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Abstract: Currently, 3D point clouds are being used widely due to their reliability in presenting 3D
objects and accurately localizing them. However, raw point clouds are unstructured and do not
contain semantic information about the objects. Recently, dedicated deep neural networks have been
proposed for the semantic segmentation of 3D point clouds. The focus has been put on the architecture
of the network, while the performance of some networks, such as Kernel Point Convolution (KPConv),
shows that the way data are presented at the input of the network is also important. Few prior works
have studied the impact of using data preparation on the performance of deep neural networks.
Therefore, our goal was to address this issue. We propose two novel data preparation methods
that are compatible with typical density variations in outdoor 3D LiDAR point clouds. We also
investigated two already existing data preparation methods to show their impact on deep neural
networks. We compared the four methods with a baseline method based on point cloud partitioning
in PointNet++. We experimented with two deep neural networks: PointNet++ and KPConv. The
results showed that using any of the proposed data preparation methods improved the performance
of both networks by a tangible margin compared to the baseline. The two proposed novel data
preparation methods achieved the best results among the investigated methods for both networks.
We noticed that, for datasets containing many classes with widely varying sizes, the KNN-based data
preparation offered superior performance compared to the Fixed Radius (FR) method. Moreover,
this research allowed identifying guidelines to select meaningful downsampling and partitioning of
large-scale outdoor 3D LiDAR point clouds at the input of deep neural networks.

Keywords: semantic segmentation; 3D point cloud; deep neural networks; LiDAR

1. Introduction

A common representation for 3D objects and outdoor scenes is a 3D point cloud,
which can be obtained by mobile terrestrial LiDAR. LiDAR point clouds record depth
information, which, in contrast to images, can be used to accurately localize objects and
characterize their shapes [1]. This makes them preferable in many applications such as
building digital twin cities, urban management, and autonomous vehicles. However,
besides georeferenced coordinates and intensity, raw point clouds have no information
such as semantic information or object identification that could be straightforwardly used
in downstream applications. Therefore, they have to be processed and labeled in order
to provide such information [1–3]. Currently, image processing is dominated by the
use of deep learning, in particular convolutional neural networks, which combine the
local neighborhood features on 2D grids. This operation is made possible thanks to the
grid structure of images. However, unlike images, 3D mobile LiDAR point clouds are
unstructured. Therefore, dedicated approaches have been devised to use the point cloud at
the input of the network [1]. Early solutions investigated different approaches to provide
the point clouds with some structure: multi-view projection [4–6], voxelization [2,7,8],
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and octree-based structuring [9,10]. However, they were not adapted to large-scale point
clouds or their point density heterogeneity, yielding inefficiency or the loss of valuable
information [11–13]. Given such limits, solutions directly using the native point cloud
have been designed. However, the size of these 3D point clouds prevents their use as a
single input in deep neural networks. Indeed, outdoor scenes tend to be massive. For
instance, SemanticKITTI contains more than four billion labeled points [14]. In order to
avoid such a problem, the original point cloud is processed in subsets. In PointNet [11],
the first network to use the native point cloud, semantic segmentation is performed by
sampling the point cloud into 1× 1× 1 meter blocks. Then, points inside the blocks are
processed individually. Other networks such as KPConv [15] use Random Sampling (RS)
to select some spheres from the original point cloud as the input of the network. While
current works focus generally on the architecture itself, few works have focused on the
data preparation itself before the network and its impact on the network performance.

In the context of our paper, “Data preparation” means selecting a meaningful group of
points from large-scale outdoor 3D LiDAR point clouds for the input of the neural networks.
Although a few papers such as KPConv tried to tackle the problem of data preparation
before the network, this is still an open research question. Therefore, this paper focuses
only on this problem. To this end, we propose two novel data preparation methods along
with investigating two already existing ones to illustrate the impact of using meaningful
data samples at the input of deep neural networks. They are built toward the selection
of meaningful groups of points for the input of deep neural networks. Generally, these
methods consist of two parts, namely sampling and grouping, in order to generate the
partitioning of the point sets. To assess the influence of the investigated methods on deep
neural networks, we compared them with a baseline method that does not involve any
data preparation and is based on point cloud regular partitioning in PointNet++. Regular
partitioning is one of the simplest and most-straightforward techniques to select points at
the input of the network. We used two deep neural networks, which are based on very
different architectures: PointNet++ (point-based) [16] and KPConv (CNN-based) [15], to
ensure that the performance variations are related to the data preparation and not the
networks.

The key contributions of our work are as follows:

• New insights into the impacts of the data preparation choices on deep neural networks.
These insights were gained by comparing different grouping methods for different
sequences of the dataset, analyzing the number of points per group in different layers
of KPConv, the comparison of different sampling methods, and comparing the number
of classes per group in different data preparation methods.

