
Citation: Ma, D.; Wu, R.; Xiao, D.;

Sui, B. Cloud Removal from Satellite

Images Using a Deep Learning

Model with the Cloud-Matting

Method. Remote Sens. 2023, 15, 904.

https://doi.org/10.3390/rs15040904

Academic Editor: Gwanggil Jeon

Received: 18 November 2022

Revised: 30 January 2023

Accepted: 4 February 2023

Published: 6 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Cloud Removal from Satellite Images Using a Deep Learning
Model with the Cloud-Matting Method
Deying Ma 1,2, Renzhe Wu 1,* , Dongsheng Xiao 2 and Baikai Sui 1

1 Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University,
Chengdu 611756, China

2 School of Civil Engineering and Geomatics, Southwest Petroleum University, Chengdu 610500, China
* Correspondence: mrwurenzhe@my.swjtu.edu.cn

Abstract: Clouds seriously limit the application of optical remote sensing images. In this paper, we
remove clouds from satellite images using a novel method that considers ground surface reflections
and cloud top reflections as a linear mixture of image elements from the perspective of image super-
position. We use a two-step convolutional neural network to extract the transparency information
of clouds and then recover the ground surface information of thin cloud regions. Given the poor
balance of the generated samples, this paper also improves the binary Tversky loss function and
applies it on multi-classification tasks. The model was validated on the simulated dataset and ALCD
dataset, respectively. The results show that this model outperformed other control group experiments
in cloud detection and removal. The model better locates the clouds in images with cloud matting,
which is built based on cloud detection. In addition, the model successfully recovers the surface
information of the thin cloud region when thick and thin clouds coexist, and it does not damage the
original image’s information.

Keywords: improved Tversky loss; two-step convolution model; cloud detection; cloud matting;
cloud removal

1. Introduction

In recent years, optical satellite remote sensing has become the primary survey and
monitoring means for disaster relief, geology, environment, and engineering construction,
which has introduced great convenience to the development of human science. However,
clouds are an unavoidable dynamic feature in optical remote sensing images. Global cloud
coverage in mid-latitude regions is about 35% [1], and global surface cloud coverage ranges
from 58% [2] to 66% [3]. High-quality images are not available almost all year round,
especially in areas with high water vapor content changes [4]. Clouds reduce the reliability
of remote sensing images and increase the difficulty of data processing [5].

Cloud detection is the first step in image de-clouding and restoration, which has re-
ceived much attention from researchers. There are many methods concerning the detection
of clouds and cloud shadows [6–13]. These methods can be divided into temporal and
non-temporal solutions in terms of the number of images or non-deep learning solutions
and deep learning [11–14] in terms of detection schemes. Foga et al. [15] summarized thir-
teen commonly used cloud detection methods and five cloud shadow detection methods.
They found that the accuracy of each cloud removal method has its advantages and disad-
vantages within different scenarios. Deep learning-based methods mainly segment clouds
in remote sensing images non-linearly with their solid-fitting ability. In the early years,
scholars used fully connected neural networks [16,17] for cloud detection. In recent years,
they primarily use convolutional neural networks [18,19] that are more suitable for image
processing. Mahajan et al. [20] investigated the main cloud detection methods from 2004
to 2018, and they found that neural networks can largely compensate for the limitations
of existing algorithms. The cloud detection scheme treats the detection process as a pixel
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classification, and it obtains a high-quality mask file but ignores the ground surface’s infor-
mation under the cloud. In order to solve the problem in which the inaccurate mask file
produces unsatisfactory results during cloud removal, Lin et al. [21] used the RTCR method
and the augmented Lagrange multiplier. However, in most cases, the signals received by
remote sensing imaging sensors are a superposition of the surface reflection signal and
the cloud reflection signal [22,23]. Simple classification methods only locate and identify
clouds in images but cannot estimate cloud amounts and recover surface information.
Li et al. [24] suggested a hybrid cloud detection algorithm by utilizing various algorithms
to their full potential. Clouds in images are usually mixed with surface information, and
different transparency leads to different superposition patterns. Therefore, it is better to
detect clouds by using a hybrid image element decomposition method.

