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Abstract: Removing incorrect keypoint correspondences between two images is a fundamental yet
challenging task in computer vision. A popular pipeline first computes a feature vector for each
correspondence and then trains a binary classifier using these features. In this paper, we propose a
novel robust feature to better fulfill the above task. The basic observation is that the relative order
of neighboring points around a correct match should be consistent from one view to another, while
it may change a lot for an incorrect match. To this end, the feature is designed to measure the
bidirectional relative ranking difference for the neighbors of a reference correspondence. To reduce
the negative effect of incorrect correspondences in the neighborhood when computing the feature,
we propose to combine spatially nearest neighbors with geometrically “good” neighbors. We also
design an iterative neighbor weighting strategy, which considers both goodness and correctness
of a correspondence, to enhance correct correspondences and suppress incorrect correspondences.
As the relative order of neighbors encodes structure information between them, we name the proposed
feature the Mutual Structure Shift Feature (MSSF). Finally, we use the proposed features to train a
random forest classifier in a supervised manner. Extensive experiments on both raw matching quality
and downstream tasks are conducted to verify the performance of the proposed method.

Keywords: structure shift feature; mismatch removal; image matching; 3D reconstruction; pose
estimation

1. Introduction

Matching feature points between two images are widely used in many computer
vision tasks [1–7]. Since SIFT [8] achieved great success two decades ago, the descriptor-
based method has become more and more popular. Given detected keypoints, a lot of
handcrafted [9–11] or learned [12–16] descriptors were proposed to search for reliable
correspondences between two views. However, due to challenges, such as large geometric
distortion, partial overlapping and local ambiguity, the initial matches might be contami-
nated by a high ratio of incorrect correspondences. To alleviate this problem, a mismatch
removal method is usually applied as a post-processing step.

While incorrect matching points exhibit ambiguity in the feature space, they have
quite different geometric or spatial properties from correct ones. Based on this observa-
tion, existing methods perform in an unsupervised or supervised manner. Unsupervised
methods impose global constraints such as global epipolar geometry [17] and motion co-
herency [18–20]. Some of these methods impose semi-global constraints, such as piecewise
smooth transformation [21,22] and local graph structure [23–25], on the tentative matches.
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The idea of using local structure or geometry information has also been explored in other
articles [26–28]. The corresponding pairs that violate these conditions will be rejected as
outliers. Such kinds of methods dig deeper into the local strcuture of the matching points
and prove to work well. However, outliers contained in the local neighborhood destroy the
original structure, which poses new challenges to these methods. By contrast, supervised
methods treat mismatch removal as a classification problem. In such kinds of methods,
each matching pair is associated with a feature vector computed by handcrafted rules or
deep neural networks. Then, a classifier is learned in the training stage and then predicts
whether a putative correspondence is positive or negative in the testing phase [29–31].
Nevertheless, how to design proper features still remains a non-trivial task.

In this paper, we propose a new feature for each putative correspondence and use
it in a learning-based method to identify incorrect matches. The observation is that for a
correct match, the relative order for several of its neighbors should be stable from one view
to another. By contrast, the difference between the relative order for the neighbors of an
incorrect match will be obviously large. Following this idea, a feature vector representing
the relative order difference for the neighbors of a reference correspondence is computed.
However, such a feature is dependent on the direction of two images. That is, the features
will be different when computed forward and backward. To remove the asymmetry, we
first compute the feature vector from the first image to the second image and do the same
thing in a reverse direction. Finally, we concatenate them to obtain a higher dimensional
feature vector. Since this feature vector encodes the bidirectional local structure shift of
a putative correspondence on both views, we name it the Mutual Structure Shift Feature
(MSSF). Ideally, correct matches can better preserve the local structure, so they present
a small ranking difference and tend to distribute near the origin of the MSSF space. In
contrast, wrong matches will spread far away from the origin. In this way, inliers and
outliers can be distinguished more clearly.

