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Abstract: Arid ecosystems are known to be sensitive to climate change. The Jornada Basin in the USA,
as one representative of arid land, has suffered from land degradation in recent decades. In order to
disentangle the climate–vegetation feedback, we analyzed the vegetation dynamics under the effects
of climate change via a mathematical model based on the reaction–diffusion mechanism. Using this
model, we conducted a sensitive analysis of climate factors and concluded that the ecosystem might
experience a catastrophic shift with the climatic deterioration. We considered the non-local interaction
term to explain the competition among plants. Additionally, the PLR (power law range) metric was
used to quantify the extent of the degradation and to compare the results of the vegetation patterns
from the remote sensing data and the simulations. From the results, this model could simulate
the trends of land degradation in this area. We found that the land degradation could be mainly
attributed to climate changes in recent years. This approach suggests that vegetation patterns can
provide hints as to whether the ecosystem is approaching desertification. These results can help with
mapping vulnerable arid areas around the world through model simulation and satellite images.

Keywords: arid lands; climate change; vegetation–climate feedback; land degradation

1. Introduction

The increase in atmospheric greenhouse gases in recent decades has significantly
impacted global and regional temperatures with concomitant modifications of precipitation
patterns [1]. Arid and semiarid ecosystems cover about 40% of terrestrial land and are very
sensitive to climate changes. There are growing concerns that these ecosystems have a high
risk of land desertification, which may affect approximately 25% of the population around
the world [2].

The Jornada Basin (103,373 ha), having a typical closed-basin topography found in
many arid areas of the Southwestern United States [3], has suffered from land degrada-
tion due to climate change. Research has shown that recent global changes, due to both
environmental and human influence, combined with climatic stress, especially a prolonged
drought, have impacted the structure and function of the ecosystem in southern New
Mexico [4]. Grassland areas with weak resistance to external factors (such as grazing and
climate change) tend to shift to alternate states in which desert and shrubs dominate [5].
Given its special research history, the Jornada Basin is one of the natural research sites for

Remote Sens. 2023, 15, 978. https://doi.org/10.3390/rs15040978 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15040978
https://doi.org/10.3390/rs15040978
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/ 0000-0002-6348-8205
https://doi.org/10.3390/rs15040978
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15040978?type=check_update&version=1


Remote Sens. 2023, 15, 978 2 of 16

the Long Term Ecological Research (LTER) program organized by the National Science
Foundation (its location is shown in Figure 1). It is highly possible that many factors,
including the rising concentration of atmospheric carbon dioxide [CO2], and changes in
the seasonal distribution of precipitation, have led to large changes in the structure and
function of the Jornada Basin’s ecosystem [6]. Vegetation, as the ecosystem’s engineer, can
capture, in its patterns, changes above ground and act as an indicator of the state of the
ecosystem [7].

Figure 1. The Long Term Ecological Research Network. The location of the Jornada Basin is shown
with a red asterisk. Site 1 and site 2 are the locations of the study sites in this work.

Current vegetation patterns may reflect historical legacies, dynamic patterns of climate
variables, resource redistribution across landscapes, and different cross-scale nonlinear
interactions [8]. Many researchers agree that dry land ecosystems, such as the Jornada Basin,
are not in an equilibrium state. These ecosystems easily experience regime shift driven by
the stochasticity and variability in external fluctuations, such as rainfall, temperature, fire,
etc. [9–12]. Inter- and intra-annual rainfall patterns change in arid and semiarid areas due
to climate change, resulting in an increased number of extreme events (IPCC AR6) [13–15].
Additionally, it is predicted that the mean temperature and atmospheric carbon dioxide
will increase, in addition to the changes in the mean annual rainfall, in the Jornada Basin.
However, it is difficult to disentangle the state of the current ecosystem. Most studies
quantifying the ecosystem state have only used simulation data. Yet, with the increasing
availability of remotely sensed data, satellite-driven approaches have been established.
Currently, the development of remote sensing and the freely available data have made
it convenient and feasible to research the vegetation state of the Jornada Basin [8,16,17].
It has been suggested that vegetation patterns can be applied as an indicator to infer the
underlying mechanisms and environmental conditions of an ecosystem [18–21]. Coupling
remote sensing data and methods of pattern dynamics can play a critical role in linking
ecosystem structure and function and can advance our understanding of how ecosystems
respond to environmental changes.