Although there is a strong interconnection between cloud detection and cloud removal,
studies have always been conducted separately [22,23]. Many scholars use deep learning
techniques for single-image cloud removal. The widely used dark channel method has
excellent mathematical derivations [25]. However, its applicability may be limited due to
the imaging difference between satellite images and other images. Moreover, there are
some errors in transmittance estimations and the dark channel prior, so the images are
prone to dimming or are even distorted after cloud removal. The k-nearest neighbor (KNN)
matting [26] method falls under nonlocal matting. It assumes that the transparency of
a pixel can be described by weighting the transparency values of nonlocal pixels with
a similar appearance, such as matching the color and texture. The goal is to allow the
transparency value to propagate in nonlocal pixels. This includes laborious computations
due to the comparison with the nonlocal images. KNN matting improves nonlocal mat-
ting by only considering the first K neighbors in the high-dimensional feature space. It
reduces the amount of computation by only considering similarities between the color
and the position in their feature space. The drawback of this method is that it requires
a priori trimap as input and usually leaks pixels. Defining a general feature space with
few parameters is difficult. Closed-form matting [27] assumes that the reflectivity of the
foreground and background is the same in the local range of the sliding window and solves
the transmittance formula using the color-line model and the ridge regression optimization
algorithm. However, the clouds are easily overcorrected, and the solution requires an
accurate trilateral as an a priori input, which significantly limits the application of closed
extinction methods. The conditional generation countermeasure network (CGAN) [28] can
reconstruct damaged information well when entities are still visible. However, the number
of objects in remote-sensing images greatly increased. Therefore, the generative counter-
measure network exhibits noticeable distortions in the thick cloud area. Isola et al. [29]
proposed an image-to-image translation method (Pix2pix) based on CGAN to achieve
image-to-image generation, providing a new method for image de-clouding restoration.
Ramjyothi et al. [30] used GAN to repair the ground cover information under clouds in
remote sensing images. Pan et al. [22] and Emami et al. [31] introduced spatial attention to
GAN to control the redundancy of the model. Wen et al. [32] used a residual channel atten-
tion network for cloud removal. Via the solid-fitting ability of deep learning, the models
can effectively learn the difference between the features of clouded and cloudless images,
and then they can directly restore the absolute brightness value of the surface using image
reconstruction. Cloud removal based on generative adversarial networks for reconstructing
surface information is one of the trending research topics in recent years. However, the
biggest drawback of deep learning is that “it cannot admit that it does not know when
thin and thick clouds coexist”. The output of the models meets high metrics. However,
there is a big difference between created images and real images. The commonly used
cloud removal solutions for satellite images, especially for Sentinel-2, include Sen2cor [33],
Fmask [34], and S2cloudless [35]. Qiu et al. introduced Global Surface Water Occurrence
(GSWO) data based on Fmask3.3 and the global digital elevation model (DEM), and then
proposed the use of Fmask4 to improve the accuracy by 7.2% compared to the Sen2cor
algorithm specified by the European Space Agency (ESA) in version 2.5.5. Housman et al.
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proposed the cloud detection method S2cloudless by selecting ten bands of Sentinel-2 based
on the XGBoost and LightGBM tree learning algorithms for model inference, which is the
primary tool for Sentinel-hub cloud product production.

Other than the two-step “detection-removal” methods, Ji et al. [36] proposed a BC
smooth low-rank plus group sparse model to detect and remove clouds at the same time.

Cloud removal methods for a single image rarely consider cloud transparency informa-
tion. Surface information is often recovered approximately by interpolation or by mapping
convolutional layers based on relevant samples. In most cases, the information about areas
under thick clouds is completely lost. Cloud removal operations for such regions using
interpolation or mapping methods introduce significant errors and sometimes result in
useless images.