Another issue we are facing is how to define the local neighborhood when comput-
ing the proposed MSSF. Using spatially nearest neighbors is intuitive, but outliers might
inevitably be involved. In this case, the feature of a correct match will shift towards the
domain of incorrect matches along certain dimensions, making classification more difficult.
A toy example is given in Figure 1. Figure 1a visualizes our MSSF by mapping it to a lower
dimensional space when the neighborhood is contaminated by outliers. As we can see,
there is significant overlap between positive and negative samples, making classification
harder, while Figure 1b is the ideal case when the neighborhood contains no outliers.
Compared with Figure 1a, the distributions of positive and negative samples are more
compact and discriminative. The number of points mixed with a different class is also
reduced. Inspired by the above observation, we make two improvements to our algorithm.
First, we use geometrically “good” neighbors in conjunction with spatially nearest neigh-
bors to reduce the risk of involving outliers. Second, we design an iterative weighting
approach to enhance inliers and suppress outliers. Specifically, in each step, each neigh-
boring correspondence is weighted by two scores: goodness and correctness. Goodness
indicates whether a neighboring correspondence shares similar geometric properties with
the target, and correctness reflects the confidence of a neighboring correspondence pre-
dicted by our model. As the iteration goes on, the weights of suspected mismatches
gradually shrink, and the MSSF will be less affected by outliers. Finally, a random forest
classifier trained with the proposed MSSF is used to distinguish correct matches from
incorrect matches.
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Figure 1. A visualization of the proposed MSSF after mapping it to a lower dimensional space:
(a) computed features when the neighborhood contains outliers; (b) computed features when the
neighborhood contains no outliers. Compared with (a), red points and blue points in (b) distribute
more compactly, and the number of points mixed with another class is also reduced. This property is
more in agreement with the consequent classification task.

Briefly, the contribution of this paper lies in the following aspects. (1) We propose
a novel Mutual Structure Shift Feature (MSSF) to better distinguish correct and incorrect
matches. The main observation is that the neighbors of correct matches are more likely to
have consistent rankings across different views. (2) We propose to combine geometrically
“good” neighbors with spatially nearest neighbors, which reduces the risk of involving
outliers. (3) We propose an iterative weighting strategy considering both goodness and
correctness of a match to enhance inliers and suppress outliers. As a result, our feature
shows good distribution property and is more friendly to the classification task.

2. Related Work
2.1. Traditional Methods

As a hot topic in computer vision, mismatch removal has been well studied in the past
few years. Being one of the most famous robust model estimators, RANSAC and its vari-
ants [32–34] have been widely used in many modern applications such as SfM and SLAM.
It estimates a parametric two-view geometry model in a re-sampling fashion, and removes
correspondences with too large fitting errors. Different from an explicit binocular geomet-
ric model, ICF [35] learns two matching functions to check the consistency of putative
matches in which each matching function regresses the position of a matching point from
one image to another. However, the relationship between correspondences is somewhat
ignored. In VFC [19] and its variants [18,20,36], correspondences are supposed to agree
with a non-rigid motion function in a Bayesian framework. An additional regularization
term is introduced to impose smoothness and coherence constraint. The unique global
coherent restriction is extended by CODE [37] in which the non-linear regression formu-
lation accommodates different local motion types with spatial discontinuities. Recently,
the RFM [38] method has tried to find correct matches satisfying multiple local consistent
motion patterns from a clustering view. The classical DBSCAN method is customized to
achieve this goal.

To capture local motion properties, a method called LPM [23] was proposed. By com-
puting k nearest neighbors of a correct match on both images, the authors required that two
neighborhood sets should have a large intersection. This problem is formulated as a convex
optimization problem with a closed-form solution, which is more computationally efficient
than the aforementioned iterative methods. Later, the intersection of the k-nn measurement
in the LPM was replaced with the weighted Spearman’s footrule distance in mTopKRP [39].
This work revealed that rank information of neighbors has the potential for distinguishing
correct from wrong matches. However, our method differs from it in two major differences.
First, mTopKRP chooses k nearest points on two views separately. As a result, two sets of
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neighbors may not belong to the same matches, making similarity measuring intractable.
Second, it does not consider the quality of k nearest neighbors, which may involve outliers.
By contrast, the proposed method selects neighboring correspondences rather than merely
points in two directions and designs a weighting strategy to suppress outliers.

2.2. Learning-Based Methods

Apart from optimization-based methods, some researchers resort to learning algorithms
to identify incorrect matches, which is essentially binary classification. Ma et al. [30] pro-
posed a handcrafted feature for the classification task. Their combinatorial 33-dimensional
feature fuses different attributes of a local neighborhood, such as percentage of intersection,
ratio of length and angle. Moo Yi et al. [29] proposed the first work using deep learn-
ing, LGC. Inspired by the successful experience in point cloud processing, they designed
an architecture based on Multi-Layer Perceptrons and ResNet blocks to extract features
from each correspondence. Their training aims to minimize both classification loss and
geometric loss. However, neighborhood information was not considered when extract-
ing features. In a more recent work, NM-Net [31], the authors defined a graph around
each correspondence and performed feature extraction with a graph convolution network.
To avoid involving outliers in the graph, a good neighbor mining strategy was designed.
Only classification loss was minimized because the structure constraint has already been
integrated in the graph representation. This work was improved by CLNet [40], which pro-
gressively learns local-to-global consensus on dynamic graphs to prune outliers. To explore
the complex context of putative correspondences, OANet [41] introduced a DiffPool layer
and an Order-Aware DiffUnpool layer to capture local context. Moreover, it also devel-
oped order-aware filtering blocks to capture the global context. A novel smooth function
which fits coherent motions on a graph of correspondences is proposed in LMCNet [42].
Based on its closed-form solution, a differentiable layer is designed in a deep neural
network. ACN [43] is a simple yet effective technique to build permutation-equivariant
networks. It normalizes the feature maps with weights estimated within the network,
which can effectively exclude outliers.