In this study, a mathematical model was applied to analyze the dynamics of vegetation
with the effects of climate change. Then, remote sensing data were used to evaluate the
changes in the plants in recent years and to compare the results of the vegetation patterns
from the remote sensing data and the simulated model. In Section 2, we described the data
and methods used in the analysis. A mathematical model with a non-local term was put
forward, which considered the mechanism of vegetation growth in the Jornada Basin to
simulate the vegetation patterns. In Section 3, some results of the study were provided.
We analyzed the dynamics of the model and obtain the vegetation pattern from the model.
Additionally, this study applied the PLR (power law range) to detect the land degradation
and compare the results from the observation and simulation. It was found that climate
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change played a critical role in the land degradation of the Jornada Basin. In Section 4,
some of the advantages and limitations of our approach were given. Finally, conclusions
were drawn in Section 5.

2. Materials and Methods
2.1. Study Area

The Jornada Basin is located along the northern edge of the Chihuahuan Desert in the
southwestern USA. The area includes both the Jornada Experimental Range (JER, 78,413 ha)
and the New Mexico State University-owned Chihuahuan Desert Rangeland Research
Center (CDRRC, 24,960 ha; Figure 1). The mean maximum monthly surface temperature
ranges from 13.7 ◦C in January to 34.9 ◦C in July. The mean annual precipitation is about
203 mm [22]. In total, 64% of the rainfall is accumulated in summer. The elevation range of
this area is about 1214–1768 m above sea level (excluding the mountain areas). The Jornada
Basin’s climate is characterized by cool dry winters and warm summers with monsoon
rain. Recent changes in the structure and function of the ecosystem in the Jornada Basin
may represent a degradation process that is driven by both environmental and human
influence, in combination with climate deterioration, especially prolonged drought [22].
In recent decades, the research on the Jornada Basin has mainly included the following
themes: community ecology, land management, animal husbandry, ecosystem sciences,
and rangeland improvement [23]. Notably, a significant motivation for most of the research
has been the remarkable vegetation change in this area [24].

2.2. Data

The daily temperature and precipitation data were sourced from the NOAA weather
station at the Jornada Experimental Range headquarters, southern New Mexico, USA,
1914–2019 (https://www.ncdc.noaa.gov/cdo-web/datasets/GHCND/stations/GHCND:
USC00294426/detail (accessed on 6 February 2023)). Daily data have been collected from
the Jornada Experimental Range since 1914 for the minimum and maximum air temperature
and the daily accumulated precipitation, using standard American climatological service
instrumentation and procedures. The included data were transcribed directly from the
original data sheets and underwent quality control and assurance procedures. The remote
sensing images of the Jornada Basin were from Google Earth. Google Earth images come
from various sources, such as the QuickBird (0.6 m/pixel), GeoEye (0.4 m/pixel), and
WorldView (0.4–0.5 m/pixel) satellite sensors. In this study, we gathered the images that
provided a sufficient resolution to visually identify the vegetation patterns.

2.3. Image Analysis

We used the images from the remote sensing of the Jornada Basin sourced from
Google Earth with enough resolution to visually identify the vegetation patches. At
each site, we applied a 50 m × 50 m plot representative of the vegetation pattern present
in the area [25,26]. We applied the K-mean classification approach implemented in R.
This classification method could classify the pixels of images into clusters based on their
luminance intensity. We used 30 clusters, ranging from 1 (dark) to 30 (whole image) [27,28].
We classified the images according to the luminance threshold, which could detect all
the plant pixels in the image using the graythresh and im2bw functions from Matlab [29].
The graythresh function applies Otsu’s method to identify the threshold, which is used as
one approximation for autoclassification of the image [30]. We then verified whether the
identified threshold was visually correct.

