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Abstract: LiDAR is a crucial sensor for 3D environment perception. However, limited by the field
of view of the LiDAR, it is sometimes difficult to achieve complete coverage of the environment
with a single LiDAR. In this paper, we designed a spinning actuated LiDAR mapping system that
is compatible with both UAV and backpack platforms and propose a tightly coupled laser–inertial
SLAM algorithm for it. In our algorithm, edge and plane features in the point cloud are first extracted.
Then, for the significant changes in the distribution of point cloud features between two adjacent
scans caused by the continuous rotation of the LiDAR, we employed an adaptive scan accumulation
method to improve the stability and accuracy of point cloud registration. After feature matching,
the LiDAR feature factors and IMU pre-integration factor are added to the factor graph and jointly
optimized to output the trajectory. In addition, an improved loop closure detection algorithm based
on the Cartographer algorithm is used to reduce the drift. We conducted exhaustive experiments to
evaluate the performance of the proposed algorithm in complex indoor and outdoor scenarios. The
results showed that our algorithm is more accurate than the state-of-the-art algorithms LIO-SAM and
FAST-LIO2 for the spinning actuated LiDAR system, and it can achieve real-time performance.

Keywords: LiDAR; point cloud; multi-sensor fusion; simultaneous localization and mapping

1. Introduction

Light Detection and Ranging (LiDAR) can achieve highly accurate and efficient dis-
tance measurement. I is insensitive to illumination changes because it measures by actively
emitting a pulsed laser. By combining LiDAR with Simultaneous Localization and Mapping
(SLAM) technology, the laser SLAM system can obtain a three-dimensional map of the sur-
rounding environment both indoors and outdoors. These advantages make the laser SLAM
system play an important role in many fields, such as autonomous driving [1], building
inspection [2], forestry investigation [3], etc. Currently, the LiDAR used for laser SLAM can
be basically divided into two categories. Mechanical LiDAR is the most commonly used
LiDAR type. Its horizontal Field Of View (FOV) can reach close to 360°, but its vertical FOV
is very limited. Besides, with the development of microelectronics technology, solid-state
LiDAR, e.g., the DJI Livox series, has become more and more commonly used [4,5]. Gener-
ally, solid-state LiDAR can provide a larger vertical FOV than mechanical LiDAR, but its
horizontal FOV is much smaller. Therefore, in many scenarios, both types of LiDAR cannot
completely cover the whole environment. This shortcoming greatly limits the mapping
efficiency of laser SLAM systems, especially when using a platform with limited endurance
such as an Unmanned Aerial Vehicle (UAV) to carry the mapping system [6]. In narrow
environments, this limited FOV will degrade the accuracy and stability of localization as
only a small number of objects can be scanned.

Much research has been conducted to expand the FOV of LiDAR, and the solutions
can be roughly divided into two categories. The first category is to combine multiple
LiDARs [7–11]. Such systems typically use a horizontally mounted LiDAR to provide
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primary positioning information and a vertically mounted LiDAR to improve the scanning
coverage. Its advantage is that the mechanical structure is simple. However, due to the
high price of LiDARs, the cost of these solutions is greatly increased. Another category of
solutions is to actuate the LiDAR dynamically, and LOAM [12] is one of the most-famous
methods among them. LOAM first accumulates the point cloud with the assistance of the
IMU and then matches the accumulated point cloud with the global map to correct the
accumulated errors. Considering that the prediction error of the IMU grows exponentially
with time and the feature extraction and matching algorithms need to wait for sufficient
data to be accumulated, this time interval will become a bottleneck limiting the accuracy of
the SLAM system.

To address this problem, we designed a mapping system based on a spinning actuated
multi-beam LiDAR. By using a multi-beam LiDAR, more information can be obtained in
each scan, which helps to increase the frequency of point cloud matching and generate
a denser point cloud map. We first extracted feature points from each frame point cloud
through an improved feature extraction method based on LOAM. Then, we judged whether
the current point cloud contains enough information by analyzing the spatial distribution
of feature points and performed scan-to-map matching once the requirement is met. Com-
pared with accumulating point clouds with a fixed number of scans, this method allows
a better balance between the matching frequency of point clouds and the accuracy and
reliability of the matching results. Finally, in order to eliminate the accumulated error, we
added a loop closure detection module to the algorithm. The main contributions of this
paper can be summarized as follows:

• We propose a tightly coupled laser–inertial SLAM algorithm named Spin-LOAM for a
spinning actuated LiDAR system.