From the preceding description, this paper carries out experiments from a new cloud
detection paradigm by simulating the mixing relationship between surface information
and clouds, establishing a linear model based on the image superposition model. We
propose an integrated method for cloud detection, transparency estimation, and cloud
removal. This method can distinguish the foreground and background of mixed image
elements based on single-band images in order to achieve cloud removal in a single satellite
image. Considering that, the transparency of clouds varies in different bands of remote
sensing images, the reflected signal of clouds in the RGB channel is the same, and the blue
band is more sensitive to thin clouds. To promote the application of the model to multiple
bands in order to enhance the applicability and generalization ability of the model, this
paper uses the Sentinel-2 blue band for cloud-matting attempts. This idea mainly came
from applying deep learning in image-matting methods, which assume that the image’s
foreground and background are mixed by transparency information. The classic linear
superposition formula is shown in Equation (1) [37]. Image I can be decomposed into a
linear combination of foregrounds, F, and backgrounds, B:

I = αF + (1− α)B, α ∈ [0, 1] (1)

where α is the cloud’s opacity (α = [0, 1]). The convolutional neural network can acquire
deeper feature information about the target [19], so the alpha matte of the foreground
image estimated using the convolutional neural network can better remove the background
information and extract the foreground information out of the image [38–40]. Given the
poor balance of the generated samples, this paper also improves the binary Tversky loss
function for multi-classification tasks. Through the improved Tversky loss function, we can
automatically balance the weight of multi-class samples in the complex and changeable
generated samples and focus the model’s attention on a specific class or multi-class samples.
In this manner, we can improve the prediction results of hard segmentation, effectively
distinguish thin and thick cloud regions, and recover cloud and shadow regions based on
cloud transparency information.

2. Methodology
2.1. Remote Sensing Imaging Process

The cloud removal model proposed in this paper is a deep-learning-based assumption.
Therefore, we simplify atmospheric transport operations by not considering the scattering
of particles in the air as well as aerosols. As shown in Figure 1, cloud occlusion between
the satellite and the ground surface results in a superposition between the reflected energy
from the ground surface and the reflected energy from the cloud’s top in the final reflected
energy obtained.
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Figure 1. A schematic diagram of the remote sensing imaging process. The reflected energy received
by sensors is a linear superposition of the reflected energy from the cloud’s top and the reflected
energy from the surface for given cloud transparency.

Different solar incidence angles form shadows that weaken or completely cover surface
information. The pixel composition of the reflected signal intensity received by the remote
sensing imaging system is as follows:{

ε = (1− α)εground + αεcloud , (a)
ε = (1− α)εground , (b)

(2)

where (a) represents the received reflective intensity of area with clouds and (b) repre-
sents the received reflective intensity of area with cloud shadows. α is the cloud opacity
(α = [0, 1]), εground is the reflection intensity at the surface, and εcloud is the reflection inten-
sity at the top of the cloud. Note that we assume constant solar irradiation with respect
to clouds in the remote sensing image and a fixed cloud brightness (random sampling
4000–6000). Cloud brightness and transparency can be better balanced using sample
generation based on Equations (1) and (2).

2.2. Model and Algorithm

The automatic generation of cloud-trimap is the first part of our proposed model,
followed by the generation of a cloud-matting mask and cloud removal and, finally, the
refinement and optimization of the cloud-matting mask and cloud removal’s result. Our
model contains two convolutional networks, as shown in Figure 2. The first convolutional
network (green) is the T-Net (Trimap generate network) and the other network (blue) is
the M-Net (Matting network). The T-Net is a semantic segmentation model that detects
clouds on satellite images. This model generates a cloud-trimap, which can classify the
image into opaque clouds, transparent clouds (uncertain regions), and non-clouds. The
M-Net is an end-to-end pixel estimation model that uses a multi-output method to fuse the
model’s feature extraction results to estimate cloud transparency and residuals between
the recovered and original images. Both T-Net and M-Net encoders adopt the Atrous
spatial pyramid pooling (ASPP) structure at the bottom layer to represent more scaled
information of image features with fewer parameters. The entire model can significantly
improve prediction accuracies by model fusion and residual calculation. B, F, and U in
Figure 2 represent the background, foreground, and conflicted regions, respectively. The
output’s results are not activated using the Softmax function because the loss in the T-Net
training process contains cross-entropy errors. We can obtain BS and US by using the same
method and, obviously, FS + BS + US = 1 where 1 denotes the pixel value of each image
element in the feature map.