2.4. Vegetation Patch Size Metric

In order to show the state of the ecosystem, we applied the method of calculating
the patch size of the vegetation pattern. Research has shown that vegetation patch size
distributions (PSD) fit a power law function (Equation (1)) when the ecosystem is robust [31].
However, they deviate from this distribution when the ecosystem is degraded [31,32].

https://www.ncdc.noaa.gov/cdo-web/datasets/GHCND/stations/GHCND:USC00294426/detail
https://www.ncdc.noaa.gov/cdo-web/datasets/GHCND/stations/GHCND:USC00294426/detail
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P(s) =
d− 1
smin

(
s

smin
)−d, (1)

where s is the vegetation patch size. P(s) represents the frequency of certain sized veg-
etation patches. The minimum size of a patch is smin (patches that are smaller than this
are discarded). Parameter d describes the rate of the frequency decay of the patch size.
We used the maximum likelihood method to estimate the parameter d. P(s) and s are
log-transformed. The inverse cumulative distribution (the frequency of patches larger
than a certain size as a function of size) of a pure power law would appear as a straight
line with a negative slope. The approach allows fitting a power law function to those
distributions with a heavy tail, including lognormal and truncated power laws, although
only a fraction of the data distribution fit the power law. The range of patch sizes that fit the
power law distribution is defined as the power law relative range (PLR). The PLR equation
is expressed as:

PLR = 1− log10(smin)− log10(ssmall)

log10(smax)− log10(ssmall)
. (2)

In Equation (2), ssmall represents the smallest sized patch, and smax is the largest patch
in the image. The range varies from 0 (no data fit the power law distribution) to 1 (all data
fit the power law distribution). We could regard the decrease in the PLR as the degradation
of the ecosystem. More details can be found in reference [28].

In Figure 2, the flowchart of this study is depicted. The left part of the flowchart
describes the model. The right part describes the observation. The historical precipitation,
temperature, and CO2 data were applied to the model. The PLR was used in both the
vegetation patterns from the model and the observations to disentangle the ecosystem state
of the Jornada Basin. Finally, we compared the results from the model and observations. We
found that the approach could not only simulated the vegetation structure of the Jornada
Basin but also simulated the trend of the ecosystem state.

Figure 2. The flowchart of the study. The gray area is the image analysis described above.

2.5. Mathematical Model

We applied the climate–vegetation model, mainly based on Rietkerk et al. [33] and
Kefi et al. [34]. The vegetation pattern is generally linked to the mechanism by which
rainfall infiltrates into soil, in combination with the low annual rainfall climate conditions.
It can be modeled as:
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{
∂P
∂t = g W

W+k1
P− ReP + Dp∆P,

∂W
∂t = R P+k2Wo

P+k2
− c W

W+k1
hP− rwW + Dw∆W.

(3)

The model mainly includes two parts: water resources (W) and plant density (P). It
is based on the assumption that the infiltration of water is related to the plant density
of one area. Furthermore, the plant growth includes the effects of CO2 fertilization and
photosynthesis, which are explained in Appendix A, as well as in ref. [34]. The dynamics
of the water density and vegetation biomass are modeled in Equation (3), where R is
the rainfall, the first term in ∂W

∂t represents the distribution of the water, the second term
represents the transpiration, which explains the difference between the saturated and actual
specific humidity, and the third term represents the water loss due to evaporation and
drainage. The first term in ∂P

∂t represents the part of water absorbed by the vegetation, and
the second term represents the effect of photosynthesis and respiration. ∆ is the Laplacian
operator, which equals ∂2

∂x2 in one dimension and ∂2

∂x2 +
∂2

∂y2 in two dimensions. The operator
describes the random diffusion of plant and water. The system considers climate factors,
such as precipitation, temperature, and CO2 concentration [CO2]. Further descriptions of
the model formation and parameters are in Appendix A, as well as in reference [34].

It is known that the Jornada Basin is mainly covered by shrubs [3]. Shrubs have the
effect of being “islands of fertility”, which can gather nutrients under the canopy [35].
When rainfall occurs, it is first absorbed through the canopy, and the excess gathers at
the roots. The interaction of competition between vegetation is enhanced by this effect.
Based on this effect, we applied one non-local interaction and integral term to describe this
phenomenon, as put forward by Zaytseva et al. [36]:{

∂P
∂t = g W

W+k1
P− ReP + γP(x)

∫ +∞
−∞ V(x− h)P(h)dh + Dp∆P,

∂W
∂t = R P+k2Wo

P+k2
− c W

W+k1
hP− rwW + Dw∆W,

(4)

where
∫ −∞
+∞ V(x− h)P(h)dh is the non-local interaction and integral term representing the

competition among the plants. V(x) is a kernel function [36,37]:

V(x) =
1√
2π

[
1
δ1

e
− x2

2δ2
1 − 1

δ2
e
− x2

2δ2
2 ], (δ1 < δ2) , (5)

where δ2
1 is the activated scale, and δ2

2 is the inhibited scale. In addition, when position
h is close to position x, the interaction is positive, indicating that a short distance can
benefit plant growth. However, the interaction is negative when position h is far from
position x, meaning the long distance inhibits plant growth. Figure 3a shows the charac-
teristics of the kernel function. From the mathematical analysis, we assume that V(x) has
following feature: ∫ +∞

−∞
V(x)dx = 0. (6)

From the biological view, vegetation interaction occurs on a relatively small scale. For
simple calculation, we substituted Taylor’s expansion for the integral term at x0 = x:

∫ +∞
−∞ V(x− h)P(h)dh =

∫ +∞
−∞ V(z)P(x− z)dz =

∫ +∞
−∞ V(z)[P(x)− z ∂P(x)

∂x + z2

2!
∂2P(x)

∂x2 − z3

3!
∂3P(x)

∂x3 ...]dz. (7)

We defined Vn = 1
n!

∫ +∞
−∞ znV(z)dz. We could obtain Vn as an odd function of z. Vn = 0,

when n is an odd number. In addition, V0 =
∫ +∞
−∞ V(z)dz = 0.

Based on the above analysis, we obtained: V0 = V1 = V3 = 0, V2 =
δ2

1−δ2
2

2 , and

V4 =
δ2

1−δ2
2

8 .
Consequently, Equation (4) is formulated as:
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{
∂P
∂t = g W

W+k1
P− ReP + γP(x)[V2

∂2P(x)
∂x2 + V4

∂4P(x)
∂x4 ] + Dp∆P,

∂W
∂t = R P+k2Wo

P+k2
− c W

W+k1
hP− rwW + Dw∆W.

(8)

Figure 3. (a) Illustration of the kernel function V(x) with different δ1 and δ2. (b) Sketch of the model
with the effects of photosynthesis and respiration. Description of the island of fertility and non-local
competition interaction: short-range activation and long-range competition.

3. Results
3.1. System Dynamics Implementation

For the sake of analyzing the model dynamics, we obtained the equilibrium points of
Equation (4) without a spatial term. We denoted M = g W

W+k1
− ReP,

N = R P+k2wo
P+k2

− c W
W+k1

P− rwW, and we let M = N = 0. Then, we obtained three equilibria:

E0 = (0, W∗0 ) = (0, Rwo
rw

), E1 = (P∗1 , W∗1 ), and E2 = (P∗2 , W∗2 ), where

W∗ = W∗1 = W∗2 = Rek1
g−Re

, P∗1 =
R−rwW∗− ck2W∗

W∗+k1
+

√
(R−rwW∗− ck2W∗

W∗+k1
)2− 4cW∗

W∗+k1
(rwk2W∗−Rk2Wo)

2cW∗
W∗+k1

,

and P∗2 =
R−rwW∗− ck2W∗

W∗+k1
−
√
(R−rwW∗− ck2W∗

W∗+k1
)2− 4cW∗

W∗+k1
(rwk2W∗−Rk2Wo)

2cW∗
W∗+k1

.

From the ecological view, we selected the equilibrium that was strictly positive under
the condition of (R− rw − cW∗k2

k1+W∗ )
2 ≥ 4cW∗

k1+W∗ (k2rwW∗ − Rk2Wo). So, E1 was used to study
the dynamics of the system, hereafter named E∗ = (P∗1 , W∗1 ).

3.2. Sensitivity Analysis of the Climate Factors

We analyzed the equation without the spatial term to conduct the bifurcation analysis,
which was as follows: {

dP
dt = g W

W+k1
P− ReP,

dW
dt = R P+k2Wo

P+k2
− c W

W+k1
hP− rwW.

(9)
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In the system, when R continues to decrease, the ecosystem is suffering from climate
change and would approach the critical threshold shown in Figure 4. These results are in
line with Rietkerk et al. [33]. The solid line represents the stable state of the system. When
the rainfall keeps decreasing, the system will transform from a stable state (solid line) to an
unstable state (dotted line). From an ecological view, the ecosystem might go through a
regime shift with the climate’s deterioration.