• An adaptive scan accumulation method that can improve the accuracy and reliability
of matching by analyzing the spatial distribution of feature points.

• Extensive experiments were conducted in indoor and outdoor environments to verify
the effectiveness of our algorithm.

2. Related Work

As a fundamental problem in robotics, numerous SLAM algorithms based on LiDAR
have been proposed. LeGO-LOAM [13] extracts the ground point cloud from the real-time
scan results to improve the accuracy in the elevation direction. T-LOAM [14] simultaneously
extracts edge features, sphere features, planar features, and ground features to improve
the matching accuracy. The works [15–17] refined the localization result by introducing
plane constraints. Suma++ [18] not only uses geometric features in point clouds, but also
introduces semantic information to assist point cloud matching. Besides these LiDAR-only
odometry algorithms, many multi-sensor-fusion-based algorithms have been proposed to
improve the accuracy and robustness. LIO-SAM [19] combines the IMU pre-integration
factor with the LiDAR odometry factor through a factor graph. LIO-Mapping [20] integrates
the LiDAR and IMU in a tightly coupled fashion. FAST-LIO [21] adopts a tightly coupled
iterated extended Kalman filter on a manifold to fuse the data and is accelerated by
introducing an incremental KD-Tree in FAST-LIO2 [22]. CLINS [23] fuses LiDAR and IMU
data by representing trajectories as a continuous-time function, and this framework is well
compatible with arbitrary-frequency data from other asynchronous sensors.

For the purposes of acquiring complete 3D information of the environment, researchers
have proposed many actuated LiDAR systems. Bosse et al. [24] designed a mapping system
named Zebedee, which connects the sensors to the platform via springs. By treating the
trajectory as a function of time, a surfel-based matching algorithm was adopted to estimate
the 6-DOF pose. Kaul et al. [25] proposed a passively actuated rotating LiDAR system
for UAV mapping, and they used a continuous-time SLAM algorithm to produce the
trajectory. However, it cannot process the data in real-time. Park et al. [26] addressed this
issue by introducing map deformation to replace the original global trajectory optimization
in continuous-time SLAM. Fang et al. [27] proposed a two-stage matching algorithm to
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estimate the trajectory of a rotating LiDAR. In the algorithm, the distortion of the current
point cloud was first removed using the estimated motion generated by matching it with
the local map, and then, the undistorted point cloud was matched with the global map.
Unlike the aforementioned works, Zhan et al. [28] used a rotating multi-beam LiDAR for 3D
mapping and combined it with stereo cameras for dense 3D reconstruction. The precision
of this system is very high, but it needs to remain stationary while collecting data. R-
LOAM [29] improves the localization accuracy of rotating LiDAR by leveraging prior
knowledge about a reference object. Karimi et al. [30] proposed an actuated LiDAR system
using the Lissajous pattern [31]. By using the scan slice instead of the full-sweep point
cloud to match with the global map, they achieved low-latency localization for a UAV
without an IMU in an indoor environment.

3. System Overview

We first introduce the hardware systems used in the study. As shown in Figure 1, our
device mainly consists of a laser scanner, a step motor, and an IMU, in which the scanner
is driven to rotate by the motor. The rotation angle is recorded by an encoder. The IMU
is rigidly attached to the platform, so we regarded the IMU frame {I} as the body frame
{B} for simplicity. The LiDAR frame is denoted as {L}, and the fixed LiDAR frame {FL}
coincides with the initial LiDAR frame when the motor is reset. The Y-axis of the motor
frame {M} is aligned with the spin axis. The two extrinsic parameters TFL

I ∈ SE(3) and
TFL

M ∈ SE(3) are both calibrated manually, where TFL
I represents the transformation from

the frame {FL} to the frame {I} and TFL
M represents the transformation from the frame

{FL} to the frame {M}. The timestamp of each sensor is synchronized at the hardware
level to ensure accuracy.