• New general guidelines to intelligently select, that is adapted to the characteristics
of the point clouds, a meaningful neighborhood and manage large-scale outdoor 3D
LiDAR point clouds at the input of deep neural networks.

• Two novel data preparation methods, namely Density Based (DB) and Axis Axis-
Aligned Growing (AAG), which are compatible with outdoor 3D LiDAR point clouds
and achieved the best results among the investigated data preparation methods for
both KPConv and PointNet++.

The rest of the paper is organized as follows. A brief review of existing works related
to deep neural networks and large-scale LiDAR point clouds is provided in Section 2. It
underlines as well how data preparation is tackled in such networks. Then, the dataset and
results are presented in Section 3. A thorough analysis and discussion of the results are
presented in Section 4 before concluding.

2. Related Works

Here, we briefly review existing deep neural networks to process point clouds, paying
special attention to methods involving data preparation either within the network or as
a separate stage before the training. As underlined before, only networks processing
native 3D point clouds are discussed. Qi et al. [11] are among the pioneer researchers who
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conducted such work. They introduced PointNet and PointNet++ [16]. PointNet [11] is
among the first networks to consume unstructured and irregular point clouds. To do this,
it divides the point cloud into blocks and then processes them individually. However,
the results showing the network performances were sensitive to the size and number of
points in the sampling blocks used by the network [17]. Therefore, PointNet++ [16] was
introduced to overcome this limitation. Figure 1a shows its architecture. Unlike PointNet,
PointNet++ is a hierarchical neural network. It applies PointNet as a feature learner on a
partitioned point cloud recursively. In order to overcome the problems with PointNet++
and improve the performance of point-based networks, several other methods [12,18–22]
have been proposed. For example, Engelmann et al. [12] proposed two mechanisms to add
spatial context to PointNet in order to process large-scale point clouds: “multi-scale blocks”
and “grid blocks”. In “multi-scale blocks”, a group of blocks at the same position, but at
different scales is processed simultaneously, while, in “grid blocks”, a group of blocks is
selected according to neighboring cells in a regular grid. Although the new architectures
improve the performance of PointNet++ and overcome its problems (such as neglecting
local features), most of them use the same method for preparing the data for processing, i.e.,
partitioning the point cloud into blocks. Moreover, another shortcoming of these methods
is the fixed size of the point cloud subsets used at the input of the deep neural network.
However, since the density of the point clouds is non-uniform, there are significantly
more points within some subsets and not enough points in others [13]. Thus, issues of
undersampling or data augmentation need to be addressed in such a context.

(a) PointNet++

(b) KPConv

Figure 1. Architectures of PointNet++ (a) and KPConv (b) networks [15,16]. The encoder of both
networks has a sampling and grouping stage, which makes the input point cloud ready for the
network. However, both of these stages are inside the networks and cannot handle massive large-
scale point clouds as the input due to memory limitations.
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More recently, the kernel point fully convolutional network was introduced based on
KPConv [15]. Figure 1b shows the architecture of this network. Unlike the previous deep
learning methods for processing 3D native point clouds, KPConv includes an additional
stage for data preparation before the training. In this stage, random spheres are selected
from the original point cloud to form the input data of the network. These random spheres
are created using radius-based neighborhoods instead of K-Nearest Neighbors (KNN)
(which is used in similar networks, such as [23–26]) in order to keep a consistent receptive
field. In addition to the random spheres, grid subsampling was added in each layer to
increase the robustness of the network in the case of a highly uneven density of the input
point cloud [27,28]. However, this addition causes the subsample clouds to contain a
different number of points per cloud [15]. Therefore, the use of batches is not feasible,
which leads to a longer training time. Although a solution consisting of concatenating
batches has been proposed, the problem still exists when using massive large-scale point
clouds, such as aggregated sequences of the SemanticKITTI dataset. Indeed, the network is
unable to take the whole sequence in a single pass due to memory limitations [29].

3. Materials and Methods

In this section, we explain the methodology of the proposed data preparation methods,
involving the following parameters: N the number of points in the original point cloud, S
the number of seed points to generate groups for the input of the networks, K the number
of nearest neighbors that determine the number of points in each group, B the size of the
blocks used to partition the original point cloud (for time and memory efficiency), and R
the radius of the sphere used to select points around seed points.

3.1. Random-KNN (R-KNN)

The first step in prepossessing large point clouds is to select groups from the original
dataset. This can be accomplished by choosing seed points as the centroids of the groups.
There are different methods to select these seed points. The most straightforward one
consists of using RS, in which S seed points are uniformly selected from the original N
points. It has high computational efficiency (O(1)), regardless of the scale of the input
data [29].