From the bifurcation diagrams of system (9), we show the sensitive analysis of temper-
ature and [CO2] with the change in rainfall. Compared with the [CO2], the system more
easily reaches the tipping point of a state change from stable to unstable with the increase
in the temperature. This means that, under the background of global warming, a regime
shift would take place more easily. However, with the increase in [CO2], the system is more
robust. This is because of the effects of the CO2 fertilization that promotes photosynthesis,
with evidence from free-air CO2 FACE experiments and satellite observations [38–40].

Figure 4. The sensitivity analysis of system (9). When the precipitation decreased, the system would
change from a stable state (solid lines) to an unstable state (dotted lines). (a) Sensitivity analysis of
the temperature k1 = 5, k2 = 5, and Ca = 400. (b) Sensitivity analysis of [CO2], k1 = 5, k2 = 5, and
T = 25. Other parameters can be found in Appendix B.

3.3. Linear Stability Analysis with a Spatial Term

In order to disentangle the system dynamics from the spatial term, stability analysis
was used to discover whether Turing instability would occur in the system (8) [41]. Specifi-
cally, the principle of the analysis was as follows. We began from a spatially homogeneous
steady state of plant density and water in the conditions, where this equilibrium was stable
with spatially homogeneous perturbation. Then, we added or removed small, but spatially
heterogeneous, plant biomass and water. When the perturbations grew spatially, the system
could develop into a spatial pattern named the ‘Turing pattern’. The range of parameters
in a system that has this pattern formation is known as the Turing instability range [41].
The linear formation of the system (8) near equilibrium is:{

∂P
∂t = a11P + a12W + γP(x)[V2

∂2P(x)
∂x2 + V4

∂4P(x)
∂x4 ] + Dp∆P,

∂W
∂t = a21P + a22W + Dw∆W,

(10)

where
a11 = W∗g

W∗+k1
− Re, a12 = −P∗W∗g

(W∗+k1)2 +
P∗g

W∗+k1
,

a21 = R
P∗+k2

− R P∗+w0k2
(P∗+k2)2 − W∗c

W∗+k1
, a22 = P∗W∗c

(W∗+k1)2 − P∗c
P∗+k1

− rw.

Let ( P
W) = ( P∗

W∗) + (c1
c2
)exp(λt + ik~r) + c.c + O(ε2), where k is the wavenumber, λ is

temporal growth rate of perturbation, and i2 = −1. Then, we obtain the characteristic formula:

|J − λE− k2D + k4H| =
∣∣∣∣a11 − (a + Dp)k2 + bk4 − λ a12

a21 a22 − Dwk2 − λ

∣∣∣∣ = 0, (11)
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where a = γP∗V2, and b = γP∗V4.
We can simplify Equation (11) as:

λ2 − trkλ + ∆k = 0, (12)

where
trk = a11 + a12 − (a + Dp + Dw)k2 + bk4,
∆k = −Dwbk6 + (Dw + Dwb + aa22)k4 − (a11Dw + a22a + a22)k4 + a11a12 − a12a21.

Then, we obtain the root of Equation (12): λ1,2 =
trk±

√
tr2

k−4∆k

2 .
According to the Turing instability criteria [41], the characteristic equation must at

least have one positive eigenvalue or complex eigenvalue with a positive real part, as
shown in Figure 5; that is, Re(λ1) > 0 or Re(λ2) > 0.

Figure 5. V2 = 0.02, V4 = 0.03, R = 0.71, and T = 21. Other parameters can be found in Appendix B.

3.4. Vegetation Pattern Formation

Based on the above analysis, we obtain the vegetation patterns in two dimensions.
From the simulated vegetation patterns, we could intuitively see the vegetation change in
the Jornada Basin with the climate changes (Figure 6).

We used the climate parameters in the Jornada Basin in 2005 and 2017 to see ecosystem
change due to climate change. The simulated model results showed that climate change
played a critical role in the degradation. The vegetation pattern showed normal patch sizes
in 2005. However, in 2017, the vegetation density and vegetation patch size had decreased.
The vegetation area (green area) became less, and the bare soil area (yellow area) occupied
the largest area of the simulation. In order to compare the simulated results of our model
with actual vegetation states from the remote sensing data, we applied the PLR (power law
range) metric to illustrate the degradation in Jornada Basin, as described in the next section.

