k 807 k

SA
Train(s) 143.7 555.8 136.5 67.0 46.5
Test(s) 5.41 7.76 4.98 2.24 1.71

Params. 136 k 370 k 4846 k 427 k 809 k

5. Conclusions

This article suggests applying a hybrid SquconvNet to HSI classification that combines
a 3D convolution layer, a 2D convolution layer, and a BiLSTM2D layer. The Spectral-Spatial
Feature Extraction Module, the Sequencer Module, and the Auxiliary Classification Module
make up the methodology. We suggest using the Sequencer based of LSTM as a supplement
to the convolutional neural network in order to address its shortcomings. On three freely
accessible and publicly accessible hyperspectral remote image datasets, we conduct numer-
ous compared experiments and this method is shown to improve classification accuracy,
classification speed, and stability effectively and efficiently in the experiments. When
compared to conventional convolutional methods, our new method efficiently counters
classification mistakes caused by erratic ground forms. The proposed method obtains
average accuracies of 99.87%, 99.93%, and 99.99% on the three standard public datasets.

Additionally, we put forward the theory that, in the context of small data, spatial
information may be more significant than spectral information in our proposed method. In
the upcoming phase of our research, based on the SquconvNet, we intend to investigate
the validity of this hypothesis under small-sample learning settings, as well as the viability
of substituting 3D Sequencer for convolutional layers.
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