FS =
exp(F)

exp(F) + exp(B) + exp(U)
(3)
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Figure 2. Two-step cloud-matting model.

The output result of picking M-Net contains two parts. The first part, αr, mainly
predicts the transparency information of clouds in the image. When the pixel is located in
an uncertain region, this part is very likely to have transparent clouds. Otherwise, αr can
be filtered.

αp = FS + USαr (4)

αp is the refinement of αr; when US shifts towards 1, then FS shifts towards 0. At the
same time, αp shifts towards αr. When FS shifts towards 1, then US shifts towards 0 and
αp shifts towards FS ( αp → 1). This simple filtering method can improve the prediction
result’s confidence level. It also effectively shields background information interference
and directs the model’s attention to the region where the image’s elements are mixed. The
residuals between the predicted image and the cloud-free image are output by the M-Net,
allowing the recovery of images using cloud transparency and the preservation of the
original image’s features.

Taking the derivative of both sides of the Equation (1), we have the following.

∂B
∂α

=
I − F + (1− α)∂I/∂α

(1− α)2 (5)

From Equation (5), we can observe that when (1− α) shifts towards zero, even a
slight perturbation will result in a colossal mistake. The bottom map’s recovery is prone to
distortion. Permitting M-Net to directly recover the original surface’s information—which
is obscured by clouds—is unreliable without considering cloud transparency information.
The prediction results need to be masked for regions with poor reliability (the mask’s
threshold in Figure 2 is α ≥ 0.9). It is worth noting that the M-Net model’s input is the
channel’s superimposed feature map of both the T-Net’s input and output, and Softmax is
used to activate the T-Net’s output and project the feature value to [0,1].

Complex problems can be simplified by employing the two-step method. Compared
to the commonly used one-step method, the two-step method can fix a portion of the
parameters while training another portion, resulting in a smoother model optimization
process and faster training convergence. Interpretability improves over time, resulting in
more accurate predictions.
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For both T-Net and M-Net, we adopt the classic end-to-end (Sequence to Sequence,
Seq2Seq) structure, extract features via the encoder, and then fuse features via the decoder.
Due to a large number of parameters in the T-Net, a residual connection is adopted. Since
fewer parameters exist in the M-Net, the encoder and decoder channel stacking are adopted
to minimize information loss between feature maps. The encoding and decoding process
will still reduce the image’s sharpness when restored, so we will output the residuals to
recover the image to the maximum extent.

2.3. Loss Function

The model is evaluated using a combined loss function.
Pre-training T-Net: Our T-Net primarily uses the cross-entropy error as the error

function, according to Chen et al. [41]. The cross-entropy function is calculated using the
following formula.

Lcross = −
n

∑
i=1

xi log x̂i (6)

In Equation (6), [xi, x̂i] denotes the pixel value of the predicted cloud-trimap and
the real cloud-trimap, respectively. On the one hand, using only Lcross to generate cloud-
trimap is unsatisfactory because T-Net’s input categories are unbalanced, and the output’s
results are biased towards the background and conflicted regions, ignoring foreground
information. On the other hand, due to the sample generation scheme used in the paper, it
is challenging to add weights directly, making T-Net convergence difficult. The Tversky
function was created to solve the problem of unbalanced medical image classification
between focal and non-focal regions in machine learning by balancing the proportion of
false positives and false negatives in training [42], resulting in a higher callback rate and a
better balance between accuracy and sensitivity for the function. Therefore, we improve the
binary classification Tversky function to solve the problem of unbalanced T-Net samples.
In the binary classification problem, Tversky loss incorporates the benefits of focal loss [43]
and Dice loss [44,45], and it is applied to the image segmentation study with the following
formula transformation.