Figure 6. Simulated vegetation patterns in different years. (A) The Jornada Basin’s 2005 simulated
vegetation pattern. R = 0.71, T = 21, V2 = 0.02, V4 = 0.03, and Ca = 400. (B) The 2019 simulated
vegetation pattern. R = 0.55, T = 32, V2 = 0.02, V4 = 0.03, and Ca = 400. Yellow area: bare soil.
Green area: vegetation.
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3.5. Degradation Detection
3.5.1. Detection From the Remote Sensing Data

The vegetation’s patch size distribution (PSD) can be used as an indicator of an
ecosystem [18]. If the vegetation patch size of an area fits a power law function, we can say
the ecosystem is robust and less likely to change when facing disturbance. In this study,
the PLR (power law range) was used to analyze the remotely sensed images.

First, two sites at two time periods (2005.7 and 2019.7) in the Jornada Basin were
selected for this research. One site was in the JER, and the other was in the CDRRC. We
took a snapshot of the sites from Google Earth. Second, we selected the vegetation from
the raw images using the K-mean cluster method. Next, the images were smoothed by
a Gaussian filter, so the images could be more easily analyzed. Then, the images were
binary processed, where the vegetation areas were marked as 1, and the bare soil areas
were marked as 0. Finally, we calculated the relationship between the patch frequency and
the patch size and used different function relationships to fit it. The best fitting was used to
calculate the PLR. In order to select the best fitting function for the data, we applied the
exponential, lognormal, power law, and truncated power law function to fit the data from
the images and compared them all. We found that the lognormal tended to fit the data best
among these functions (Figures 6–8).

From the analysis of the two sites, we found that the ecosystem was undergoing a
shift to an unstable state. The PLR of site 1 changed from 47% to 37% over the 15 years.
The PLR of site 2 changed from 51% to 36%. Both of the two sites had a decreasing PLR,
indicating that the state of the ecosystem was worsening.

Figure 7. Site 1 in the JER (32.33°N, 106.51°W). Images taken from Google Earth for two different
times. (a,e) are the observational images. (b,f) show the vegetation patches selected from the raw
image. (c,g) are obtained from the second column’s image using the Gaussian filter. (d,h) are the
power law ranges of the relationship between the patch frequency and PSD fit. Red line: exponential
fitting. Green line: lognormal fitting. Blue line: power law fitting. Purple line: truncated power law
fitting. The results are shown using logarithmic coordinates.

3.5.2. Detection From the Model Simulation

This study used the vegetation model based on climate variables to simulate the
vegetation patterns. Through this model, we attributed the degradation of the Jornada
Basin mainly to climate change, which was consistent with the results from Kidron et al. [42].
This approach used the climate parameters in 2005 and 2019. The results are shown
in Figure 9. The simulations had the same results as in the above section. The PLR
metric was used on the simulated results to calculate the relationship between the patch
frequency and the patch size. The decreasing PLR trend implied our model can simulate
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the degradation. The degradation was observed in Figures 7 and 8. Our model only
simulated the vegetation pattern types. When using the climate condition in 2005, the
model showed better conditions. The area was mainly occupied by vegetation (green area),
and the PLR is 54%. The vegetation type was dense dot. However, in 2019, the vegetation
density decreased, and the PLR decreased to 16%. The vegetation type changed to sparse
dot. The PLR calculated from our model had the same trend as the observational images,
although the image did not coincided with the satellite images. This was mainly because
the degradation was not only caused by climate change but also some other factors such as
land use and grazing, etc., which our model did not include. The effect of these factors on
ecosystems will be researched in our future work. Our model will be improved to research
the degradation in the future.

Figure 8. Site 2 in the CDRRC (32.35°N, 106.54°W). The same as above.

Figure 9. The PLR of the simulated vegetation patterns for 2005 and 2019. Red line: exponential fitting.
Green line: lognormal fitting. Blue line: power law fitting. Purple line: truncated power law fitting.
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4. Discussion

Globally, dry land ecosystems are extremely sensitive to climate change. The degrada-
tion of dry land ecosystems has been an important research topic. Previous research has
provided a simplified framework to connect key climate factors with ecosystem patterns
by using basic physiological principles [34,43]. However, most research has only studied
vegetation patterns in theory, because of the shortage of observational technology [4,33].
With the development of remote sensing technologies, we now have the ability to monitor
the vegetation patterns at an adequate spatial resolution [34]. The Jornada Basin, as a typi-
cal research site, has received growing concern, due to its changes in recent decades [24].
This study coupled a mathematical model, based on the reaction–diffusion mechanism,
and climate variation to simulate the vegetation growth dynamics. It is a novel method
to obtain the state of the ecosystem in the Jornada Basin in recent decades. This model
simulated the vegetation patterns, and the results were in line with those we obtained from
satellite images. Based on this model, we understand more about arid and semiarid areas
under future climate change scenarios.