Figure 1. The mechanical structure of the hardware device.

Figure 2 provides an overview of our SLAM algorithm. In the front-end, first, the IMU
measurements are used to construct the pre-integration factor and produce pose predictions.
Next, the raw LiDAR point cloud is transformed to the fixed LiDAR frame and de-skewed
using the pose predictions and motor encoder data. Then, edge and plane feature points
are extracted from the de-skewed point cloud. In the scan-to-map registration module,
the correspondences of these feature points and the global map are established. The spatial
distribution of these matching point pairs is examined to decide whether they are to be
added to the factor graph or accumulated to the next scan. In the back-end, the IMU
pre-integration factor and LiDAR factors are jointly optimized to estimate the system states,
as shown in Figure 3. In order to bound the amount of computation, only the latest state
is optimized when no loop closure constraints are added. After optimization, the feature
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points are added to the global map using the optimized state. Loop closure detection is
performed periodically in the background to reduce drift.

Figure 2. System overview of the proposed laser–inertial SLAM algorithm for the spinning actuated
LiDAR system.

𝑥𝑥0 𝑥𝑥1 𝑥𝑥2 𝑥𝑥𝑖𝑖𝑥𝑥𝑖𝑖−1…

… …
Prior factor IMU pre-integration  factor Odometry factor

Loop closure factor LiDAR plane and edge factor

Figure 3. Structure of the factor graph. Only the LiDAR feature factor of the latest scan is directly
used in the factor graph, and the others are replaced by the odometry factors, which are relative
transformed between two adjacent scans.

4. Methodology

The system state x to be estimated at time t is defined as

xt = (Rt, pt, vt, bω
t , ba

t ) (1)

where bω
t ∈ R3 and ba

t ∈ R3 are the gyroscope and accelerometer biases, respectively.
Rt ∈ SO(3), pt ∈ R3, and vt ∈ R3 are the orientation, position, and velocity of the sensor
platform in the global coordinate frame {G}, respectively.

4.1. IMU Processing

The platform’s angular velocity ωt and acceleration at in the IMU frame can be
obtained by the IMU, but the raw measurements of the IMU are corrupted by noise and
bias. Commonly, the slow variations in the bias are modeled with Brownian motion; hence,
the IMU measurement model is given by

ω̃t = ωt + bω
t + ηω

t

ãt = at − Rt
T g + ba

t + ηa
t

˙bω = ηbω, ḃa = ηba

(2)
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where g is the gravity vector, ηω, ηa, ηbω, and ηba are white Gaussian noise, and their
standard deviations are σηa , σηg , σηba , and σηbω , respectively.

4.1.1. Pose Prediction

Based on the posterior state x̂k−1 in the previous moment and the IMU measure-
ments between (tk−1, tk), we can use the Euler integration to calculate the predicted poses.
The recursive formula is

Ri+1 = RiExp((ω̃i − bω
i − ηω

i )∆t)
vi+1 = vi + g∆t + Ri(ãi − ba

i − ηa
i )∆t

pi+1 = pi + vi∆t +
1
2

g∆t2 +
1
2

Ri(ãi − ba
i − ηa

i )∆t2

(3)

where Exp(·) is the exponential map of manifold SO(3).
These poses are sufficient to de-skew the point cloud and provide an initial value

for registration. However, to help reject the outliers in Section 4.4, the covariance of these
predicted poses also need to be estimated. The recursive formula of error state covariance
propagation is

Pi+1 = F iPiF i
T + GiQGi

T (4)

F i =


Exp(−ω′∆t) 0 0 −Jr(ω

′∆t)∆t 0
0 I I∆t 0 0

−Ri[a′]×∆t 0 I 0 −Ri∆ t
0 0 0 I 0
0 0 0 0 I



Gi =


−Jr(ω

′∆t)∆t 0 0 0
0 0 0 0
0 −Ri∆t 0 0
0 0 I∆t 0
0 0 0 I∆ t


where ω′ = ω̃i − bω

i , a′ = ãi − ba
i , and Pi is the covariance matrix of system state at time ti.