Given N input points, S seed points are selected using RS:

S = (N/K)× 2, (1)

where K is the number of nearest neighbors to each seed point that is selected using the
KNN technique. On average, each point is assigned to at least two groups if the number
of seed points (S) is calculated using Equation (1). The number of groups is the same as
the number of seed points. This means that some groups have overlaps, which can lead
to good coverage of the whole point cloud. Algorithm 1 describes the procedure of the
R-KNN method.

Figure 2 shows examples of using different grouping methods for the same seed
points. Figure 2a displays the original point cloud of the scene. The generated groups using
R-KNN are shown in Figure 2b.

Algorithm 1 R-KNN.

Require: P, a list o f points
Require: K, number o f points in each group o f points

1: Seed_Points← S seed points randomly selected f rom P
2: for all s ∈ Seed_Points do
3: Group_Pointss ← K-nearest neighbors o f s in P
4: end for
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(a) A complete scene (b) R-KNN

(c) FR (d) AAG

(e) DB (f) PR

Figure 2. Comparison of the impact of the grouping methods, illustrated using the same seed
points. A complete scene (a) and groups of points with diverse shapes according to the selected
data preparation methods, namely: R-KNN (b), FR (c), AAG (d), DB (e), and RP (f). The black dots
represent the same seed points for all of the methods.
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3.2. Fixed Radius (FR)

In the FR data preparation, S seed points are selected randomly from the whole dataset,
as in the R-KNN method. Then, instead of using KNN to create the groups, a fixed radius
R around each seed point is used to select points to form the groups. If there are more than
K points in the group, K points are randomly selected. Groups with less than K points are
removed. The main difference between the fixed radius and KNN selection is as follows:
the KNN spatial coverage shrinks in high-density areas and grows in sparse ones, while
the fixed radius spatial coverage is constant regardless of the local point density. The shape
of the selected groups using FR is displayed in Figure 2c. Algorithm 2 synthesizes the main
steps of the FR method.

Algorithm 2 FR.

Require: P, a list o f points
Require: K, number o f points in each group o f points
Require: R, radius around seed points to create groups o f points

1: Seed_Points← S seed points randomly selected f rom P
2: for all s ∈ Seed_Points do
3: Group_Pointss ← Points in a sphere with R radius f rom s
4: if Len(Group_Pointss) < K then
5: Delete Group_Pointss
6: else
7: Group_Pointss ← K points randomly selected f rom Group_Pointss
8: end if
9: end for

3.3. Axis-Aligned Growing (AAG)

We devised Axis-Aligned Growing (AAG), described by Algorithm 3, as a new data
preparation method. It picks S seed points randomly as in R-KNN and FR. The points
belonging to the groups are selected through the growth of a bounding box around each
seed until there are at least K points in the group. The growth is performed along the axes,
for computational efficiency, and because the Z axis is aligned with the ground elevation.
If there are more than K points in the group, K points are randomly selected. Thus, all the
groups have an equal number of points for the input of the deep neural networks. Even if
the seed points are selected randomly when using either R-KNN, FR, or AAG, the shape of
their groups differs among these methods since their point selection approach is different.
For AAG, the group shape is similar to a rectangular box (Figure 2d).

3.4. Density-Based (DB)

We devised Density-Based (DB) as a second novel data preparation method. Its princi-
ple consists of leveraging the uneven point density in the point cloud. A relatively dense
group of points is generally associated with the presence of one or more objects. To compute
the density map of the entire point cloud, we used the Kernel Density Estimation (KDE)
function [30]. In statistics, KDE is a non-parametric method to estimate the probability
density function of a random variable. Let (p1, p2, . . . , pn) be a group of points with an
unknown density f at any given point p. The kernel density estimator is:

f̂h(p) =
1
n

n

∑
i=1

Kh(p− pi) =
1

nh

n

∑
i=1

K
( p− pi

h

)
, (2)

where K is the kernel—a non-negative function—and h > 0 is a smoothing parameter
called the bandwidth. A kernel with subscript h is called the scaled kernel and is defined
as Kh(x) = 1/hK(x/h).
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Algorithm 3 AAG.

Require: P, a list o f points
Require: b0, initial size o f the box containing the group o f points
Require: K, number o f points in each group o f points

1: Seed_Points← S seed points randomly selected f rom P
2: for all s ∈ Seed_Points do
3: sx, sy, sz ← Seed_Points[s]
4: b← b0
5: while True : do
6: Group_Pointss = [] . Create an empty list to store group points related to s
7: for all p ∈ P do
8: px, py, pz ← P[p]
9: if abs(sx − px) < b then

10: if abs(sy − py) < b then
11: if abs(sz − pz) < b then
12: Group_Pointss.append(p)
13: end if
14: end if
15: end if
16: end for
17: b← b + 0.1
18: if Len(Group_Pointss) >= K then
19: Group_Pointss ← K points randomly selected f rom Group_Pointss
20: Break
21: end if
22: end while
23: end for

