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Abstract: High aerosol levels pose severe air pollution and climate change challenges in Iran. Al-
though regional aerosol optical depth (AOD) trends have been analyzed during the dusty season
over Iran, the specific factors that are driving the spatio-temporal variations in winter AOD and the
influence of meteorological dynamics on winter AOD trends remain unclear. This study analyzes the
long-term AOD trends over Iran in winter during the period 2000–2020 using the updated Modern-
Era Retrospective Analysis for Research and Applications version 2 (MERRA-2) and the Moderate
Resolution Imaging Spectroradiometer (MODIS) datasets. Our results showed that the winter AOD
exhibited a significant upward trend during the period 2000–2010 followed by a significant decrease
during the period 2010–2018. We found that the winter AOD trends are important over this arid
region due to multiple meteorological mechanisms which also affect the following spring/summer
dusty period. Ground-based observations from Aerosol Robotic Network data (AERONET) in the
Middle East region display trends comparable to those of both MERRA-2 and MODIS and indicated
that aeolian dust and the meteorological dynamics associated with it play a central role in winter
AOD changes. Furthermore, this study indicated that a significant downward trend in winter sea
level pressure (SLP) during the early period (2000–2010) induced hot and dry winds which originated
in the desert regions in Iraq and Arabia and blew toward Iran, reducing relative humidity (RH) and
raising the temperature and thus promoting soil drying and dust AOD accumulation. In contrast, a
significant increase in winter SLP during the late period (2010–2018) induced cold and wet winds from
northwestern regions which increased RH and lowered the temperature, thus reducing dust AOD.
This suggests that the changes in AOD over Iran are highly influenced by seasonal meteorological
variabilities. These results also highlight the importance of examining wintertime climatic variations
and their effects on the dust aerosol changes over the Middle East.

Keywords: winter AOD trends; MODIS; MERRA-2; dust changes; meteorology; Iran

1. Introduction

Iran is characterized by an arid and semi-arid climate and is considered a hot-spot
region in terms of climate change and global warming [1–3]. The country is highly affected
by local and regional dust storms throughout the year [4–7], and several studies in the
past have shown that desert-dust aerosols are pervasive throughout the country [8–11].
Aerosols are important components influencing the regional and global earth–atmosphere
system through the direct and indirect effects of absorbing and scattering solar radiation
and affecting cloud micro-physical processes, respectively [12]. Aerosol optical depth
(AOD) is an important parameter for the quantification and long-term trend analysis of
aerosols from regional to global scales [13–16]. It is a basic property of aerosols related
to their atmospheric columnar amount and is highly related to the impact of aerosols on
climate change [17–21].
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Various satellites and reanalysis datasets such as the Moderate Resolution Imaging
Spectroradiometer (MODIS) and the Modern-Era Retrospective Analysis for Research and
Applications version 2 (MERRA-2) datasets provide continuous aerosol data globally. By
studying such data, researchers aim to understand atmospheric processes and examine
long-term spatio-temporal evolution and aerosol trends [22,23]. Over the Middle East
region, numerous validation studies have reported good agreement between ground-based
observation data (AERONET) and MERRA-2 and/or MODIS AODs [11,21,24,25].

AOD products have been widely used to evaluate the long-term trends of annual
and seasonal AODs at different temporal and spatial scales [11,26–31]. Previous studies
have noted an upward AOD trend over Iran and the Eastern Mediterranean–Middle East
(EMME) region using AOD datasets from MERRA-2 and MODIS for the period between
2000 and 2010 [18,21]. Similarly, Klingmüller et al. [32] also noted a positive AOD trend
from MODIS observations over the Arabian Peninsula during the period 2001–2012. In
contrast, downward AOD trends over the Middle East region were reported during the
past decade (after 2010–2012) due to weakening in dust activity after the high peak during
the period 2008–2012 [18,21].