The diagonal elements of the noise covariance matrix Q are σηω
2, σηa 2, σηba

2, and σηbω
2. Jr

is the right Jacobian of SO(3). Note that the covariance of R is defined in the tangent space.

4.1.2. IMU Pre-Integration

The IMU pre-integration technique was first proposed in [32], and it has been widely
applied in SLAM research. It uses IMU measurements between (tk−1, tk) to establish the
constraint between two states xk−1 and xk. The IMU pre-integration factor is calculated
as follows:

∆R = Rk−1
T Rk = ∏

ti∈(tk−1,tk)

Exp((ω̃i − bω
i − ηω

i)∆t)

∆v = RT
k−1(vk − vk−1 − g∆t)

= ∑
ti∈(tk−1,tk)

∆Rk−1,i(ãi − ba
i − ηa

i )∆t

∆p = Rk−1
T
(

pk − pk−1 − vk−1∆t− 1
2

g∆t2
)

= ∑
ti∈(tk−1,tk)

[
∆vk−1,i∆t +

1
2

∆Rk−1,i(ãi − ba
i − ηa

i )∆t2
]

(5)

where ∆R, ∆v, and ∆p are the relative motion between two timestamps tk−1, tk. More
details about the on-manifold IMU pre-integration can be found in [33].
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4.2. Feature Extraction

The raw point cloud is measured in the LiDAR frame and distorted by the sensor’s
motion. Therefore, before feature extraction, it needs to be transformed to frame {FL} and
de-skewed. Suppose ci

L is a point in raw point cloud scan C = {c0, c1, . . . , cn}:

ci
FL = TFL

I
−1

TBi
Bk

TFL
I TFL

M
−1

RM
i TFL

M ci
L (6)

where RM
i is the rotation matrix generated by encoder data at time ti, which represents

the rotation of the LiDAR frame relative to the fixed LiDAR frame in the motor frame.
TBi

Bk
= TBk

−1
TBi , TBi , and TBk are the poses of the body frame obtained by the linear

interpolation of the predicted pose, and tk is the timestamp of the latest point in the point
cloud scan C.

Our feature extraction method extracts planar features Fp and edge features Fe from
the input point cloud as shown in Figure 4 . The workflow of the method is as follows:

(1) For a point ci ∈ C, find its previous neighborsN pre
i = {ci−k, . . . , ci−1} and succeeding

neighbors N succ
i = {ci+1, . . . , ci+k} in the same scan line.

(2) Calculate the features α, β of the point using

α = arccos(
ci − ci−1

ci+1 − ci
) (7)

β =
max(‖ci+1 − ci‖, ‖ci − ci−1‖)
min(‖ci+1 − ci‖, ‖ci − ci−1‖)

(8)

where α indicates the changing angle of the scan line at the point ci, which is used
to characterize the smoothness. The points with α < αthr will be labeled as smooth
points. β is the ratio of the distance from point ci to ci−1 and ci+1, which is used to
determine whether the point is an edge point.

(3) For point ci with β > βthr, if all points in its closer neighbors (depending on the closest
point belonging to the neighbor N pre

i or N succ
i ) are smooth points, then add ci to Fe.

(4) For point ci with β ≤ βthr, if all points in its previous and succeeding neighbors are
smooth points, then add ci to the candidate set of edge points.

(5) Use the standard LOAM-based method to extract planar features Fp and edge points
Fe, except that the edge points must belong to the candidate set.

ci𝑐𝑐i−2 ci−1 ci+2
ci+1 𝑐𝑐j𝑐𝑐j−2 cj−1

c𝑗𝑗+1

c𝑗𝑗+2

unstructured point
edge point

smoothness point
wall

Figure 4. The illustration of the edge point extraction. As described in Steps 3 and 4, there are two
types of edge points. The first type of edge point is at the end of the wall, and the second type of edge
point is at the corners. These edge points can be identified from unstructured points by analyzing the
properties of the points in their neighborhoods.
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This modification was based on the consideration that there are many unstructured
objects (e.g., vegetation) in outdoor environments, which will degrade the performance of
edge extraction. A comparison result is shown in Figure 5. In our experiment, αthr was set
to 15° and k and βthr were set to 2 and 4, respectively, according to [34].