Different from the above methods which rely on complicated principles or large
networks, in this paper we propose a simpler yet effective feature to prune outliers, which
measures the mutual structure shift between two views.

3. The Proposed Method

Suppose we have a pair of images {I, I′} and an initial matching set C = {c1, c2, . . . cn}
between them. Each match ci consists of a pair of keypoints, i.e., ci =

{
ki, k

′
i

}
, where ki

comes from I, and k
′
i comes from I′. The position of a keypoint ki is represented by its

image coordinate ki = {xi, yi}. Similarly, k
′
i =

{
x
′
i , y
′
i

}
.

3.1. The Mutual Structure Shift Feature

The basic idea of the proposed feature is that for a correct match, the relative order
of its neighbors should be stable from one view to another, while this does not apply to
outliers. Here we simply use the spatial Euclidean distance between keypoints as the
distance measurement. Specifically, we compute the spatial distances between all the
remaining points and the reference point and then sort them in an ascending order. Then,
we record the distance orders for the selected neighbors. Let us have a look at an example
shown in Figure 2. In Figure 2a, the red line represents a wrong match, and the remaining
are correct matches. For a certain reference match, the three rows of Figure 2b plot the
distance rankings of its neighbors on the first image, the second image and their difference,
respectively. From left to right, we will discuss three cases. (1) We refer to I as the reference
match and use its five correct neighbors {A, B, C, D, E}. (2) The same as (1), but we replace
one of the above five correct neighbors with an outlier O (the red line). The neighbors are
now {A, B, O, C, D}. (3) We consider an incorrect match O (the red line) as the reference and
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its five correct neighbors {A, B, C, D, E}. As we can see from the last row of Figure 2b, if the
reference correspondence and all of its neighbors are correct, the two rankings are similar,
and the order difference is the smallest. If the reference correspondence is correct but its
neighbors are contaminated by outliers, the order difference will significantly increase at
the corresponding position. If the reference correspondence is an outlier, the two rankings
are quite different, and the order difference is generally larger. In this example, the order
difference can help us to distinguish inliers from outliers. Since it implicitly encodes the
structure information around the reference correspondence, we name it as the structure
shift feature.

Figure 2. An example of the structure shift feature: (a) some correspondences on a pair of images;
(b) from top to bottom: the distance rankings for the neighbors of a reference correspondence
on the first image, the second image and their difference, respectively. From left to right: a correct
reference correspondence (in yellow) with five correct neighbors (solid green lines), a correct reference
correspondence (in yellow) with four correct neighbors (solid green lines) and a wrong neighbor
point (solid red lines), a wrong reference correspondence (in red) with five correct neighbors (solid
green lines).

We denote the structure shift feature computed from I to I′ as fa and that computed
from I′ to I as fb. Our mutual structure shift feature is a combination of fa and fb. Taking
the former for an example, we first find neighbors of the reference correspondence on I
and obtain the co-occurrence neighbors on I′ according to the correspondences. Denote N f
as the distance order vector of the neighbors on I and N f ′ as the distance order vector of the
neighbors on I′. Each element in the distance order vector is an integer in [1, n− 1], where
n is the total number of correspondences. Then, fa is defined as the absolute difference
between the two order vectors, which can be expressed as:

fa =
∣∣∣N f − N f ′

∣∣∣. (1)
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Equation (1) measures the change in the order of neighbor points. If the values in fa
are closer to 0, the better structure is preserved. Similarly, fb can be computed in the same
way in a reverse direction (from I′ to I).

Thus far, we have computed the structure shift feature for a reference correspondence
fa and fb in both directions. Our mutual structure shift feature is then defined as:

f = fa ⊕ fb, (2)

where ⊕ is the concatenation operation.