Apart from the effects of aerosols on the regional and global climate, climate perturba-
tions, in turn, affect the loading, distribution and composition of aerosols through changes
in various meteorological variables such as air temperature, humidity, precipitation, and
wind that highly affect dust emission, accumulation, and transport [33–36]. In addition,
natural emissions and urban/industrial emissions driven by meteorological conditions
play a major role in regional AOD variations [24,37]. Meteorological factors such as soil
moisture and wind speed are primarily responsible for changing dust activity over natural
mineral sources, such as the Iraqi plains, northern Arabian Peninsula, and the Sistan Basin,
that highly affect the AOD variations in Iran [32,38]. Changes in soil moisture and strong
Shamal wind events play a significant role in modulating dust activity over the Middle
East [39,40]. Shaheen et al. [17] showed that the changes in AOD trends over the EMME
region were mostly a result of variations in dust climatology, which are maximized during
spring and summer. While various studies have investigated the variability of regional
AOD over Iran during the dusty season (spring and summer), our understanding of winter
AOD trends remains rather unclear since researches have focused more on periods with
high dust-aerosol loadings. The main reasons behind the reversal of the winter AOD trend
over the past decade were unclear and needed to be understood and quantified, and the
roles of meteorological parameters as influencing factors on winter AOD trends have not
yet been analyzed.

Therefore, this study intends to understand the main reasons behind these trends in
AOD over Iran, focusing on the winter period, which has the lowest AODs and dust activity,
but which also has intense changes in atmospheric dynamics and regional meteorology
which may affect the dust AOD distribution significantly. Considering the importance of an-
thropogenic winter aerosols and natural emissions driven by meteorological conditions on
shifts in local AOD trends, the study examines the meteorological dynamics that contribute
the most to the reversal of the winter AOD variability trend over Iran and the Middle
East, i.e., from an increasing trend during the 2000s to a decreasing trend during the 2010s.
The current paper is organized as follows. Section 2 describes the dataset used. Observed
aerosol trends are analyzed and discussed in Section 3 as well as the links between AOD
changes and meteorological variables, including sea level pressure, surface wind speed,
surface air temperature, precipitation, surface relative humidity, and soil moisture. Our
conclusions are summarized in Section 4.

2. Dataset and Methods
2.1. Study Area

Iran lies in Southwest Asia between latitudes 25◦N and 40◦N and longitudes 44◦E and
61◦E (Figure 1), and it can be divided into areas with different types of climate which are
influenced by the country’s location between the arid/semi-arid and the humid subtropical
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climate zones of the Arabian deserts and the Eastern Mediterranean–Caspian Sea region,
respectively. In recent years, the frequency and intensity of dust events have increased
significantly in Iran, especially in the western part, which has a hot desert climate [41,42],
while the eastern and southeastern parts faced a large increase in dust activity due to a
prolonged drought during the period 2000–2003 [43–45].
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2.2. Aerosol Data

By utilizing the Goddard Earth Observing System version 5 (GEOS-5) [46], NASA’s
Global Modeling Assimilation Office gives the most recent versions of reanalysis datasets for
the atmosphere viaChinese Academy of Sciences MERRA-2 [47]. MERRA-2 is the first satellite
reanalysis dataset comprised of data concerning land surface processes, ocean movements,
and atmospheric composition. Numerous meteorological and aerosol products are provided
by MERRA-2 [21]. By using distinct observation sources, the aerosol product integrates
variations of AOD datasets into the GOCART (Goddard Chemistry, Aerosol, Radiation, and
Transport) model [48]. AOD data from different aerosol types, which include sea salt, organic
and black carbon, dust, and sulfates, are also provided viaChinese Academy of Sciences
MERRA-2 reanalysis [49]. Moreover, MERRA-2 assimilates a series of AOD observations,
retrieved from the Advanced Very High-Resolution Radiometer (AVHRR), MODIS (onboard
both the Terra and Aqua satellites), and Multi-angle Imaging Spectroradiometer (MISR), in
addition to ground-based AERONET observations [50–53]. The reanalysis biases and errors
may be changed during the studied period when new sensors come in or drop out. Since
this paper is a trend analysis, one implicit assumption here is that the reanalysis data are
equally reliable at all points in time when in fact it is not known how the reliability of the
reanalysis changes over time. More details about MERRA-2 data assimilation, uncertainties,
and applications can be read elsewhere [46,47], including our previous studies [18,21,28]. A
previous study used MERRA-2 aerosol data to analyze long-term AOD and dust trends over
Iran and the Middle East due to satisfactory agreement between MERRA-2, MODIS, and
AERONET AODs [18]. For the analysis of the winter AOD trends over Iran, monthly mean
AOD550, Ångström exponent (AE470–870), and dust concentration data from the MERRA-2
reanalysis are used in the present study (Table 1).
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Table 1. Aerosol and meteorological data used in the present work.