Figure 5. Feature point extraction result. The green points are the raw point cloud. The edge points
extracted by the standard LOAM-based extraction method are shown in blue, and the edge points
extracted by our method are shown in red. It can be seen that many blue points are located in the
vegetation, and these noises will affect the accuracy of the alignment.

4.3. Scan-to-Map Registration

Similar to [19], for an input point cloud scan C, we used the pose predicted by the
IMU to find the adjacent point cloud scans in the global map and merged them into the
feature mapMp andMe for data association. The map is downsampled by a voxel filter
to accelerate the computation. Then, we find the k nearest neighboring points N f of each
feature point fi ∈ Fp or Fe in the corresponding feature map and denote its nearest point
as mi. For fi ∈ Fp; the plane normal vector np of its N f is computed, and for fi ∈ Fe,
the line direction ne of its N f is computed. In addition, as the LiDAR is continuously
rotating, to ensure the reliability of the matching in the initial stage, the initial global map
is constructed by keeping the sensor platform stationary for about 3 s.

According to the results of feature matching, the LiDAR residual rLiDAR can be com-
puted using the point-to-plane dp and point-to-line distance de.

dp = np
T(R f i + p−mi) (9)

de = ‖ne × (R f i + p−mi)‖ (10)

where R and p are the predicted orientation and position, np and ne are normalized, and
mi is the corresponding point of feature point f i in the global map.

4.4. Adaptive Scan Accumulation

The spatial distribution of the point cloud has an important influence on the accuracy
of the registration result. Taking point-to-plane registration as an example, the matched
points should involve at least three non-parallel planes. Unlike the point cloud obtained by
the fixed mounted LiDAR, the LiDAR in our device is continuously rotating, resulting in
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the continuous change of the spatial distribution of the obtained point cloud. As shown in
Figure 6, using only a single frame of the point cloud sometimes fails to provide reliable
registration results. A simple solution is to accumulate multi-scan point clouds before each
registration, but this will reduce the computational efficiency, so we propose a method to
adaptively decide whether to perform point cloud accumulation and how many scans need
to be accumulated according to the spatial distribution of the point cloud.

Figure 6. Illustration of multi-scan point clouds’ accumulation. The first scan point cloud is rendered
in green and only contains a few points in the horizontal plane, which will lead to an inaccurate
registration result, especially in the Z direction. This problem can be solved by merging it with the
next scan point cloud.

4.4.1. Features’ Distribution Inspection

To ensure the registration results are reliable, we used the covariance of the registration
result as the indicator. In the least-squares registration problem, the normal equation formed
by matched feature points is

JT Jx = JTb (11)

where J ∈ Rn×6 is constructed by stacking Jacobian matrices J
dp
p and Jde

p , n is the number
of matched points, and b ∈ Rn×1 is constructed by stacking distance residuals dp and de.
The solution to Equation (11) is given by

x̂ =
(

JT J
)−1

JTb (12)

The covariance of the estimated pose is

E
{

x̂T x̂
}
=
(

JT J
)−1

JTE
{

bTb
}

J
(

JT J
)−1

(13)

where E{·} is the expected value operator. The covariance of b is determined by the laser
measurements, and each laser observation can be treated as an independent observation.
Therefore, its covariance is:

E
{

bTb
}
= σ2

l I (14)
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where σl is the accuracy of the laser measurement, which can be set depending on the
model of the LiDAR. Substituting Equation (14) into Equation (13), then

E
{

x̂T x̂
}
=
(

JT J
)−1

σ2
l = Hσ2

l (15)

Equation (15) reveals how the spatial distribution of matched points in matrix J affects
the covariance of the registration result. If the spatial distribution is suitable for registration,
the covariance of the estimated pose should not vary greatly in all directions. Suppose
Htran ∈ R3×3 is the submatrix of H corresponding to the translation part in the pose; the
ratio γ can be computed by

γ =

√
max(diag(Htran))√
min(diag(Htran))

(16)

where operator diag(·) extracts the diagonal elements of the matrix as a vector. The smaller
the value of γ, the more uniform the distribution of the point cloud is, and vice versa. Here,
we set the threshold γth = 3. If γ < γth, the matched pairs will be accepted, and these plane
and edge features will be added to the factor graph as constraints; otherwise, the extracted
features will be accumulated to the next scan.