3.2. Neighbor Selection: Nearest Neighbors and “Good” Neighbors

As our mutual structure shift feature is built upon the neighbors of a reference cor-
respondence, we need to carefully consider the neighbor selection strategy. Suppose the
number of neighbors is k. Using k nearest neighbors in the Euclidean space is intuitive
and easy to implement. However, such neighbors are vulnerable to mismatches, and the
quality of the mutual structure shift feature decays significantly when the ratio of inliers is
very low.

To address the above issue, we propose to adopt “good” neighbors instead of using
spatially nearest neighbors only. In our context, “good” neighbors refer to those who share
similar local geometric information with the reference correspondence. Specifically, we
first use the Hessian detector to detects. The local 2× 2 affine transformation matrices
at a pair of matching keypoint ki and k

′
i are denoted as A and A′, respectively. Next,

the geometric information matrix Ti and T
′
i for this correspondence are computed from the

following equation:

Ti =

[
Ai ki
0 1

]
, T
′
i =

[
A
′
i k

′
i

0 1

]
. (3)

Then, we calculate the 3× 3 local homography transformation at each keypoint using
the following equation.

Hi = T
′
i T−1

i , H′i = TiT
′−1
i , i = 1, 2, . . . n, (4)

where Hi maps ki to a new position in I′, and H′i maps k′i to a new position in I. We assume
that “good” neighbors should have the same or similar local homography transformation
with each other.

Based on this assumption, we can compute the geometric consistency error between a
pair of correspondences from:

eij = σ

(
ρ(Hj •

[
ki
1

]
)− ρ(Hi •

[
ki
1

]
)

)
, (5)

e′ij = σ

(
ρ(H′j •

[
k′i
1

]
)− ρ(H′i •

[
k′i
1

]
)

)
, (6)

where i and j are the indices of two correspondences, ρ converts homogeneous coordinates
into non-homogeneous coordinates, and σ returns the sum of absolute values of all the
elements. Equation (5) indicates that if two keypoints ki and k j on image I are geometrically
similar, the position after mapping ki with its own homography transformation Hi should
be close to the position after mapping it with Hj, which is the homography transformation of
k j. As a result, the geometric error eij between keypoints ki and k j would be small. Similarly,
e′ij in Equation (6) reflects this property in a reverse direction. To regularize the errors to a
particular interval, we compute a similarity score between any two correspondences by
applying the following exponential mapping function:

sij = e−λ(eij+eji), i, j = 1, 2, . . . n, (7)
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s′ij = e−λ
(

e′ij+e′ji
)

, i, j = 1, 2, . . . n. (8)

Here sij and s′ij indicate the similarities between correspondences i and j from I to I′

and from I′ to I, respectively. Both sij and s′ij range between [0, 1]. According to [31], λ is a
flexible parameter because it tunes the similarity values but does not change the ranking
results. We set it to a constant 10−3 throughout this paper.

Finally, the neighbors of a reference correspondence ci = (ki, k′i) consist of two kinds
of neighbors, i.e., k nearest neighbors and k “good” neighbors. On the one hand, we
find k nearest neighbors of both ki and k′i on each image. On the other hand, we find the
top k “good” neighbors on each image according to the similarity scores in Equation (7)
and Equation (8). The mutual structure shift feature is computed from the union of these
neighbors according to Equation (2). We can use these features to train a classifier to
distinguish inliers from outliers.

3.3. Neighbor Weighting Strategy

In the previous neighbor selection stage, it is still difficult to avoid involving outliers.
Hence, we design an iterative weighting strategy during testing to enhance inliers and
suppress outliers in the neighborhood. At the very beginning, all the correspondences have
the same weights so that they have equal chance to be chosen in the neighbor selection stage.
In the following iterations, we first re-weight the correspondences given the prediction of
the last iteration. Then, we compute new feature vectors based on the updated neighbors
and feed them to the classifier. Please note that we only update features in each iteration,
and the parameters of the random forest are fixed. The details of our iterative weighting
strategy are as follows. When selecting nearest neighbors, we take the probability predicted
by the classifier as the new confidence and select k nearest neighbors whose confidence is
greater than a threshold. When selecting “good” neighbors, we use the following equation
to re-weight the correspondences:

sij(q) = sij(0) ∗ pi(q), i, j = 1, 2, . . . n. (9)

s′ij(q) = s′ij(0) ∗ pi(q), i, j = 1, 2, . . . n, (10)

where ∗ is the multiplication operator, sij(0) and sij(q) are the similarity scores initialized
by Equation (7) and updated after the qth iteration, respectively, and pi(q) is the probability
of the ith correspondence predicted by our classifier after the qth iteration. In the next
iteration, neighbors are selected using the above updated similarity scores. We can see
from Equations (9) and (10) that if an outlier is involved by mistake at the beginning, it
could be removed in the following process as the confidence predicted by the classifier
gradually reduces.