LTversky = 1− ∑n
i=1 Pxi Px̂i + S

∑n
i=1 [(2Pxi + 1)(1− α1Px̂i ) + α1Pxi ] + S

(7)

In the neural network’s training process, Pxi is the foreground probability of labeled
pixels, Px̂i is the foreground probability of predicted pixels, and α1 is the weight of control
parameters to balance the samples. We usually set 0 < S < 10−6 to ensure that the equation
holds, and LTversky is the corresponding loss function.

The Tversky weight balance function is designed for binary classification problems
and cannot directly apply to multiclassification problems. It is difficult to express the model
error with a fixed weight because the first step of our model generates a cloud-trimap
of images associated with multiple classifications. In addition, the trimap of each set of
images is uncertain. In this paper, we improve the Tversky loss function by assuming
that one or more classes of weights have a negative balance of significance. We build the
automatic balance loss function with the classification corresponding to the unique thermal
encoding channel.

TPk =
m0
∑

k=1

n
∑

i=1
Pk

xi
× Pk

x̂i

FPk =
n
∑

i=1
(

m1
∑

j=1
Pj

xi ×
m0
∑

k=1
Pk

x̂i
)

FNk =
n
∑

i=1
(

m0
∑

k=1
Pk

x̂i
×

m1
∑

j=1
Pj

xi )

(8)



Remote Sens. 2023, 15, 904 7 of 17


LTversky = 1−

m0
∑

k=1

TPk
(TPk+βFPk+(1−β)FNk+S)m0

n
∑

k=1
TPk > 0

LTversky =
m0
∑

k=1

FPk+FNk
(M×N)m0

n
∑

k=1
TPk = 0

(9)

In Equations (8) and (9), m0 is the image channel of interest after one-hot encoding;
m1 is the remaining channels included in the one-hot encoding; n is the number of pixels
of the image; [Px, Px̂] corresponds to the predicted classification and labeled classification,
respectively; k and j represent the kth channel and jth channel of the image, respectively;
β is the weight balance parameter; [TPk, FPk, FNk] denotes the true positive rate, false
positive rate, and false negative rate of the attention channel, respectively; [M, N] is the
training sample size of the image; LTversky is the loss value; S is the factor that prevents the
denominator from proceeding to zero.

We effectively extend the dichotomous classification method to multi-categorization
scenario applications by improving the Tversky loss function. The method does not require
obtaining the sample’s share in advance. It can automatically balance the sample’s weights
based on the samples’ distribution characteristics, which can still effectively adjust the
model’s attention in the case of there being significant differences in the number of multi-
categorization samples, ensuring that the model’s optimization process does not favor the
more dominant category.

It is worth noting that when TPk is 0, the loss function LTversky degrades significantly.
To compensate for the loss in model training, we concentrate on optimizing the loss
function’s balance to be applied to any multiclassification model. To compensate for the
model’s training degeneracy, we focus on optimizing the loss function’s balance to increase
its applicability. LTversky directs the gradient optimizer towards the channel of interest for
iterative optimization using the improved Tversky loss function. As the number of training
increases, the number of false positives increases. The LTversky gradient direction shifts to
reduce both false positives and false negatives for iterative optimizations. The T-Net loss
function is calculated by adding Lcross and LTversky.

LT−Net = 0.5(Lcross + LTversky) (10)

Freeze T-Net and training M-Net: we fixed the weight of the T-Net network to train
the M-Net after several rounds of iterative T-Net output results converged. The final output
of the model contains two parts: cloud transparency estimation, αp, and the recovered
image, Ipre. We express the accuracy of αp as L||α||2 and the reconstruction error as Lc. The
multi-scale expression of the distribution of Lms−ssim and the image element error in terms
of Ipre are included. The αp error function can be expressed as follows.