4.4.2. Outlier Removal in Matched Features

Since the point cloud in a single scan is sparse, there will inevitably be errors in the
feature extraction results. These incorrectly matched point pairs will interfere with the
features’ distribution inspection and reduce the accuracy of pose estimation. To remove
them while performing distribution inspection, an outlier removal algorithm based on the
propagation of covariance is applied. We assumed that the error in the global map can
be ignored, which means that the distance residual is mainly caused by the error of the
predicted pose and the error of the laser measurement. Then, the standard deviation of the
distance residuals can be computed by

σdp =

√
J

dp
p Dp J

dp
p

T
+ J

dp
l Dl J

dp
l

T
(17)

σde =

√
Jde

p Dp Jde
p

T
+ Jde

l Dl Jde
l

T
(18)

J
dp
p =

[
∂dp
∂R

∂dp
∂p

]
=
[
np

T Rb− f ic× np
T],

J
dp
l = np

T R

Jde
p =

[
∂de
∂R

∂de
∂p

]
=

[
vde

T

‖vde‖
bnec×Rb− f ic×

vde
T

‖vde‖
bnec×

]
,

Jde
l =

vde
T∥∥vde

∥∥ bnec×R, vde = ne × (R f i + p−mi)

where Dp is the covariance of the predicted pose and can be obtained by Equation (4) and
Dl is the accuracy of the LiDAR point.

The point pair with dp ≥ 3σdp or de ≥ 3σde is considered an outlier and removed.
In theory, if the distance residuals follow a Gaussian distribution, we can remove most of
the mismatched point pairs while retaining 99.5% of the correct matching results.

4.5. Loop Closure Detection

Our loop closure detection method was developed based on Cartographer [35].
As shown in Algorithm 1, there are two main improvements compared to the original
algorithm: (1) point-to-plane ICP is used to replace the original probability occupancy-grid-
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based registration method in the fine registration stage; (2) the loop closure detection result
is checked using the previous scan. Due to the rotation of the LiDAR, there is a noticeable
difference even between two adjacent scans. This can provide auxiliary information to
help reject false detection results. If the loop closure detection result of the current scan is
correct, then the registration results TCk

Sl
and TCk−1

Sl
should be consistent with the odometry

transformation TCk−1
Ck

. The threshold dth was set to 5 cm in the experiment.

Algorithm 1: Loop closure detection.
Input: scan Ck, submap Sl
Output: loop closure residualsRloop
// Obtain coarse registration result and score

1 TCk
Sl

, s← Branch-and-boundScanMatch(Ck, Sl);
2 if s > sth then

// Refine coarse registration result

3 TCk
Sl
← Point-to-planeICP(Ck, Sl , TCk

Sl
);

// Check ICP result using previous scan

4 TCk−1
Sl
← Point-to-planeICP(Ck−1, Sl , TCk−1

Ck
TCk

Sl
);

5 d←TranslationError(TCk−1
Ck

, TCk
Sl

−1
TCk−1

Sl
);

6 if d < dth then
7 Add residual r(Ck, Sl , TCk

Sl
) toRloop;

8 Add residual r(Ck−1, Sl , TCk−1
Sl

) toRloop;
9 end

10 end

5. Experiments

Since there is no publicly available dataset containing spinning actuated LiDAR and
IMU data, we evaluated the performance of the Spin-LOAM algorithm using the data
collected in indoor and outdoor environments with the device shown in Figure 7. In the
experiments, the sampling frequencies of the Velodyne VLP-16 LiDAR and Sensonor
STIM300 IMU were 10 Hz and 200 Hz, respectively. The angular velocity of the step
motor was set to 4.5 rad/s, and the angular resolution of the encoder was 10 bit. All
experiments were conducted on an Intel NUC computer with an Intel Core i5-1135G7 CPU
and 16 GB memory.