However, other factors, such as land use and radiation effects, etc., may influence
vegetation growth. These factors were not included in our model. We need to improve
our model and consider the effects of more factors that contribute to vegetation growth in
future work. Additionally, more data are needed for our conclusions to be more robust.

5. Conclusions

This study applied a climate–vegetation model, coupled with climate elements and
vegetation growth characteristics, to illustrate the vegetation dynamics of the Jornada Basin
in relation to climate change. According to the vegetation characteristics, mainly shrubs
affected by the ’island of fertility’ effect, we applied the non-local competition term to
illustrate the competition based on the distance. We conducted the sensitivity analysis of
the climate factors in a non-spatial model and analyzed the bifurcation diagrams with the
change in the rainfall. It was concluded that the system more easily reached the tipping
point where the state changed from stable to unstable with increase in temperature. This
meant that, with global warming, a regime shift would take place more easily. However,
with the increase in the [CO2], the system was more robust, due to the effects of the CO2
fertilization. CO2 fertilization was beneficial for the effects of photosynthesis, as evidenced
with evidence from free-air CO2 FACE experiments and satellite observations [38–40].

In order to obtain the parameter range, stability analysis of the model with the non-
local term and the spatial term was conducted. Our model had Turing instability with the
spatial term. From the stability analysis, we obtained the Turing instability range for the
vegetation pattern. The model used the climate data from 2005 and 2019 and simulated the
vegetation pattern. The results showed that the area covered by vegetation was decreasing.
This evidenced the negative effects of climate change on this ecosystem. It was concluded
that climate change has played a critical role in the land degradation in the Jornada Basin
in recent years. In order to quantify the land degradation, we applied the PLR to the
satellite images, which indicated the extent of land degradation, We selected two sites in
the Jornada Basin. Comparing the results between 2005 and 2019, the PLR decreased. This
result coincided with the simulation. Our model results provide an interesting hypothesis
for field testing. These results could help in future work to map vulnerable arid areas
around the world using aerial photographs or satellite images.
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Appendix A. Detailed Model Description

Here, we give a detailed model description of system (3).

Appendix A.1. Dynamics of the Water Density

When rainfall occurs, part of the rainfall water infiltrates into the soil, and another
part runs off. A plant absorbs part of the soil water. Some other parts evaporate or flow
randomly. The water dynamic can be described as followed:

∂W
∂t

= R
P + k2wo

P + k2
− Er − rwW + Dw∆W. (A1)

R (mm/d) represents the rainfall, k2 (g m−2) represents the saturation constant of the
water infiltration. rw (d−1) is the loss of the soil water due to evaporation and drainage.
Dw (m2 d−1) is the coefficient that describes the soil water diffusion. ∆ is the Laplacian
operator. Er is the term that explains the difference between the saturated and actual
specific humidity. Er represents the transpiration, and it can be set as:

Er ≈ I(h∗ − ha), (A2)

where I (mm d−1) is the function that describes the canopy conductance to H2O transport,
and h (dimensionless) is the specific humidity. In the formula, I can be written as:

I = IH
W

W + k1αP
= βIc

W
W + k1

αP, (A3)

where IH (mm d−1) is the maximum leaf conductance to H2O and can be separated into
Ic (mol m−2 d−1), which describes the leaf conductance to CO2, and a conversion rate β
reflecting the difference in the molecular diffusivities of H2O and CO2. k1 (g m−2) is the
half-saturation constant of the vegetation. α (m2 g−1) is the conversion coefficient of the
plant biomass.

In Equation (A2), h is defined as the specific humidity and can be set as h = ρv
ρd

, where

ρv (kg m−3) and ρd (kg m−3) describe the water vapor densities and dry air densities,
respectively. The relationships of the vapor pressure and h follow Dalton’s law [44].