Data Type Parameters Date Sources

Aerosol data

Aerosol optical depth
Dust concentration
Angstrom exponent

MERRA-2
https://disc.gsfc.nasa.gov, accessed on 1 September 2020.

Aerosol optical depth MODIS
https://ladsweb.nascom.nasa.gov, accessed on 1 September 2020.

Aerosol optical depth
Fine mode fraction
Angstrom exponent

AERONET sites:
1. Solar Village (24.907◦N, 46.397◦E)
2. IABAS (36.705◦N, 48.507◦E)
https://aeronet.gsfc.nasa.gov, accessed on 1 October 2020.

Meteorological data

Sea level pressure
Surface temperature
Surface wind speed
Surface relative humidity
Total surface precipitation
Soil moisture at surface

ERA5
https://ecmwf.int/, accessed on 1 October 2020.

The MODIS sensor on NASA’s TERRA satellite, which has a swath width of 2330 km,
observes the earth on near-daily basis, providing atmospheric and cloud parameters since
2000 at varying wavelength ranges consisting of 36 spectral bands from near-UV to in-
frared [54]. In this study, the level 3 monthly AOD aerosol product (MOD08) [51] at 550 nm
and at a spatial resolution of 1◦ × 1◦ (C06.1) was used (Table 1). It covers the whole Iranian
territory and the surrounding regions. The AOD550 data series refers to the combined Dark
Target and Deep Blue (DTDB) product. The average root mean square error (RMSE) of the
monthly mean AOD values derived from the level 3 Terra-MODIS observations has been
estimated to be about 0.075, while the error in the MODIS AODs related to AERONET is
±0.05 ± 0.15 × AOD(AERONET) [51,55].

In addition, CIMEL sun-photometers were used to obtain ground-based aerosol ob-
servations at two AERONET sites over the Middle East with long time series. CIMEL is
capable of observing solar irradiances at different wavelengths, with a time step of 15 min,
a full field-of-view (FOV) of 100 km, and an AOD retrieval error of ±0.01 to 0.02 [50].
AERONET also records the Ångström exponent (AE440–870), fine mode fraction (FMF500),
and AOD products via direct-beam and almucantar solar irradiance measurements [50]. In
this study, monthly mean (level 2 and version 3) AOD550, fine mode fraction (FMF500), and
AE440–870 data from two AERONET sites in the Middle East (Solar Village, Saudi Arabia
and IABAS, Iran) were used in order to examine the long-term trends in aerosol loading
and the relative contribution of fine and coarse particles (Table 1, Figure 1).

2.3. Meteorological Data

By joining observations into global fields utilizing a modern 4-Dvar assimilation
scheme, the European Center for Medium-Range Weather Forecasts (ECMWF) provides up
to date meteorological reanalysis data. In contrast to earlier reanalysis versions, ERA5 is
the latest version with numerous improvements based on the integrated forecasting system
(IFS) Cy41r2 [56,57]. ERA5 provides meteorological data for a wide number of atmospheric
and land surface parameters at a spatial resolution of 30 km and 137 levels spanning from
the surface to 0.01 hPa, and with a time step of one hour. In the current work, several
monthly meteorological data (soil moisture (SM), total precipitation (TP), relative humidity
(RH), surface temperature (TM), sea level pressure (SLP), and wind speed (WS)) from the
ERA5 global reanalysis were used to assess their influence on long-term winter AOD trends
over Iran during the period 2000–2018 (Table 1). In addition to the aerosol assimilation in
MERRA-2 retrievals, the meteorological assimilation also changes over time, which may
result in changes in the quality of modeled dust emission and aerosol aging and transport
during the studied period.

https://disc.gsfc.nasa.gov
https://ladsweb.nascom.nasa.gov
https://aeronet.gsfc.nasa.gov
https://ecmwf.int/