(a) (b)

Figure 7. Overview of the experimental sensor platform. (a) The sensor platform is carried by a
backpack. (b) The sensor platform is carried by a UAV.
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5.1. Evaluation in Indoor Environments

To verify the accuracy and effectiveness of Spin-LOAM, we first conducted tests in
indoor environments. We compared our algorithm with two state-of-the-art LIO algorithms,
FAST-LIO2 and LIO-SAM (modified for compatibility with a 6-axis IMU). In the indoor
tests, the map voxel size in all algorithms was set to 0.2 m. The standard deviations of the
noise related to the IMU and LiDAR were uniformly set according to the device model.

As shown in Figure 8, we collected three datasets in different environments using a
backpack to evaluate the performance of our algorithm. Data 1 is two narrow corridors on
different floors connected by stairs; Data 2 is an underground garage; Data 3 is a badminton
hall. Since it was difficult to obtain the ground truth trajectory in the indoor environment,
we returned to the starting position at the end of the trajectory and used the end-to-end
translation error as the metric. The qualitative analysis results are given in Table 1, where
“Spin-LOAM (odom)” represents our algorithm without loop closure and “Spin-LOAM
(full)” represents the full SLAM algorithm.

(a) Data 1

(b) Data 2 (c) Data 3

5 m

15 m 10 m

Figure 8. Mapping results of our algorithm in indoor environments. The trajectories are represented
by the red lines in the figure.
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Table 1. End-to-end translation error (m).

Length
(m) FAST-LIO2 LIO-SAM Spin-LOAM (Odom) Spin-LOAM (Full)

Data 1 189.0993 2.2631 / 0.6976 0.0090
Data 2 382.3672 0.0210 0.0128 0.0126 0.0114
Data 3 315.1776 0.0166 0.0145 0.0175 0.0164

Bold font represents better results.

Data 1 is the most-challenging scene among the three indoor datasets. In this scene,
LIO-SAM failed to finish the localization, and FAST-LIO2 also suffered from severe drift.
Our algorithm achieved the lowest odometry drift and successfully corrected the drift
through loop closure detection, as shown in Figure 9. In Data 2, our algorithm and LIO-
SAM achieved similar localization accuracy, and FAST-LIO2 was slightly worse because it
has no loop closure detection. However, the accuracy of our pure odometry method was
comparable to LIO-SAM, which validates the effectiveness of our algorithm. In Data 3,
the accuracy of all algorithms was at the same level, because the scene was free of occlusions
and full of plane features. It is worth noting that the height of the roof in this scene was
about 15 m, but our device completely acquired the point cloud of the entire scene with
only one LiDAR. This reveals the advantage of the spinning actuated LiDAR system.

(a) FAST-LIO2 (b) Spin-LOAM

Figure 9. Comparison of the mapping results of the stairs in Data 1.

5.2. Evaluation in Outdoor Environments

In the outdoor test, the map voxel size in Spin-LOAM was changed to 0.4 m, and the
voxel size in FAST-LIO2 and LIO-SAM was set according to the default value. Figure 10
gives an overview of the datasets collected in the outdoor environments. Data 5 was col-
lected around a building; Data 6 was collected on a large ring road. Data 7 was collected in a
residential area. Data 8 was collected using a drone on a construction site. To quantitatively
compare the performance of the algorithms, we used the GNSS RTK trajectories as the
ground truth and computed the absolute trajectory error (ATE) of the trajectories.
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(b) Data 6

(c) Data 7

50 m 30 m

(a) Data 5

(d) Data 8

20 m 50 m

Figure 10. Mapping results of our algorithm in outdoor environments. The ground truth trajectories
generated by GNSS are represented by the black lines.