Finally, a random forest classifier trained with the proposed MSSF feature is used to
distinguish correct matches from incorrect matches. In our experiments, we use 40 decision
trees in the forest. If the probability predicted by the classifier is greater than a threshold α,
the correspondence is deemed correct.

4. Experiments
4.1. Datasets and Settings

Four public datasets were used in our experiments: DTU [44], DAISY [45], Challenge-
Data [46] and NMNET [31]. DTU is widely used for stereo matching. Images in each scene
were taken at 49 or 64 different positions. The projection matrix of each view is provided as
the ground truth. We used two recommended scenes scan1 and scan6 in our experiments.
Each of them contained 180 image pairs. DAISY is a wide-baseline dataset which contains
two scenes: fountain and herzjesu. There are 11 and 8 images in each scene, respectively.
We created a total of 40 and 22 image pairs in each scene by matching adjacent images.
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Both the intrinsic and extrinsic parameters of each view are provided for evaluation.
ChallengeData is designed for large scale Structure from Motion (SfM). Images in this
dataset present different illumination, wide baseline and heavy occlusion, etc. The camera
pose information reconstructed by a standard SfM pipeline [47] is provided as the ground
truth. To surmount the excessive number of image pairs in this dataset, we selected three
scenes: trevi_fountain, grand_place_brussels and hagia_sophia_interior for testing. Following
the same protocol in [16], image pairs in each scene were classified into three categories
according to the rotation angle: easy ([15◦, 30◦)), moderate ([30◦, 45◦)) and hard ([45◦, 60◦]).
For each category, we randomly selected 100 image pairs for testing. Finally, we used the
NMNet dataset to test our application on Unmanned Aerial Vehicle (UAV) images. This
dataset was captured by a drone at four sites. For each site, there are two versions of data:
wide baseline and narrow baseline. In our experiment, we used the more challenging
wide baseline version and selected 10 image pairs from each site. To determine if a corre-
spondence was correct, we checked if the Epipolar geometric distance error was below a
threshold γ. The default value of γ was two.

The proposed method was evaluated in two aspects. First, we employed precision
(P), recall (R) and F1-score to see the raw matching quality. Moreover, we also report the
F1-score, which was computed from:

F1 =
2 ∗ P ∗ R

P + R
∗ 100%. (11)

As we can see from Equation (11), the F1-score is a composite indicator of both
precision and recall. Next, we also testes the accuracy of camera pose estimation, which is
an important downstream task of feature correspondences. The performance was evaluated
by the pose estimation accuracy. To be specific, we estimated the essential matrix between
two views and recovered the rotation matrix R and translation vector t between them.
Then, we measured the angle error by comparing the estimation with the ground truth
using the following equations.

θ = arccos

(
Tr
(

RT
pred∗Rgt

)
−1

2

)
∗ 180

π ,

β = arccos
(

tT
pred∗tgt

|tpred|∗|tgt|

)
∗ 180

π .
(12)

In Equation (12), the subscript pred and gt represent the estimated value and the
ground truth, respectively; θ and β are the angle errors of the rotation matrix and the
translation vector. In our experiments, the thresholds for both θ and β were set to 10◦.

We compared our approach with six mismatch elimination algorithms from recent
years. These includes traditional methods, such as LPM [23], mTop [39] , RANSAC [32] and
RFM [38], and modern machine-learning-based methods, such as LMR [30] and LGC [29].
All the experiments were performed on a machine equipped with a Xeon E5-2680 CPU,
64GB RAM and a GeForce GTX 1080Ti GPU.

4.2. Parameter Analysis

The size of neighborhood k is an important parameter in our method. It directly
determines the dimension of the feature vector. On the one hand, smaller k not only limits
the capacity of structure information in the feature, but also is sensitive to outliers and
large deformation. On the other hand, larger k increases the risk of involving outliers
in the neighborhood and will take up more resources as well. Hence, we analyzed k
quantitatively by measuring the average F1-score and average running time on one of the
scenes in ChallengeData. As shown in Figure 3, when k takes 4, 8, 16 and 32, the average
F1-score first increases and then drops. Meanwhile, the average running time of each image
pair keeps rising. To balance the two factors, we set k to 16 for all the experiments.
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Figure 3. The analysis of k on grand_place_brussels from ChallengeData: Left: the average F1-score;
Right: the average running time for each image pair.