L||α||2 =

√
n

∑
i=1

(xi − x̂i)
2 (11)

Lc =

√
n

∑
i=1

(ci − ĉi)
2 (12)

In Equations (11) and (12), [xi, x̂i] represents the pixel values of predicted αp and actual
α, respectively, and [ci, ĉi] represents the pixel values of the synthetic cloud removal image
and the actual cloud-free remote sensing image pixel values, respectively. The synthetic
cloud removal image is generated from the actual background image and αp, according to
Equation (1).

We introduce MS-SSIM as the Ipre error function; MS-SSIM is an image quality evalua-
tion method that merges image details at different resolutions. It can evaluate two images
based on their brightness, contrast, and structural similarity. The MS-SSIM loss function is
calculated as shown in Equation (13).
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Lms−ssim = 1−
M

∏
m=1

(
2µpµg + c1

µ2
g + µ2

g + c1

)βm( 2σpg + c2

σ2
p + σ2

g + c2

)γm

(13)

M represents the scale factor, [µp, µg] denotes the mean value between the predicted
feature map and the actual image, [σp, σg] denotes the standard deviation between the
predicted image and the actual image, σpg denotes the covariance between the predicted
image and the actual image, [βm, γm] denotes the importance between the two multiplica-
tive terms, and [c1, c2] is a constant term used to prevent the divisor from being 0. It is
worth noting that the cloud occupation is usually tiny in remote sensing images. Therefore,
the loss value obtained by calculating the global error function is small and cannot guide
the optimization correctly.

We record the cloud-trimap output by the T-Net as the weight of the loss function,
ω, to solve the problem that M-Net’s error cannot be optimized to calculate the feature
mat’s local error (reduce the background error weight). Therefore, the Lms−ssim error
function is [µp, µg, σp, σg, σpg] = ω[µp, µg, σp, σg, σpg]. As shown in Equation (14), the M-
Net loss function combines the error functions of L||α||2 , Lc, and Lms−ssim. w denotes the
significant coefficient, which ensures that the image is similar to the actual image and
promotes the image’s element value to be more similar, and it will decrease as the number
of iterations increases.

LM−Net = w(L||α||2 + Lc) + (1− w)Lms−ssim (14)

3. Experiments
3.1. Datasets

Existing cloud datasets are primarily designed for cloud detection, and they are accom-
panied by a mask for distinguishing clouds from other regions, which cannot be used for
cloud-matting operations. As a result, we need simulated remote sensing cloud images as
the model’s data driver. Therefore, in this paper, we refer to traditional matting sample gen-
eration cases such as the alphamatting.com dataset [46], portrait image matting dataset [47],
classical remote sensing image cloud detection dataset, L7Irish [48], and L8SPARCS [49].
Cloud-matting samples were obtained from the blue band of the Sentinel-2 satellite, and
the samples were pooled into one image as the actual label of cloud transparency; the
cloud-free Sentinel-2 blue band image was used as the base image according to Equation (1)
to build the training and validation dataset required for the study.

We used Equation (2) to assume that the absolute brightness of clouds is consistent
within a specific range, and the cloud’s transparency primarily determines the variation
of cloud light and darkness; thus, at first, we used the Sentinel-2 images from the sea to
produce a normalized alpha layer based on the color range. We created a cloud-trimap
based on the transparency threshold and added an offset (50–150 pixels) to simulate cloud
shadows on this foundation. Secondly, we selected multi-scene Sentinel-2 images with few
clouds in different areas and at different times. Then, we used a slice index to rank and build
a cloudy area mask one by one in order to obtain a cloud-free remote sensing image base
map. Thirdly, the base image was randomly cropped to the specified size, and then training
and validation samples were generated using the cloud transparency image, shadow image,
and random cloud brightness. Finally, we generated a total of 50,000 samples, of which 20%
were used as the validation set, 5% were used as the prediction set, and 75% were used as
the training set. Figure 3 depicts the dataset construction scheme and the result.
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Figure 3. Cloud-matting dataset generation. Columns 1–3: The cloud-free image base map with
Sentinel-2 Band2. The cloud transparency information notation is α. The cloud shadow notation is
f (1− α), which is randomly generated according to cloud transparency, and f represents the offset
calculation. The fourth column is the trimap image of the cloud, and we set α > 0.9 relative to the
cloud-trimap foreground. The fifth column is the composite image with clouds.