Table 2 shows that our algorithm achieved the best accuracy in the outdoor environ-
ments. FAST-LIO2 also performed very well in the experiments with only significant drift
in Data 6 and completed all tests as our algorithm. However, LIO-SAM failed to finish
the localization in Data 6 and Data 8. The reason for its failure in Data 6 is that it directly
uses the ICP algorithm for loop closure. This strategy is not suitable when large drift
occurs, and the accumulated errors in the large ring road make the LIO-SAM algorithm
fail. After turning off the loop closure, the accuracy of LIO-SAM in Data 6 was 0.4908 m.
Figure 11 gives a detailed comparison of the point cloud at the road junction. It can be
seen that, even without the loop closure, our algorithm still maintained high accuracy after
walking through a long loop. In Data 8, the drone performed an aggressive motion to
test the robustness of the algorithm, in which the maximum angular velocity was over
780°/s and the maximum linear velocity was over 6.5 m/s. This test proved that our tightly
coupled algorithm can work when aggressive motion occurs.

An ablation study was conducted to further analyze the contribution of our proposed
adaptive scan accumulation method. “Spin-LOAM (wo-asa)” in Table 2 represents our
algorithm without adaptive scan accumulation and loop closure. Comparing it with “Spin-
LOAM (odom)”, the results showed that our method can improve the accuracy, especially
in complex environments such as Data 6 and 7. This is because the FOV of the LiDAR is
limited; it is often occluded by trees or can only scan the ground in these environments,
which will lead to an uneven distribution of features in a single scan. Our method can
alleviate this problem during scan-to-map registration, which can help to improve the
accuracy and robustness of registration.
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(a) Image (b) FAST-LIO2

(c) LIO-SAM (d) Spin-LOAM (odom)

Figure 11. Point cloud maps generated by different algorithms in Data 6.

Table 2. Absolute trajectory error (ATE) of trajectories (m).

Length
(m) FAST-LIO2 LIO-SAM

Spin-
LOAM

(wo-asa)

Spin-
LOAM
(Odom)

Spin-
LOAM
(Full)

Data 5 415.3925 0.0799 0.0854 0.0760 0.0753 0.0725
Data 6 782.0214 0.8844 (0.4908) 0.2623 0.2323 0.2175
Data 7 1335.2931 0.2271 0.2771 0.2064 0.1871 0.1786
Data 8 623.8667 0.1670 / 0.1431 0.1353 0.1308

Bold font represents better results.

5.3. Runtime Analysis

We selected indoor data and an outdoor data, respectively, for the algorithm perfor-
mance evaluation. The processing time per scan of each algorithm is shown in Figure 12.
FAST-LIO2 was much faster than LIO-SAM and our algorithm because it is a filter-based
algorithm and does not require feature extraction. The average time cost per scan of our
algorithm was 63.2 ms indoors and 43.8 ms outdoors. The computation time was more for
the indoor data because the map voxel size had a significant impact on the performance.
The average time cost for the loop closure was 808.4 ms indoors and 328.7 ms outdoors.
Since the loop closure was performed by a separate thread in the background, it did not
affect the real-time performance of our algorithm.
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(a) Indoor (b) Outdoor

Figure 12. The evaluation results of the time cost per scan for each algorithm. The selected indoor
data and outdoor data are Data 2 and Data 7, respectively, as they have the longest trajectories.

6. Conclusions

In this paper, we presented a tightly coupled laser–inertial SLAM algorithm specifically
designed for a spinning actuated LiDAR system. In the front-end, to mitigate the influence
of the unstable spatial distribution of the point cloud caused by the continuously rotating
LiDAR, an adaptive scan accumulation method based on point cloud distribution inspection
was adopted. In the back-end, a voxel-grid-based loop closure detection method was
used to reduce the drift. We use the previous scan point cloud to assist in eliminating
errors in the loop closure detection results. The experimental results demonstrated that
our algorithm achieves high-precision localization results in various complex indoor and
outdoor environments. We are committed to further refining and improving our algorithm,
with a focus on improving its robustness in more extreme environmental conditions. One
potential avenue for improvement is the integration of semantic information from the point
cloud, which will aid in loop closure detection and removal of dynamic objects.
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