Remote Sens. 2023, 15, 905 5 of 19

2.4. Analysis of the Winter Aerosol and Meteorological Trends

This study provides a comprehensive investigation of the winter AOD trends over Iran
during the past two decades. The whole period was divided in two sub-periods (2000–2010
and 2010–2020) characterized by contrasting trends. Since only the winter season is used in
the trend analysis, the anomalies of the monthly AODs were computed as deseasonalized
monthly anomalies, which were defined as the difference between the monthly AOD550
and the overall monthly average AOD550. The least-squares linear regression method was
used for the computation of the long-term trends [21,58]. Due to gaps in satellite retrievals
from MODIS, at least 18 daily AOD data were required in each month to calculate the
monthly mean before the deseasonalization and AOD regression analysis. To analyze the
long-term trend of the meteorological parameters during winter, the same method as for
the AOD trend was used. The statistical significance of the AOD and the meteorological
trends were tested using a Student’s t-test at a 95% confidence level. Trend analysis was
performed on the spatial-averaged AOD and meteorological data, while pixel by pixel
correlations were also performed in order to examine the effect of each meteorological
parameter on AOD variations and trends. Using Pearson’s correlation coefficient (R), the
strength of the relationship between AOD and meteorological parameters was computed to
better understand the effects of winter meteorological changes on AOD [24,59]. We should
point out that the MERRA-2 and MODIS datasets showed rather stable trends during the
period 2018–2020. Therefore, to better compare and explain the results of the trend analysis,
two shorter periods of 2000–2010 and 2010–2018 were considered and examined separately.

3. Results and Discussion
3.1. Aerosol Trends

Data from the MERRA-2 and ERA5 reanalyses were bilinearly interpolated to a MODIS
grid (1◦ × 1◦) for direct comparison of the aerosol trends and for carrying out a consistent
regression analysis between AOD and meteorological parameters [60,61]. The widely
implemented technique of least-square linear regression for time series analysis [27,61,62]
was used in the present study to obtain the long-term trends in the MERRA-2 and MODIS
AODs (monthly time series data) for December, January, and February (the winter season,
DJF) over Iran.

First, the spatial distributions of annual and seasonal mean AODs derived from
the MERRA-2 and MODIS data were calculated for the whole study period (2000–2020),
although this research has been widely performed for the Middle East region (Figure 2).
Therefore, in brief, the results of the comparison show that both AOD datasets are closely
consistent over the Middle East and Iran. The differences between the two datasets can
be attributed to the different algorithms and assimilation schemes, gaps in datasets, and
cloud contamination in the MODIS observations [24]. In addition, the remarkable seasonal
differences in AOD distributions can be associated mainly with the atmospheric circulation
patterns and the intensity of dust activity from the major dust sources in the hot and cold
seasons [24,63,64]. Therefore, the highest and lowest MERRA-2 and MODIS AODs were
observed in JJA and DJF, respectively, and are mainly driven by seasonal variations in dust
emissions and transportation.
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The highest AODs are detected along the major dust sources in the study domain, i.e.,
over the Iraqi plains and the eastern corridor of the Arabian Peninsula in spring and summer
due to Shamal dust storms [7,27]. These dust storms also affect the southwestern part of Iran,
and the highest AODs are detected over the same reason, highlighting the influence of dusty
air masses from the Iraqi plains [21,27,28].

