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Optimizing water management in agriculture is of crucial importance, especially in
arid and semi-arid regions where the existing water shortage is exacerbated by human
activities and climate change. In these regions, water scarcity is one of the main factors
limiting agricultural development, and thus, food security. The impact of such water
scarcity is amplified by inefficient irrigation practices. This has led to important water
loss, especially since irrigation consumes more than 85% of the available water in these
regions. Increasing water use efficiency in agriculture is, thus, necessary to improve on-
farm irrigation management by adjusting the irrigation amount to crop water requirements
during the crop growing season.

Crop water stress can be detected by measuring the in situ root zone soil moisture to
trigger irrigation. However, these point measurements are site specific, expensive, and time
consuming. Therefore, remote sensing provides an alternative and cost-effective method
for mapping and monitoring large areas, which can be used to assess crop water stress.

In this context, the current Special Issue focuses on the use of different remote sensing
data for the assessment of crop water stress (CWS). Twelve papers are published in this
issue. One paper is a review [1] that presents various remote sensing technologies used to
detect crop water stress, including optical sensing systems, thermometric sensing systems,
land surface temperature sensing systems, multispectral (space borne and airborne) sensing
systems, hyper-spectral sensing systems, and the LiDAR sensing system.

Gu et al. [2] used the crop water stress index (CWSI) based on canopy temperature as a
proxy of phenotyping maize performance under combined water and salt stress. The results
show that this approach is valuable for predicting yield and improving water use efficiency.

Zhou et al. [3] tested a variety of spectral vegetation indexes (SVIs) for monitoring
crop water stress. In this study, an experimental approach was carried out in order to
examine the relationships between five SVIs (WI, NDWI, NDII, NDVI, and OSAVI) and
plant water stress for analyzing the direct and indirect methods by which crop biomass
and water content influence different SVIs.

Puig-Sirera et al. [4] used a combined approach of high-resolution thermal/spectral
imagery acquired by UAVs to examine how different soil management practices affect
the water status in complex rainfed vineyards. Specifically, the different soil management
treatments were analyzed in terms of crop water status, vegetation vigor, and chlorophyll
content through the thermal-based crop water stress index.

Two studies [5,6] evaluate the performance of the two-source energy balance (TSEB)
model for estimating evapotranspiration in irrigated almond trees in Spain and over wheat
crops in Morocco, respectively. Both studies evaluated the estimates of evapotranspiration
(ET) against eddy covariance measurements. In the work of Jofre Cekalovicet al. [5], the
TSEB model was driven by the sharpened Sentinel-2 and Sentinel-3 images, and the results
show that the model is suitable for monitoring water use in almond trees under different
irrigation regimes. For the work of Ait Hssaine et al. [6], the TSEB model was constrained
by soil moisture derived from Sentinel-1 and SMAP, in addition to Landsat thermal data,
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and the results show that the integration of microwave data significantly improved the ET
estimates, mainly for the irrigated sites.

An approach based on a soil water balance model driven by remote sensing data,
implemented using SAMIR software, for assessing crop irrigation requirements and crop
water stress, was assessed by Kharrou et al. [7]. The authors explored the spatio-temporal
patterns of irrigation water use between fields in the Haouz plain (Morocco). Clear spa-
tiotemporal variability was found in irrigation water demands and supplies, which is
mainly due to the inadequate irrigation supply related to the lack of reliable spatial infor-
mation on the current soil water status and the farmer management practices (cultivar,
sowing date, irrigation, fertilizers, weed control, etc.).

For the efficient and optimized spatiotemporal allocation of irrigation water in a
surface irrigation system, Belaqziz et al. [8] developed an innovative approach based on
remote sensing data and on the covariance matrix adaptation–evolution strategy (CMA-ES),
in order to optimize the spatiotemporal sowing date distribution of wheat crop in a large
irrigation scheme located in Haouz plain. Six sowing date scenarios were simulated and
compared to identify the most optimal spatiotemporal sowing calendar. The obtained
results show that with reference to the existing sowing patterns, the early sowing of wheat
(mid-November) leads to higher yields compared to late sowing. Compared with actual
conditions in the study area, the spatial heterogeneity is highly reduced, which increases
equity between farmers.

Surface albedo is a key land surface variable to constrain the surface radiation budget
and, hence, the coupled water–surface energy balance. In order to capture the crop water
stress over the growing season, optical remote sensing becomes impractical due to cloud
cover in some periods. To overcome this problem, Amazirh et al. [9] developed an approach
based on Random Forest (RF) algorithms to retrieve the cloudless surface albedo from
Sentinel-1 data that offers a source of high spatio-temporal resolution images. The RF
algorithms were based on the correlation between VV and VH polarization backscatter
coefficients with the albedo derived from Landsat images. The approach was tested over
an irrigated semi-arid zone in Morocco, which is known by its heterogeneity in terms of
soil conditions and crop types. The results show that the RF approach achieves very good
albedo modeling performances.

Shahzaman et al. [10,11] investigated the use of different remote sensing indices for the
spatial monitoring of agricultural drought in south Asian countries. In their study [10], the
authors analyzed the agricultural drought in Afghanistan, Pakistan, India, and Bangladesh,
based on the following indices: the evaporative stress index (ESI), vegetation health index
(VHI), enhanced vegetation index (EVI), and standardized anomaly index (SAI), which
were derived from satellite remote sensing data from 2002–2019. The results indicate
a severe agricultural drought during the year 2002, compared to the other years. The
southeast region of Pakistan, and the north, northwest, and southwest regions of India and
Afghanistan were also shown to be significantly affected by drought. However, Bangladesh
faced substantial drought in the northeast and northwest regions during the drought
year (2002).

The performances of other remote sensing data, such as soil moisture products
(MERRA-2, CPC, FLDAS, GLDAS, and ERA5), precipitation products (CHIRPS and GPCC),
and terrestrial water storage products (MERRA-2 TWS and GRACE TWS), were presented
by Shahzaman et al. [11] to support agricultural drought characterization in South Asia
based on standardized index/standardized anomaly and K-means algorithms. The rela-
tionships between crop yield and drought indices were also assessed in this study based
on the yield anomaly index (YAI).

Finally, Rafik et al. [12] explored the potential of satellite imagery to detect the
spatiotemporal variation of soil salinity in the Tafilalet plain (Morocco). In this study,
19 satellite images acquired from Thematic Mapper (TM), Enhanced Thematic Mapper Plus
(ETM+), Operational Land Imager (OLI), and Multispectral Instrument (MSI) were used
to produce spatial and temporal maps of soil salinity. As soil salinity is mainly controlled
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by the cyclicity of droughts in desert regions such as the Tafilalet plain, the precipitation
data over a period of 36 years (1983–2019) are used to calculate SPAI (standardized pre-
cipitation anomaly index), which allows the impact of water stress on the soil salinization
phenomenon to be assessed. The study showed that the spatio-temporal distribution of
soil salinity in the Tafilalet plain is highly variable and negatively correlated with the SPAI
(R2 = 0.65). An accumulation of mineralization in soils occurred during the deficit periods
due to the high values of evapotranspiration.

In summary, all the studies included in this SI constitute a set of the different methods
and approaches used for modeling evapotranspiration, monitoring agricultural drought,
and assessing crop water stress (CWS) based on remote sensing data, including optical,
microwave, thermal, and UAV data.
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