After computing the density, points in the cloud are categorized into three classes
according to the point density at their location: low, medium, and high. Then, seed selection
is performed according to each density class separately. Since the point cloud consists
mostly of points belonging to the medium-density class, a greater number of seed points
need to be selected at such locations to ensure that the entire scene has been sampled.
Selecting seed points separately, in locations with different point densities, provides a
balanced selection of seed points all over the point cloud. Moreover, this approach allows
taking into account objects that are located both near and far from the mobile LiDAR that
recorded the point cloud. The selection of S seed points is performed by using the Farthest
Point Sampling (FPS) method as specified by Algorithm 4. In a point cloud with N points,
FPS selects S points, each of them being the farthest point from the first S− 1 points.

Algorithm 4 FPS.

Require: A list o f points (P)
Require: S, number o f seed points

1: p0 ← Pi, . i is selected randomly
2: Farthest_Points←p0
3: dis0 ← A list o f distances o f each point in P f rom p0
4: for i← 1, S do
5: dismax_i ← Maximum o f dis0
6: ind← Index o f the dismax_i in P
7: Farthest_Points[i]← P[ind]
8: dis1 ← Distances o f all points in P to p0
9: dis0 ← min(dis0, dis1)

10: end for
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FPS was used in [16,24] for semantic segmentation of small-scale point clouds. Al-
though it has good coverage of the entire point set, it has high computational complexity
(O(N2)), especially for large-scale datasets [29]. The final step of the DB method consists of
selecting the points to form the group. The KNN technique is used to this end. Algorithm 5
presents the procedure of the DB method. Figure 2e shows the shape of the groups provided
by the DB method.

Algorithm 5 DB.

Require: A list o f points (P)
Require: K, number o f points in each group

1: D ← A list o f density values o f each point in P calculated by KDE
2: LowD & MedD & HighD ← Lists o f Points in low/medium/high density zones
3: Shigh & Slow ← (N/K)/2
4: Smed ← (N/K)
5: Seed_Pointslow ← FPS(LowD, Slow)
6: Seed_Pointsmed ← FPS(MedD, Smed)
7: Seed_Pointshigh ← FPS(HighD, Shigh)
8: for all s ∈ Seed_Points do
9: Group_Pointss ← K-nearest neighbors o f s in P

10: end for

3.5. Regularly Partitioning (RP)

Regularly Partitioning (RP) the point cloud is the data preparation method used in
PointNet++. As a result, RP is considered as the baseline in this work. In PointNet++, the
point cloud is partitioned into blocks of points. Each block should have K points. Therefore,
if the partition creates blocks with less than K points, they are removed. For blocks with
more than K points, a random selection of K points is conducted. Figure 2f shows the group
shapes generated using this method.

4. Results

This section presents the performance results of the four data preparation methods
discussed in Section 3. Beforehand, we present the implementation configuration and the
dataset that was used in all the experiments, along with the procedure to split the dataset
into the train, validation, and test sets.

4.1. Dataset and Implementation Configuration

For benchmarking purposes, we evaluated the data preparation methods with the
SemanticKITTI dataset [14]. SemanticKITTI should not be regarded as one dataset. In fact,
it consists of 21 sequences (11 sequences with labeled points) consisting of 43,552 densely
annotated LiDAR scans. Each scan covers approximately an area of 160× 160× 20 meters.
The number of points per scan is about 105. The focus of this work was massive large-
scale outdoor 3D LiDAR point clouds, such as Paris-Lille-3D [31], which could be used in
applications such as 3D HD maps for urban management purposes. This application context
restricts the public datasets of interest. Indeed, S3DIS [32] involves only indoor scenes.
Semantic3D [33] consists of static LiDAR acquisitions with limited outdoor spatial coverage.
The ARCH dataset [34] focuses on historical built heritage. Since the SemanticKITTI dataset
consists of sequential scans dedicated to autonomous vehicle applications, we performed a
scan aggregation operation on each sequence of the SemanticKITTI dataset and used the
aggregated point clouds to evaluate the data preparation methods. Figure 3 shows the
diversity of this dataset, including intersections, parks, parking lots, cars with different
sizes and parked or headed toward different directions, complex scenes with multiple
objects, autoroutes, overpass bridges, and residential neighborhoods, to name a few. The
SemanticKITTI scene semantic segmentation competition imposes Sequences 00∼07 and
09∼10 (19,130 scans) for training, Sequence 08 (4071 scans) for validation, and Sequences
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11∼21 (20,351 scans) for online testing. However, since the objective of this paper was to
illustrate the impact of data preparation on deep neural networks and not to compete with
the state-of-the-art, we used the provided sequences differently. Instead, we performed a
10-fold cross-validation scheme for each data preparation method using Sequences 00∼07
and 09∼10.