To explore the relationships between the MERRA-2 AOD and dust concentrations,
their annual and seasonal variations, spatially averaged over Iran, were compared during
the period 2000–2020 (Figure 3a,b). The seasonal plot clearly reveals that both the MERRA-2
AOD and dust concentrations reach their maximum in spring (MAM) and summer (JJA),
while the lowest values are observed in winter, though these values are similar to those
observed in autumn for the average surface dust concentrations (Figure 3b). However,
even during winter, which is the season with the lowest AOD and dust activity over the
Middle East, the climatology-mean AOD is about 0.2, while the average dust concentration
is also high (150 µg m−3) (Figure 3). To better characterize the significant contribution
of dust emissions to the temporal variability of the winter AOD, the time series of the
spatial-averaged mean anomalies of the winter AOD and dust concentrations from the
MERRA-2 observations were also analyzed (Figure 3c,d). The results indicated that AOD
and dust concentrations seem to have experienced a similar remarkable shift in their
levels, prompting the separation of the whole examined period into two distinct sub-
periods. Throughout the decade 2000–2010, the MERRA-2 AOD and dust concentrations
showed significant upward trends; then, both of these exhibited significant downward
trends from 2010 to 2018 (p < 0.05) followed by a normalization afterwards since the dust
activity weakened and returned to climatologically normal levels for the Middle East after
2012. These opposite trends over Iran for the two different periods have been reported
on an annual basis by Yousefi et al. [65]. This study, however, provides a comprehensive
investigation of the factors triggering the upward and downward trends in AOD and
dust activity over Iran during the winter seasons of the 2000s and 2010s. Therefore, in the
following analysis, we examine separately the trends during the 2000–2010 and 2010–2018
periods, as well as the respective correlations with the influencing meteorological factors.
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Figure 3. Annual and seasonal variations in the MERRA-2 AOD (a) and MERRA-2 dust concentrations
(b) over Iran during the period 2000–2020. The vertical bars represent one standard deviation of
the mean. Time series of the MERRA-2 spatial-averaged AOD anomalies (c) and dust concentration
anomalies (d) over Iran during the winter (DJF) season. Dashed lines represent the trends (p < 0.05)
during the first (until 2010) and second (until 2018) periods.

During the period 2000–2018, the MODIS and MERRA-2 DJF AODs showed an in-
significant positive trend over the vast area of the country, with a general consistency
between MERRA-2 and MODIS results (Figure 4a,d). In addition, significant positive
winter AOD trends from the MERRA-2 and MODIS datasets, extended over a wide area in
the Middle East and Iran, are observed during the period 2000–2010 (Figure 4b,e). These
increasing trends are statistically significant over most of the study domain, but especially
at the southern Mesopotamian plains, southwestern Iran, Kuwait, and northeastern Saudi
Arabia, indicating a significant increase in dust AODs which was attributed in previous
studies to a shift to higher dust emissions during the dusty seasons after 2008 [66]. The
current results indicate that this increase in dust AOD is limited during the dusty periods
(spring and summer) but is significant during winter.
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trends at a 95% confidence level (p < 0.05).

Conversely, during the years 2010–2018, both the MERRA-2 and MODIS AOD data
displayed significant negative trends over most of the country, as well as over parts of Iraq
and central Asia (Figure 4c,f). The two databases present some differences regarding the
spatial distribution and the magnitude of the AOD trends, as well as their significance,
which, however, are summed up in the overall negative AOD tendency over the Middle
East during 2010–2018.

Figure 5 shows the monthly anomalies in AOD550, AE440–870, and FMF500 during
DJF at the two AERONET sites which have the most complete databases in Iran and the
surrounding dust sources. The results of the AOD trends from the Solar Village and IABAS
sites confirmed the reliability of the MERRA-2 and MODIS AOD variations and trends in
both the early (till 2010) and late periods (till 2018). Although the mean winter AOD level
has been relatively stable during the past two decades, the results indicate a remarkable
change (trend shift) in the winter AOD data around 2010, which can be linked to changes in
dust loading over the two AERONET stations. At the Solar Village site, the AOD exhibited
an increasing trend of 0.006/year from 2000 to 2010 and a decrease afterwards, while at
IABAS, NW Iran, the AOD trend remained negative with a slope of −0.0014/year from
2010 to 2017 (the period during which data are available from this AERONET site). The
respective trends in AE and FMF values confirm the above-mentioned shift in dust activity
and are discussed below, along with the spatial distribution of the MERRA-2 AE trends
over Iran and the surrounding areas. An important finding from the trend analysis at the
AERONET sites is that the AOD, AE, and FMF values each follow similar trends, indicating
a similar general tendency in aerosols over the Middle East region.
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Figure 6 shows the winter-mean spatial distribution of the trends in dust concen-
trations, as obtained from the MERRA-2 retrievals over Iran and the surrounding areas
during the period 2000–2018, as well as during the first and second examined sub-periods.
The spatial distribution of the winter MERRA-2 dust concentration exhibited a significant
positive trend similar to that of the winter MERRA-2 AOD, especially over the western
part of the studied area (Figure 6b), and a remarkable negative trend afterwards, especially
over Iraq and Central Asia (Figure 6c). In addition, the spatial correlations of the MERRA-2
dust concentrations against the MERRA-2 and MODIS AODs were performed, and the
results are shown in Figure 6d,e. The positive correlation coefficients (mostly between
0.4 and 0.9) over a vast area of the study domain confirm the major role of dust in winter
AOD variations and trends, although the dust activity over Iran and the whole Middle East
is minimal during wintertime (Figures 2 and 3) and the effects of urban/anthropogenic
aerosols are higher than in the other seasons [9–11,19].