Another parameter to be investigated is the threshold α of the predicted probability.
Generally speaking, increasing α can eliminate more outliers (leading to higher precision)
but may kill more correct matches by mistake (leading to lower recall). Similarly, using
smaller α may result in lower precision and higher recall. To set a proper value for α,
the distribution of the predicted probability for both correct and wrong correspondences
were investigated. In the example shown in Figure 4, the number of correct and wrong
correspondences are 28 k and 18 k, respectively. For more than 90% of the correct corre-
spondences, their probabilities are greater than 0.7. We also note that the number of wrong
correspondences whose probabilities are smaller than 0.4 accounts for nearly 70% of the
total. This property is favored because two distributions have small overlap. In order to
balance the matching accuracy between correct and wrong correspondences, α was set to
0.5 for all the experiments.
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Figure 4. The probability distribution for both correct (blue) and wrong (red) correspondences in
grand_place_brussels from ChallengeData.

4.3. Ablation Study

Different kinds of neighbors. The quality of neighbors is important. In the proposed
method, we use the combination of both nearest neighbors and “good” neighbors.
We also test the results of using nearest neighbors or “good” neighbors only. Thus, we use
the DTU dataset to test the three settings and report the average F1-score in Table 1. As we
can see, using the nearest neighbors is easy to implement and depicts the local structure
well. However, it results in the lowest F1-score. The main reason is that nearest neighbors
are easily contaminated by outliers. Using “good” neighbors only will increase the F1-
score, which verifies that fewer outliers are involved by considering structure compatibility.
The best results are achieved by using both nearest neighbors and “good” neighbors, which
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is shown in the last row. In Figure 5, we visualize both nearest neighbors and “good” neigh-
bors on two pairs of images in the DTU dataset. As we can see, “good” neighbors are not
always spatially nearby samples but contain fewer incorrect correspondences. Figure 6 plots
the average precision of two kinds of neighbors on scan1 and scan6 of the DTU dataset.
We can see that the average precision of “good” neighbors is significantly higher than
nearest neighbors.

Table 1. Ablation study of the neighbor selection strategy. The average F1-score (%) on the DTU
dataset for three settings: using nearest neighbors only, using “good” neighbors only and using both
of them. The best results are in bold.

Nearest Neighbors “Good” Neighbors Scan1 Scan6

X - 75.43 80.23

- X 78.17 81.38

X X 78.98 81.98

Figure 5. Visualization of both nearest neighbors and “good” neighbors on two pairs of images
in the DTU dataset. The top row is from scan1 and the bottom row is from scan6. The reference
correspondence is in yellow. Correct and wrong correspondences are in green and red, respectively.

Figure 6. The average precision of both nearest neighbors and “good” neighbors on scan1 and scan2
in the DTU dataset.

Mutual strategy. As stated before, measuring the structure shift is asymmetric with respect
to the direction. That is, the results might be different when performing from I to I′ and
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from I′ to I. Hence, we adopt a mutual strategy which performs in both directions. Here
we give the results with and without the mutual strategy in Table 2. Similar to Table 1,
the average F1-scores on the DTU dataset are reported. It is worth noting that the mutual
strategy will double the feature size and consume more resources. We can see that using a
mutual strategy leads to better results. This shows that if it is hard to identify a mismatch
in one direction, adopting the reverse direction makes up for it.

Table 2. Ablation study of the mutual strategy. The average F1-score (%) on the DTU dataset for
two settings; w/o Mutual: using features computed from I to I′ only; w/Mutual: using features
computed from both I to I′ and I′ to I. The best results are in bold.

Scene Scan1 Scan6

w/o Mutual 79.23 81.77

w/ Mutual 79.98 82.13

Iterative neighbor weighting strategy. In this part, we investigate whether the proposed
iterative neighbor weighting strategy can truly reduce the risk for neighbors being con-
taminated by outliers. Hence, we define the First Outlier Position (FOP) as the indicator.
FOP is a positive integer which indicates the position where the first outlier appears in
the neighbor sequence. In other words, neighbors ranking before FOP are all inliers.
Figure 7 shows the average FOP after each iteration for all the correspondences on a pair
of images. As we can see, at the very beginning, the first outlier on average appears at
the 13.3-th position in the neighbor sequence. This value grows up to 19.8 and 23.7 for
the second and third iteration, respectively. If we run more iterations, the growth slows
down. This curve shows that our weighting strategy pushes wrong correspondences to
the back of the neighbor sequence. Thus, when we select the top k neighbors, the risk
of involving outliers is greatly reduced. If k is smaller than the FOP, our neighbors will
contain no outliers.
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Figure 7. The average FOP after 4 iterations for all the correspondences on a pair of images.