Benchmarking was conducted to assess the impact of the proposed data preparation
methods on the PointNet++ and KPConv networks. RP was used as a baseline. Relevant
values were used for the main parameters involved in these methods. For consistency
reasons, regarding the number of input points, K = 8192 was chosen as the number of
points in each group, since this is the requested number of points at the input of PointNet++.
In RP, to ensured we had 8192 points in the blocks, and we determined that the block size
B should be 5× 5× 5 meters. We used a fixed radius (R) of 2 meters in the FR method.
This value was selected as the average block size of the AAG method. In DB, KDE was
calculated using the Gaussian KDE function of the Scipy library in python [35], which
includes automatic bandwidth determination. The threshold values for determining low
and high-density areas were set at 30% and 70% of the maximum density, respectively. The
interval between 30 and 70% was considered as medium-density areas. We used 100 epochs
to train the networks. In each epoch, 20,000 groups were randomly selected for training.
The initial learning rate was set to 0.001.

4.2. Semantic Segmentation Using the Data Preparation Methods

Tables 1 and 2 present the mean Intersection over Union (mIoU) scores over 20 classes
using PointNet++ and KPConv, respectively, and each one of the four data preparation
methods. The performances of the data preparation methods were all better than the
baseline by a significant margin. In PointNet++, using data preparation instead of regularly
partitioning of the point cloud increased the mIoU average of all the sequences by 16.7%.
In KPConv, which is one of the rare networks that uses data preparation before training,
the lack of data preparation yielded a drop of the mIoU by 9%. The best mIoU score
with PointNet++ was achieved using AAG, while the best mIoU score with KPConv was
achieved using DB. It is worth mentioning these results cannot be compared with those
of PointNet++ and KPConv on the SemanticKITTI dataset published in [14]. Indeed, as
explained, we used aggregated scans of each SemanticKITTI sequence, while the published
results with PointNet++ involved a single scan, and KPConv involved only five aggregated
scans. The performance results are further analyzed and discussed in the next section.

Table 1. Test results (mIoU %) of PointNet++ using different data preparation methods. S.X is the
sequence number used as a test dataset. The mean (%) and standard deviation (%) of all the sequences’
mIoUs are provided for each data preparation method.

Methods Seed
Selection

Grouping S.0 S.1 S.2 S.3 S.4 S.5 S.6 S.7 S.9 S.10 Mean Std

RP (base-
line) Not used Not used 22.1 23.0 15.1 24.7 20.8 23.6 17.6 23.8 23.6 22.1 21.6 3.04

R-KNN RS KNN 45.7 22.1 29.5 40.0 26.5 42.5 31.5 45.6 42.0 36.5 36.2 8.36

FR RS Fixed
radius 45.2 25.7 26.4 44.9 30.7 44.6 31.0 43.6 42.5 36.0 37.1 8.02

AAG
(ours) RS Growing

box 47.7 25.2 31.7 42.8 26.4 48.2 34.0 45.9 42.4 39.0 38.3 8.54

DB
(ours) FPS KNN 46.6 28.6 28.9 38.7 32.7 43.9 31.2 44.1 40.0 36.7 37.1 6.59
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3. Examples of urban scene diversity recorded in the SemanticKITTI dataset. (a) A complex
scene of an intersection; (b) overpass bridge and autoroute mixed with vegetation; (c) a curvy
street with cars parked in different directions; (d) a park; (e) parking lots and streets with a tram;
(f) residential neighborhood; (g) a boulevard intersection with cars parked in different directions;
(h) a complex urban scene including cars and trucks.
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Table 2. Test results (mIoU %) of KPConv using different data preparation methods. S.X is the
sequence number used as a test dataset. The mean (%) and standard deviation (%) of all the sequences’
mIoUs are provided for each data preparation method.

Methods Seed
Selection

Grouping S.0 S.1 S.2 S.3 S.4 S.5 S.6 S.7 S.9 S.10 Mean Std

RP (base-
line) Not used Not used 40.2 21.2 27.1 36.3 30.4 38.5 30.5 39.4 38.3 35.4 33.8 6.24