Trends in AE values are also characteristic of changes in the relative importance of
the coarse-mode dust aerosols to total AOD. Therefore, an increasing tendency in AE
values indicates an increase in anthropogenic fine-mode aerosols and/or a decrease in dust
presence, whereas decreasing trends in AE values suggest a considerable increase in the
presence of coarse dust particles [14]. The AERONET data showed decreasing (slope: −0.01
at Solar Village) and increasing (slope: 0.009 at IABAS) trends in winter AE during the first
and second periods, respectively, confirming the initial increase and subsequent decrease
in the presence of coarse-mode dust aerosols. The longer AE data series at the Solar Village
AERONET site clearly indicated the shift in AE values, with a pronounced decrease till 2010
and a slight increase afterwards (Figure 5). Moreover, the Solar Village site experienced
the same negative and positive trends in winter FMF data, these being inversely related
to AOD variability, thus indicating an increase and then a decrease in dust (coarse-mode
aerosol) presence (Figure 5c). Klingmüller et al. [32] highlighted these results at the Solar
Village site by examining the long-term trends in dust activity and factors influencing it in
the Middle East. In the current analysis, the lower AE values and the decreasing tendency
over nearly the whole Iranian territory during 2000–2010 clearly demonstrate the central
role of dust in AOD changes and its considerable increase during the winter seasons of
the 2000s (Figure 7b), followed by the large increase in AE values over northern Iran, Iraq,
and Central Asia from 2010 to 2018 (Figure 7c). Furthermore, the AE winter trends from
both the MERRA-2 (Figure 7) and AERONET data (Figure 5b,e) were highly anti-correlated
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(inversely correlated) with those of the AOD (Figure 4). To further detect and evaluate the
main reasons behind the significant change in winter the AOD trend around 2010, as well
as the main role of dust emissions, the variability in the main meteorological parameters
are investigated in the next section.
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3.2. The Wintertime AOD–Meteorology Interaction

Several meteorological factors that are directly or indirectly related to aerosol variations
have been investigated in previous studies, as they control the AOD changes and dust
lifecycle [65,67,68]. In this study, the linear trends of several meteorological parameters
(SM, RH, ST, TP, WS, and SLP), derived from ERA5 in winter, and the associated correlation
analysis with the MERRA-2 winter AODs over Iran and the surrounding areas are examined
in order to assess the influence of local/regional meteorology on the winter AOD variations
and trends during the 2000–2010 and 2010–2018 periods.

Negative winter SLP trends were observed during 2000–2010 (Figure 8a), and these were
accompanied by an increase in AOD and dust concentrations over Iran. During this period,
the anomalous southern winds, blowing from the major desert-dust sources in the Arabian
Peninsula, facilitated the transport of dry and dusty air masses to the Middle East region
and Iran, thus providing a positive feedback for the enhancement in dust activity during the
2010s, which, however, was also influenced by several other meteorological and soil factors,
especially during the drought shift after 2007 in the Mesopotamian plains [66,69]. In contrast,
positive winter sea level pressure trends, spatially averaged over the western part of Iran
and over Iraq, were observed during the second period (Figure 8b). During this time frame,
changes in synoptic weather patterns occurred over large spatial scales that carried wetter air
masses from the western to the Middle East region and decreased dust emission and transport.
Moreover, an inverse correlation between the MERRA-2 AOD and SLP during the winter
season was observed over major parts of Iran and Iraq during the period 2000–2010, which
was statistically significant over the Mesopotamian plains and in southern Iran (Figure 8c). A
previous study found that SLP was mainly responsible for aerosol changes over the Middle
East region [24]. Therefore, lower SLP values are generally associated with higher AODs,
and, consequently, dust emissions over the Middle East, the Arabian Peninsula, and Iran.
This highlights the role of cyclogenesis in dust outbreaks even during the winter period [70].
During wintertime, several dust events over the Middle East that affected Iran are highly
associated with cyclonic and frontal systems (frontal dust storms) and/or convective activity
in the presence of the Kurdish cut-off low over northern Iraq [7,71–73].
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Figure 8. Spatial distributions of the winter (DJF) linear trends in the ERA5-derived sea level pressure
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trends and correlations at a 95% confidence level (p < 0.05). Only statistically significant wind trends
(p < 0.05) are plotted in vectors.