The water vapor density can be written as:

ρd =
ρ− v
gaTa

, (A4)

and the dry air density can be written as:

ρv =
0.622v
gaTa

, (A5)

where p (Pa) represents the total atmosphere pressure. v (Pa) is the water vapor partial
pressure. ga (J kg−1 K−1) is the dry gas constant of air. Ta (K) is the absolute temperature,
0.622, calculated from 18/29, which is the proportion of the molecular weights of water (18)

https://www.ncdc.noaa.gov/cdo-web/datasets/GHCND/stations/GHCND:USC00294426/detail
https://www.ncdc.noaa.gov/cdo-web/datasets/GHCND/stations/GHCND:USC00294426/detail
https://developers.google.com/earth-engine/datasets
https://developers.google.com/earth-engine/datasets
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and air (29). It is assumed that p � v, h ≈ 0.622 v
p . From the summary above, Er can be

expressed as follows:

Er = βIcα
W

W + k1
P

0.622
p

v∗(1− v
v∗

). (A6)

The saturated vapor pressure v∗ can be expressed by the annual mean temperature T
(◦C) with the Clausius–Clapeyron function [45]:

v∗(T) = 0.611exp(
17.5T

T + 240.97
). (A7)

In Equation (A7), v
v∗ represents the relative humidity (Rh); so, Equation (A7) can be

written as:
Er = βIcα

0.622
p

v∗(T)(1− Rh)
W

W + k1
P. (A8)

For simplification, we let c = βIcα 0.622
p v∗(T)(1− Rh); then, we obtain the formula in

system (3).

Appendix A.2. Dynamics of the Vegetation Biomass

Plant growth is assumed to be controlled by the imbalance between the carbon gain
and loss. In additional, vegetation gains carbon mainly from the effect of photosynthesis,
which depends on the concentration of CO2, and loses carbon because of the effect of
respiration. Plant seeds’ random dispersal can be expressed by the Laplacian operator [46].
Based on the above assumptions, the dynamics of vegetation can be expressed as:

∂P
∂t

= Cg − ReP + Dp∆P, (A9)

where P (g m−2) is the plant biomass density, and the carbon gain term Cg is proportional
to the canopy photosynthesis, given by:

Cg = Ca(1−
Ci
Ca

)αC1 Ic
W

W + k1
P, (A10)

where Ca (mol mol−1) is the ambient CO2 concentration, Ci (mol mol−1) is the effective
canopy intercellular CO2 concentration, and C1 (g mol−1) is the photosynthetic conversion
coefficient into plant biomass.

Re in the second term, which represents the autotrophic respiration, coincides with
the Michaelis function Q [47]:

Re = RbQ(T−10)/10, (A11)

and Rb (d−1) is the base respiration of each unit of biomass.
For simplification, we let g = Ca(1 − Ci

Ca
)αC1 Ic; then, we obtain the formula in

system (3).

Appendix B. Parameters Description

Appendix B.1. The Parameters Used in the Model

k1 = 5, k2 = 5, Rb = 0.1, wo = 0.2, rw = 0.2, Dp = 0.1, Dw = 100, C1 = 12,
gCO2 = 10× 10−3, α = 2.6× 10−2, Ci

Ca
= 0.6, Q = 1.6, Rh = 40%, β = 2.59× 10−2.
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Appendix B.2. Table of Parameters

Parameter Interpretation Unit

k1 Half-saturation constant of specific plant growth and water uptake mm d−1

k2 Saturation constant of water infiltration g m−2

α Conversion coefficient of biomass g−1m2

Wo Measure of the infiltration contrast between vegetated and bare soil d−1

rw Specific soil water loss due to evaporation and drainage d−1

Dp Plant dispersal m2d−1

Dw Diffusion coefficient for soil water m2d−1

C1 Coefficient of conversion of photosynthesis (mol) into biomass (g) g mol−1

Ic Maximal leaf conductance to CO2 mol m−2d−1

β Conversion coefficient from maximal leaf conductance to water vapor mm m−2mol−1

to maximal leaf conductance CO2
Ca Ambient CO2 concentration mol mol−1

Ci Intercellular CO2 concentration (in the leaf) mol mol−1

Rb Respiration per unit of biomass d−1

Q The factor respiration increases with a 10 degree increase in temperature Dimensionless
T Temperature ◦C

e(T) Vapor pressure at T kPa
e∗(T) Saturated vapor pressure kPa

Rh Relative humidity, e(T)
e∗(T) Dimensionless

R Rainfall mm d−1

P Plant density g m−2

W Soil water mm
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