R-KNN RS KNN 48.0 29.5 35.0 43.8 37.1 44.6 40.8 47.3 43.2 42.5 41.2 5.78

FR RS Fixed
radius 47.2 31.3 30.5 44.5 38.7 48.1 36.2 45.1 44.2 38.0 40.4 6.38

AAG
(ours) RS Growing

box 48.9 29.8 34.3 45.8 37.2 46.8 41.4 48.9 44.5 44.8 42.2 6.48

DB
(ours) FPS KNN 50.5 32.0 36.0 44.2 38.1 46.8 42.7 48.3 45.0 44.7 42.8 5.77

5. Discussion

In KPConv, the authors claimed that using randomly selected spheres (such as FR)
could result in a better mIoU than using KNN (such as R-KNN). However, our experiments
showed that this hypothesis highly depends on the dataset and its context. Based on our
experiments, using FR led to better results on the datasets where fewer points were located
in low-density areas. In the other words, FR is more relevant when using datasets involving
a few classes of large structures (e.g., roads, vegetation), for which the point density is high.
On the other hand, KNN showed greater performance for datasets consisting of many
classes related to objects with uneven sizes, yielding a larger number of points with low
density. Table 3 shows the ratio of low-density points in each sequence of the dataset, the
preferred grouping method for each sequence based on the number of points with low
density, and the mIoU score related to each sequence using two data preparation methods,
FR and R-KNN, for both networks. Based on Table 3, Sequences 1, 3, 4, 5, and 9 had fewer
points with low density, and the best mIoU score for both networks was reached using
the FR grouping method. On the contrary, Sequences 0, 2, 6, 7, and 10 had more points
with low density, and the best mIoU score for both networks was reached using the KNN
grouping method.

It can be inferred from Table 3 that the mIoU score related to S.1 using FR with both
PointNet++ and KPConv was better than R-KNN with a margin of 2%. However, this
was the opposite for S.2. This can be explained by analyzing the context of these two
sequences. Analyzing the ratio of points in each sequence could help better understand the
dependency of the FR and KNN performance on the context of the dataset. Table 4 shows
the proportion of each class in the groups created, respectively, with R-KNN and FR and in
the original dataset for the two sequences S.1 and S.2. As can be seen in this table, S.1 is an
unbalanced dataset, for which the majority of the points belong to major classes such as
road and vegetation. On the contrary, S.2 consists of points that belong not only to major
classes, but also to classes related to smaller objects, such as cars, motorcycles, and buses.
In S.1, for some classes with very few points such as building, the R-KNN method was
able to generate groups of points from the original dataset, while FR failed. The reason
is the nature of the FR method, which creates groups regardless of the local density. As
shown in Figure 2c, some groups could not be created using the FR method because there
were not enough points around the seed points with low density. Thus, using FR will
result in neglecting objects with a low point density, ultimately affecting the balance of the
training datasets and the resulting mIoU of the semantic segmentation. On the other hand,
R-KNN always creates groups that contain the same number of points (K) irrespective of
the local density. As can be seen in Figure 2b, R-KNN can create groups with both high and
low-density.
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In [16,36], the authors claimed that using FPS will increase the mIoU score due to
the good coverage of the selected seed points over the input point cloud. Figure 4 shows
an example of such coverage using (a) RS and (b) FPS. As can be observed, FPS provides
better coverage of the point cloud than RS; the latter naturally leads to a non-uniform
sampling result, which focuses on points at locations with high density. However, when
looking at Tables 1 and 2, the mIoUs of R-KNN with RS are slightly lower than the mIoUs
of DB using FPS. Therefore, when considering the significant processing time and memory
usage of FPS, RS appears to be a relevant method to select seed points, especially with
large-scale outdoor 3D LiDAR point clouds. To overcome the low efficiency of FPS, we
propose a two-step solution for sampling large-scale outdoor 3D LiDAR point clouds. As
shown in Figure 5, the first step consists of dividing the point cloud into blocks that are
large enough that they can include the largest object in the scene. Then, the second step
consists of downsampling each block to reduce the number of points. The downsampling
is performed using a dropping point technique with a stride of 32. Applying this approach,
FPS can be executed in a fair amount of time even with large-scale outdoor 3D LiDAR
point clouds. In order to justify this statement, Table 5 shows the time (seconds) needed
to select 100 seed points from three point clouds of size 105, 106, and 107, respectively,
using RS, FPS, and the improved FPS with downsampling. Using RS requires less than
a second while, using FPS, 3178 s are needed to select the same number of seed points.
However, using the improved FPS, this time is reduced to only 103 s. One could argue
that this downsampling could affect the coverage of FPS over the complete point cloud.
As is shown in Figure 4c, the coverage of seed points is the same if FPS or the improved
FPS is used. For the proposed benchmark, it would have been possible to multiply the
combinations of methods between those available for seed point selection and those for
grouping. However, the possibilities are numerous, and the datasets used are also very
large (i.e., four billion points), which makes the realization of such tests prohibitive. The
objective of this research was not to test all possible cases, but to highlight the impact of the
chosen methods on the performance of the network. In addition, the proposed benchmark
is sufficiently comprehensive to propose general guidelines one may use to find a suitable
combination of seed selection and grouping methods for one dataset.