The winter wind speed is significantly correlated with the AOD over Iraq and some
parts of western and southern Iran, while a significant wind speed–AOD correlation is
also observed in Central Asia (Figure 8d). This positive correlation clearly explains the
important role of wind in the desert areas of the Middle East for facilitating dust emissions,
even during wintertime when the least dust activity occurs [74–78]. Therefore, the current
analysis clearly indicates that wind speed variations play an important role in winter AOD
changes and dust activity over Iran and the surrounding regions (Figure 8d).
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The AOD over the EMME region is generally favored by a suitable atmospheric
environment of high temperatures and dry desert air conditions, especially in the dusty
spring/summer period [79–81]. In this respect, the decadal trends in ST over the Iranian
territory and the surrounding regions are analyzed during the two study periods (Figure 9).
The results do not show a prominent and statistically significant trend in ST, presenting
an overall declining tendency during the 2000s which is statistically significant only over
Central Asia. During the second period, 2010–2018, the temperature exhibits a decreasing
trend over the western part of Iran, Iraq, and southeastern Turkey (Figure 9b), while in
eastern Iran the trend becomes positive and statistically significant over Central Asia.
Surface temperature does not seem to highly affect the AOD variations in winter, and the
correlations between temperature and AOD are contradictory, with positive values over
Iraq and western Iran and negative values over central/eastern Iran, central Arabia, and
Central Asia (Figure 9c). However, the positive correlation between AOD and surface
temperature over the Iraqi plains in winter indicates that hotter weather conditions facilitate
higher dust emissions and AOD accumulation over the desert environment, although this
was not the case over the Central Iranian Plateau.
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Precipitation impacts the dust loading through various mechanisms, with rain scav-
enging the most efficient way to directly remove aerosols from the atmosphere [76]. This is
generally confirmed by the current analysis as well, since TP experienced downward and
upward trends, opposite to those of AOD, during the first and second periods, respectively
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(Figure 9d,e). The statistically significant negative trend in precipitation over the dusty re-
gion in Iraq and southwestern Iran during the first period (Figure 9d) seems to highly affect
the increase in dust loading and, in turn, AOD, as it creates favorable conditions for dust
outbreaks [66,82]. In contrast, after 2012, a general increase in precipitation was observed,
especially over southern Iran and the Arabian Peninsula (Figure 9e), which terminated
the extreme drought and restored the dust activity to more or less climatologically normal
levels. This explains the general decreasing AOD and dust trend over Iran and the Middle
East after 2012 [27,69,81].

Figure 9f also shows that TP was significantly inversely correlated with AOD over the
dust-source region of southern Iraq and southwestern Iran, while in other regions such as
eastern Iran, Afghanistan, and Central Asia, precipitation exhibits a positive correlation
with AOD, which may be attributed to the very low precipitation levels over these regions
and the occasional presence of dust storms under favorable weather conditions (frontal
systems) during winter.