Cloud-trimap is obtained using a 3 × 3 sliding window image expansion calculation
method based on cloud transparency. This aims to increase the tolerance of cloud detection
by incorporating all information on image elements that may be clouded into cloud-trimap,
and then they are further discriminated by the M-Net.

3.2. Evaluation Metrics

Our evaluation task involves cloud detection and cloud removal. The confusion matrix
statistics of precision, recall, and accuracy were used for the former. The specific calculation
is shown in Figure 4. For the latter, we used two methods to verify the results. 1. RMSE is
used to verify the accuracy of the alpha calculation directly, and 2. SSIM is used to calculate
the difference between the structural features of the predicted image and the real image.
3. The peak signal-to-noise ratio (PSNR) is also used. 4. The root mean square error (RMSE)
is used to directly count the pixel difference between the predicted and actual images.
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3.3. Implementation Details Evaluation Metrics

We compared and validated the cloud-matting method against the generated dataset
and the Sentinel-2 classification dataset ALCD established by Baetens et al. [50]. For better
verification, we also used three cloud detection methods and four de-clouding algorithms
to demonstrate its effectiveness.

The cloud detection methods used for comparisons include S2cloudless, which is
based on XGBoost and LightGBM tree gradient-boosting machine learning algorithms
used by Sentinel hub, the ESA’s (European Space Agency) atmospheric correction tool
Sen2cor2.09 [51], and the USGS’s (United States Geological Survey) remote sensing image
classification tool FMASK4.0. The other four cloud removal methods are as follows: dark
channel based on prior features, SpA-GAN based on attention mechanism, KNN-Image-
matting based on non-local similarity, and closed-form-matting based on image local
smoothness and color line model assumption.

We first validate the cloud detection performance on the ALCD dataset. As shown in
Figure 5, S2cloudless (p = 0.5), Sen2cor, FMASK4.0, and T-Net can effectively locate clouds
in the Sentinel-2 images. FMASK4.0 and T-Net detection results are more consistent with
the actual distribution of thin clouds. Sen2cor and S2cloudless tend to miss some thin cloud
features. Although S2cloudless can extract thin clouds better, as the threshold decreases, it
will lead to many misclassifications.
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S2cloudless (p = 0.5) and Sen2cor extracted more refined results and higher differen-
tiation between clouds and snow in thick cloud regions, whereas FMASK4.0 has a high
number of misclassifications due to the lower differentiation between clouds and snow.
The T-Net’s results are moderately granular compared to S2cloudless (p = 0.5) and Sen2cor.
The T-net model can effectively distinguish thick clouds from thin clouds in trimap because
the expansion factor is used in the training process. The T-Net distinguishes clouds and
snow better because we build the corresponding bottom map information to enhance the
difference between clouds and snow. The misclassification can be effectively reduced in
areas where clouds and snow are separated. We calculated five groups of indicators based
on thick and thin clouds to compare the cloud detection accuracy of the four models further,
and the results are shown in Table 1.

Table 1. Comparison of the accuracy of four cloud detection methods.

Methods Sen2cor S2cloudless Fmask4.0 Ours-TNet Label

Precision (thin cloud) 0.6837 0.7712 0.7762 0.7981
Recall (thin cloud) 0.9632 0.9400 0.9271 0.9445

Accuracy (thin cloud) 0.9458 0.9560 0.9550 0.9596
IoU (thin cloud) 0.6663 0.7351 0.7315 0.7551

Cloud content (thin cloud) 9.4740 12.975 17.271 16.315 15.815
Precision (thick cloud) 0.6658 0.7172 0.7699 0.8019