Table 3. Comparison of KNN and FR grouping methods’ performances for different sequences of the
SemanticKITTI dataset.

Sequences
mIoU FR

PointNet++
(%)

mIoU R-KNN
PointNet++

(%)

mIoU FR
KPConv (%)

mIoU R-KNN
KPConv (%)

Grouping
Methods

Providing the
Best mIoU

Ratio of
Low-Density

Points (%)

S. 0 45.2 45.7 47.2 48.0 KNN 38
S. 1 25.7 22.1 31.3 29.5 FR 31
S. 2 26.4 29.5 30.5 35.0 KNN 42
S. 3 44.9 40.0 44.5 43.8 FR 32
S. 4 30.7 26.5 38.7 37.1 FR 33
S. 5 44.6 42.5 48.1 44.6 FR 31
S. 6 31.0 31.5 36.2 40.8 KNN 38
S. 7 43.6 45.6 45.1 47.3 KNN 42
S. 9 42.5 42.0 44.2 43.2 FR 33
S. 10 36.0 36.5 38.0 42.5 KNN 38
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Table 4. Class proportion (percentage) of the groups created with R-KNN and FR methods and in the
original dataset for Sequences S.1 and S.2. S.2 has 17 classes, while S.1 has 11 classes (i.e., S.2 is more
balanced than S.1). The absence of minor classes in S.1 means such classes will not be learned by the
network.

Classes
S.1 S.2

R-KNN FR Original R-KNN FR Original

Unlabeled 3.08 1.11 3.65 1.48 1.40 1.89
Car 0.00 0.00 0.74 2.32 2.08 2.23

Bicycle 0.00 0.00 0.00 0.003 0.002 0.002
Motorcycle 0.00 0.00 0.00 0.01 0.01 0.01

Other Vehicles 0.00 0.00 0.06 0.05 0.03 0.05
Person 0.00 0.00 0.00 0.003 0.004 0.01
Road 40.17 45.95 40.51 19.51 19.30 19.66

Parking 0.00 0.00 0.00 2.17 2.27 2.19
Sidewalk 0.0004 0.0005 0.0003 17.59 18.50 18.35

Other Ground 3.06 3.30 2.63 0.09 0.12 0.12
Building 0.22 0.00 0.20 5.81 5.62 5.87

Fence 15.30 15.64 14.35 9.08 9.62 8.58
Vegetation 23.56 21.12 23.57 35.28 34.90 34.38

Trunk 0.05 0.01 0.04 0.88 0.72 0.81
Terrain 14.18 12.57 13.83 5.51 5.21 5.62

Pole 0.20 0.19 0.22 0.18 0.19 0.20
Traffic Sign 0.19 0.11 0.20 0.02 0.01 0.02

Table 5. Comparison of the time (seconds) needed to sample 100 points from three point clouds of
size 105, 106, and 107, respectively, using the following sampling methods: RS, FPS, and improved
FPS with downsampling (DS).

Sampling Methods 105 106 107

RS 0.0016 0.013 0.24
FPS 29.85 298.37 3178.76

FPS + DS (ours) 0.97 9.19 103.47

Figure 2e shows that groups created with DB have almost the same shape as the
R-KNN groups (Figure 2b). This was expected because both of their grouping methods
are based on KNN. However, the higher mIoU score achieved by DB in both PointNet++
and KPConv makes DB a better data preparation method in comparison to R-KNN. This
underlines the advantage of KDE and FPS to create groups.

The shapes of AAG groups are quite similar to those of RP groups since both of
them are created using boxes, the former by growing a box around a seed point and the
latter by partitioning the point cloud into boxes. However, using AAG, the mIoU score
is more than twice better for PointNet++ and about 9% better for KPConv. This reveals
two critical advantages of AAG over RP. First, randomly selecting seed points to create
groups appears to be a better strategy than regularly partitioning the point cloud. Second,
involving homogeneous, compact boxes is more informative than larger, heterogeneous
boxes. Figure 6 shows the comparison of the number of classes per group for the two
methods. The average number of classes in the AAG boxes is 2.6, while the RP boxes
contain 4.3 classes on average. Therefore, AAG creates more homogeneous, compact boxes
than RP.
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(a) Sampled seed points using FPS (green boxes) and improved FPS (red boxes)

(b) Sampled seed points using RS (black boxes)

Figure 4. Comparison of FPS and improved FPS (a) and sampled seed points using RS (b) for
Sequence 4.