To further analyze the possible reasons for the AOD variations and trends, Figure 10
demonstrates the decadal RH and soil moisture trends during the first and second periods,
as well as the spatial distributions of the correlations between AOD and RH and between
AOD and soil moisture during the whole study period (2000–2018). Over the Iraqi plains
and the western part of Iran, a significant negative RH trend was observed during the
period 2000–2010 and a significant positive RH trend was observed during the period
2010–2018, while reversed trends existed over eastern Iran. Since Iran is mostly affected by
dust coming from Iraq and Saudi Arabia [83,84], the negative RH trend during the period
2000–2010 indicate less humidity and more favorable conditions for dust emissions and
accumulation, thus resulting in an AOD increase. The increase in RH in western/northern
Iran during the period 2010–2018, also indicates conditions unfavorable for dust emissions,
while the decrease in RH in eastern Iran during the same period was not statistically
significant (Figure 10b). As was expected, RH was significantly inversely correlated with
AOD over the dusty regions of Iraq and southwestern Iran (Figure 10c), indicating that
increased RH is a negative feedback for dust AOD over the dust-source regions [82].

Trends in soil moisture during both periods are rather weak and statistically significant
only over the Zagros and Alborz Mountains (Figure 10d,e). Soil moisture trends generally
follow those of RH over these regions, and the spatial distribution of the correlation between
soil moisture and AOD (Figure 10f) was similar to that of RH. This correlation presents
statistically significant negative values over the western part of Iran and the arid regions
of Iraq and the central Arabian Peninsula, which indicate that soil moisture also affects
dust emissions and AOD variability during winter, as regions and periods with higher RH
were associated with lower AODs. The positive correlations between soil moisture and
AOD over parts of western Pakistan, Afghanistan, and Central Asia show that the winter
AODs and dust emissions in these regions are mostly influenced by other meteorological
parameters and different mechanisms, since an increase in soil moisture is a negative
feedback for dust emissions [76,85].

Overall, the current analysis has shown that the multi-decadal changes in several
meteorological factors are more or less responsible for the winter AOD trends over Iran and
the surrounding regions, as the changes in local/regional meteorology are consistent and
can explain the dust variability during the 2000–2010 and 2010–2018 periods. Therefore,
remarkable changes in meteorological parameters may highly affect dust activity over the
Middle East even during wintertime, the season with the lowest dust emissions, and may
also affect dust loading during the following spring season [81].
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4. Conclusions

By using the updated long-term AOD data from the MODIS observations and the
MERRA-2 reanalysis, we observed significant upward and downward winter AOD trends
over Iran during the periods 2000–2010 and 2010–2018, respectively. These results were
consistent with the AOD trends obtained from two AERONET sites in the Middle East
(Solar Village, Saudi Arabia and IABAS, Iran) and with the Ångström exponent and the
fine-mode fraction trends, which both showed an increase in coarse-mode aerosols (dust)
during the first period and a decrease afterwards. The winter MERRA-2 dust concentrations
were also highly related with the winter AOD trends during the 2000–2010 and 2010–2018
periods, indicating that dust is the major contributor to winter AOD variability over Iran.
Although dust activity is reduced during wintertime, its strong association with AOD
variations motivated us to examine the effect of various meteorological parameters that
affect dust emissions and accumulation. Therefore, trend and correlation analyses of ERA5
meteorological parameters were attempted to determine the main possible reasons behind
the winter AOD variations and trends.

The analyses revealed significant trends in SLP, TP, RH, and SM, as well as spatial
correlations with AOD over the dust-source regions of Iraq, north-central Saudi Arabia,
and southwestern Iran that mostly affect the dust aerosol loading over the Iranian territory.
The atmospheric circulation patterns and dust transport were mainly controlled by wind
speed and direction and were positively correlated with AOD. Increased cyclonicity over
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the Middle East during the period 2000–2010 was associated with increased winter AODs
and dust emissions, which were also facilitated by the decreasing trends in precipitation
and RH and the increasing trend in temperature over the major dust sources in Iraq and
southwestern Iran. In contrast, during the period 2010–2018, the declining trend in AOD
was associated with increases in SLP, rainfall, and RH, while AOD and soil moisture were
highly inversely correlated over Iraq and the western part of Iran, indicating negative
feedback for dust emissions in winter after the 2010–2012 period, an observation consistent
with previous works in the literature.

Overall, the analysis clearly revealed that during wintertime, regional changes in me-
teorological parameters contributed significantly to aerosol spatio-temporal variations and
trends and to the transportation of dust particles from the main dust sources in neighboring
areas to the Iran deserts. Further modeling work to identify the exact contributions of
the climate variables to the frequency of aerosol events over the Middle East in winter
is recommended.
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