4.4. Raw Matching Quality Evaluation

In order to verify the performance of our method, we calculate the average precision,
recall and F1-score on seven scenarios from three datasets (two from DTU, three from
ChallengeData and two from Daisy). For each scenario, we plot the cumulative distribution
of precision, recall and F1-score for all image pairs in Figure 8. As we can see from this
figure, the precision of our method is not always the best, but our recall is much higher
than the other methods. As a result, our method has the best F1-score in most cases. This
shows that our method can preserve correct correspondences as much as possible. We
also note that for the first five scenes, there is not much difference between the F1-scores
of different methods, except for RANSAC. However, it is even more significant for the
last two scenes in Daisy. This shows that our method is superior to the other methods in
generalization and stability.
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Figure 8. Results compared with several state-of-the-art methods. Each row is a scene. From top to
bottom: scan1 and scan6 from DTU; temple_nara_japan, notre_dame_front_facade and taj_mahal
from ChallengeData; fountain and herzjesu from Daisy. From left to right are: precision, recall and
F1-score, respectively.

In Table 3, we calculate the average F1-score with different thresholds τ for all the
image pairs in Figure 8. As we can see, when τ increases from 0.5 to 4, our method achieves
the highest F1-score all the time.
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Table 3. The average F1-score (%) with different thresholds τ for all the image pairs in Figure 8. The
best results are in bold. The red numbers in the brackets indicate the improvement between the best
and the second best results.

Threshold LMR LPM mTOP RFM RANSAC LGC Ours

0.5 82.62 82.10 81.88 78.65 71.91 75.23 83.52
(+0.9)

1 84.59 83.90 83.72 80.54 72.39 77.18 86.01
(+1.42)

1.5 85.30 84.61 84.45 81.42 72.37 77.83 86.97
(+1.67)

2 86.02 85.36 85.20 82.17 72.27 78.38 87.86
(+1.84)

2.5 86.83 85.99 85.92 83.17 71.97 79.24 88.83
(+2.0)

3 87.36 86.50 86.37 83.71 71.66 79.55 89.34
(+1.98)

3.5 87.69 86.85 86.76 84.17 71.34 79.96 89.75
(+2.06)

4 87.87 87.07 86.97 84.50 71.04 80.23 90.07
(+2.2)

4.5. Pose Estimation Evaluation

Here, we evaluate the camera pose estimation accuracy of our method. We tested
on two datasets: Daisy and ChallengeData. Daisy is a small-scale dataset, and the results
are given in Table 4. As we can see, because of the very wide baseline in fountain, it is
more challenging. and all the methods present lower accuracy than herzjesu. Our method
has the highest accuracy for both translation and rotation. The gap between our method
and the second best method is up to 5%. ChallengeData contains 300 image pairs in total,
which is much larger than Daisy. The results on this dataset are given in Table 5. As we
can see, when the difference between cameras increases (from easy to hard in each scene),
the performance drops consistently. Similarly, our method obtains the best accuracy on
both rotation and translation.

Table 4. Relative pose estimation accuracy (%) on Daisy. Each column represents a scene. Each cell
represents the accuracy of rotation estimation (left) and the accuracy of translation estimation (right).
The estimation of an image pair is successful when the angle error is under a certain threshold (10◦).
The best results are in bold. The red numbers in the brackets indicate the improvement between the
best and the second best results.

Method Fountain Herzjesu

LMR 72.50/70.00 90.91/90.91

LPM 65.00/65.00 86.36/86.36

mTOP 70.00/70.00 86.36/86.36

RFM 67.50/67.50 86.36/86.36

RANSAC 57.50/55.00 77.27/86.36

LGC 57.50/55.00 86.36/86.36

Ours 75.00/75.00
(+2.5/+5.0)

95.45/95.45
(+4.54/+4.54)
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Table 5. Relativepose estimation accuracy (%) on three scene of ChallengeData. Each cell represents
the accuracy of rotation estimation (left) and the accuracy of translation estimation (right). The esti-
mation of an image pair is successful when the angle error is under a certain threshold (10◦). The best
results are in bold. The red numbers in the brackets indicate the improvement between the best and
the second best results.