Table 6 shows the training time for one epoch, using an NVIDIA Quadro RTX 8000,
for PointNet++ and KPConv using the data preparation methods and the number of
groups created by each data preparation method. The number of groups is the same as the
number of seed points. Using each one of these methods increased the number of groups
significantly compared to RP and the original dataset. As shown in Equation (1), each point
is assigned to at least two nearby seed points. Therefore, the proposed data preparation
methods can be also regarded as data augmentation, which can improve the network’s
performances and lead to a higher mIoU score. For PointNet++, the training time of all the
data preparation methods was higher than the baseline. This was expected given the higher
number of groups of all the methods compared to RP. The training time for PointNet++
was much lower than KPConv in all of the benchmarking. This was also expected given
that the architecture of KPConv prevents the network from taking advantage of parallel
batch processing. For KPConv, the training time using RP and FR was higher than the
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other methods. This was due to the number of points in each layer of KPConv when
using different data preparation methods (Figure 7). KPConv has five layers, and each
layer downsamples the input data to create the input of the next layer. The downsampling
technique is based on the distribution of the points in the input point cloud. According
to the KPConv downsampling technique, first, the input point cloud is divided into 3D
grids and, then, the barycenter of each grid is used to create the input of the next layer [15].
The RP and FR groups are fixed-size neighborhoods. Points in these groups are spread
and cause the next layer to have more points after the downsampling. In other words, the
groups of these two methods cover more area than other methods while containing the
same amount of points. A comparison of the training time of the FR method to the methods
with the KNN-based grouping technique revealed another advantage of KNN for datasets
containing more points with low density. Using FR for these datasets will create groups
with a scattered distribution, which leads to a higher training time for architectures such as
KPConv.

Figure 5. Sequence 4 divided into blocks of 20 × 20 × 20 m to reduce FPS processing time.

Figure 6. Histograms of the number of classes per group generated by RP and AAG data preparation
methods.
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An improved version of FPS is proposed that could process large-scale outdoor 3D
LiDAR point clouds in a fair amount of time. The improved FPS could sample the space
better than RS and improve the performance of the networks.

Table 6. Training time for PointNet++ and KPConv using the proposed data preparation methods for
one epoch and the number of groups created by the proposed data preparation methods.

Methods PointNet++ KPConv Number of
Groups

RP (baseline) 4 min 30 min 30,020
R-KNN 6 min 21 min 651,620

FR 6 min 35 min 582,574
AAG 6 min 21 min 661,342
DB 6 min 21 min 661,175

Original Dataset – – 347,568

Figure 7. Number of points per layer of KPConv for the proposed data preparation methods.

6. Conclusions

In this work, we compared four different data preparation methods to select subsets
of large-scale outdoor 3D LiDAR point clouds for deep neural networks. Selecting a group
of points for the input of deep neural networks is a key step, and its importance should
not be neglected. The basic idea of all the proposed methods is the same: first, selecting
seed points and, then, grouping neighboring points around each seed point. The difference
is in their methods to select the seed points or group neighboring points. We tested these
methods on two popular deep neural networks, namely PointNet++ and KPConv. To
assess their impact, we compared them to a baseline method, which regularly partitions
the point clouds. Using any of the data preparation methods improved the performance of
both networks by a tangible margin. For instance, the mIoU in PointNet++ and KPConv
increased by 16.7% and 9%, respectively, in comparison to the baseline method.

The two proposed novel data preparation methods, namely DB and AAG, are com-
patible with typical density variations in large-scale outdoor 3D LiDAR point clouds and
achieved the best results among the investigated data preparation methods for both KP-
Conv and PointNet++. However, they are computationally more expensive than the other
investigated methods. Among the grouping techniques, KNN showed superior perfor-
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mance compared to FR, where the datasets contain many classes with widely varying sizes.
In addition, FPS has better coverage than RS, but it is time-consuming, especially for large-
scale outdoor 3D LiDAR point clouds. Therefore, an improved version of FPS is proposed
that could process large-scale outdoor 3D LiDAR point clouds in a fair amount of time. The
improved FPS could sample the space better than RS and improve the performance of the
networks.

Even if a comprehensive benchmark was proposed in this paper, we could not inves-
tigate all the possible combinations of the grouping and sampling methods due to time
constraints. Thus, some combinations would be worth evaluating such as FPS seed point
selection and AAG grouping, given the performance that each provided. It would then
be interesting to determine the contexts favorable to such a combination. Furthermore,
since our improved FPS is relatively simple, it would be appropriate to evaluate other ap-
proaches to reduce the prohibitive computational time of this method, or even an approach
that would be a compromise between RS and FPS in terms of selected seed points and
computational time. The research proposed in this paper has advanced the knowledge on
the selection of regions of interest in the point cloud and subgroups of points in order to
constitute the training samples of the network for an efficient segmentation, according to
the inherent characteristics of the large-scale outdoor 3D point clouds. A new study could
therefore take advantage of this knowledge to propose efficient sample selection solutions
for networks for which the massive volume of these point clouds is an important issue (e.g.,
MinkowskiNet [37] and 3D Transformers [38]).
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