Method
trevi_fountain grand_place_brussels hagia_sophia_interior

Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

LMR 98.0/88.0 97.0/90.0 92.0/88.0 95.0/61.0 84.0/59.0 78.0/63.0 96.0/35.0 88.0/60.0 85.0/77.0

LPM 98.0/83.0 95.0/86.0 93.0/90.0 95.0/64.0 88.0/55.0 81.0/60.0 98.0/35.0 91.0/62.0 85.0/54.0

mTOP 98.0/89.0 95.0/87.0 93.0/87.0 93.0/61.0 84.0/49.0 78.0/55.0 98.0/35.0 91.0/60.0 86.0/75.0

RFM 98.0/85.0 87.0/81.0 90.0/83.0 93.0/56.0 81.0/52.0 76.0/64.0 96.0/35.0 89.0/59.0 84.0/76.0

RANSAC 96.0/81.0 87.0/74.0 82.0/80.0 84.0/34.0 72.0/42.0 64.0/46.0 87.0/27.0 79.0/50.0 55.0/56.0

LGC 92.0/77.0 78.0/68.0 76.0/73.0 90.0/49.0 76.0/47.0 64.0/48.0 94.0/30.0 87.0/49.0 64.0/56.0

Ours 100.0/92.0
(+2.0/+3.0)

99.0/92.0
(+2.0/+2.0)

95.0/91.0
(+2.0/+1.0)

96.0/66.0
(+1.0/+2.0)

91.0/63.0
(+3.0/+4.0)

84.0/73.0
(+3.0/+9.0)

99.0/39.0
(+1.0/+4.0)

95.0/64.0
(+4.0/+2.0)

90.0/82.0
(+4.0/+5.0)

4.6. Application on UAV Images

Finally, we evaluate the proposed method on UAV images. We first report the average
F1-score in Table 6. The data show that our method improves the results better than the
other methods. Next, we conducted relative pose estimation on this dataset and report
the average angle error in Table 7. We can see that for scenes whose average F1-scores
are higher than 90%, e.g., mao-wide and science-wide, the pose errors returned by all the
methods could be no larger than 1◦. However, the pose errors for the compared methods
easily rise to double digits for main-wide, whose average F1-scores are obviously lower
than the above two scenes. Our method has the lowest errors for all the scenes.

Table 6. The average F1-score (%) of four scenes from the NMNET dataset. The best results are in
bold. The red numbers in the brackets indicate the improvement between the best and the second
best results.

Lib-Wide Main-Wide Mao-Wide Science-Wide

LMR 82.11 74.47 94.58 91.44

LPM 86.08 76.51 95.36 93.09

mTOP 85.41 87.90 95.24 91.11

RFM 86.72 82.06 94.78 91.28

RANSAC 49.70 52.35 83.65 53.85

LGC 81.22 65.12 92.40 89.05

Ours 90.33 (+3.61) 92.67 (+4.77) 96.75 (+1.39) 94.26 (+1.17)
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Table 7. The average rotation/translation angle errors (◦) on four scenes from the NMNET dataset.
Smaller is better. The best results are in bold.

Lib-Wide Main-Wide Mao-Wide Science-Wide

LMR 4.87/7.74 13.09/18.81 0.12/0.90 0.20/0.60

LPM 3.82/4.40 8.30/14.22 0.20/1.33 0.15/0.52

MTOP 1.11/2.85 11.93/21.03 0.16/1.24 0.18/0.61

RFM 16.17/3.39 10.84/24.10 0.14/1.21 0.16/0.52

RANSAC 7.73/9.32 18.15/14.85 0.39/2.32 0.38/1.54

LGC 2.67/4.41 2.40/14.12 0.18/1.35 0.24/0.72

Ours 0.45/1.33 1.22/13.17 0.10/0.84 0.11/0.36

5. Conclusions

In this paper, we propose a new method to remove incorrect correspondences between
two images. We found that for a correct reference correspondence, the distance rankings
of its neighbors are consistent from one view to another. Based on this observation, we
propose a new feature called the Mutual Structure Shift Feature (MSSF), which measures the
bidirectional ranking difference for the neighbors of a reference correspondence. To com-
pute MSSF, we combine both spatially nearest neighbors with geometrically consistent
neighbors. In this way, the risk of involving outliers in the neighbors is effectively reduced.
We also design an iterative weighting strategy to progressively enhance correct corre-
spondences and suppress incorrect correspondences. Extensive experiments on both raw
matching quality evaluation and downstream tasks are carried out, showing our method
outperforms the other compared methods.

In spite of the advantages, the limitations of our method lie in the following aspects.
Firstly, since our method relies on information from the neighbors, its performance may
deteriorate when we are not able to find enough qualified neighbors. This usually hap-
pens when the initial correspondences are too sparse or the inlier ratio is extremely low.
Secondly, although our iterative weighting strategy can effectively exclude outliers in
the neighbors, it cannot remove incorrect correspondences that are associated with high
confidence by the model at the very beginning. That is, if an incorrect correspondence
could not be clearly recognized in the early stage, it is harder to identify it later.
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