Recall (thick cloud) 0.8835 0.8757 0.8643 0.8665
Accuracy (thick cloud) 0.9409 0.9448 0.9477 0.9596

IoU (thick cloud) 0.6122 0.6509 0.6868 0.7254
Cloud content (thick cloud) 4.4960 5.7000 13.400 10.810 12.190

Even if two repeat-pass images are used, obtaining the same surface reflection infor-
mation is hard. We use a simulated dataset to assess the robustness and accuracy of the
cloud removal algorithm. As described in the Introduction section, closed form-matting
is similar to our scheme proposed in this paper. Therefore, we emphatically describe
the difference from the other three models, such as dark channel, SpA-GAN, and KNN
image matting. The cloud removal results are shown in Figure 6. Since most de-clouding
models are built using RGB color images, this paper creates a set of corresponding RGB
cloud images. The image data types are converted using an alpha superposition operation,
resulting in differences in image color parameters in human vision. However, the actual
image element’s reflection signals are unaffected.

Dark-channel, closed-form matting, and cloud matting can filter out thin clouds well
for image recovery when there are thick or cirrus clouds in the image. In Figure 6, we can
see that dark-channel, SpA-GAN, closed-form matting, and cloud matting show a better
cloud removal effect when only thin clouds appear in the image. We rank the overall cloud
removal effect as our cloud-matting method > SpA-GAN > Dark channel > Closed form
mating > KNN image mating. However, it is worth noting the following.

1. When using the dark-channel for remote sensing image de-clouding operations, the
estimated projection size is often inversely proportional to the overall brightness of the
remote sensing image, resulting in a weakening of feature brightness and a reduction in
the overall brightness of the image.

2. Although the SpA-GAN used in this paper performed migration learning on the
generated dataset, the results are unsatisfactory. The model’s inference results are close to
fitting adjacent image elements. This method is better for de-clouding restoration in thin
cloud regions, but in thick cloud regions the model tends to generate image elements with
similar characteristics to the entire image, resulting in significant distortions.

3. Both dark-channel and SpA-GAN process the entire image, so regardless of the
presence of clouds, both models modify the pixel values of the original image, resulting
in pixel distortions in the de-clouded image and making them unsuitable for quantitative,
qualitative remote sensing and other studies.
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4. KNN image matting and closed-form matting perform de-clouding by estimating
the transparency of clouds. However, these methods require a substantial amount of prior
manual inputs, such as accurate trimap and maximum reflected brightness of cloud tops.
The accuracy of the two models drops significantly or even fails when only thin clouds are
in the image. KNN image matting and closed-form matting are limited for cloud removal
over remote sensing images.
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We observed that the cloud transparency estimation image, i.e., opacity image α, can
be obtained using the de-clouded image as the background (Figure 7). Because image α
only has brightness variations, and it is no longer disturbed by the image’s background, it
can more intuitively reflect the effect of model de-clouding processes. The better the effect
of model de-clouding, the closer the brightness variation of the opacity image relative to the
label it represents. The degree of damage to the original image during model de-clouding
processes is represented by the purity of the opacity image.

According to Equation (2), α = (ε − εground)/(εcloud − εground). Theoretically, the
calculated α is greater than 0. The brightness of estimated α from the dark Channel is
closest to α̂, but the background of the α layer is disorderly. Most features are on this layer,
resulting in the serious distortion of thick cloud areas. The α obtained by SpA-GAN is
less stable, with significant variations in lightness, darkness, and purity, leading to image
distortion as well.
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KNN image matting is more accurate for α locations. The background of the obtained
α is purer than SpA-GAN. The estimation of the transparency probability value has a large
offset, making it difficult to recover the image accurately. Closed-form matting estimates
the brightness of α, and the purity of α is quite close to the label. However, there will be an
underestimation, leading to poor cloud removal effects.

Although there are various methods for single remote sensing image de-clouding,
cloud matting can better maintain the original image element information and is less likely
to cause image distortion, as shown in the above comparison. We used 640 sets of sliced
image pairs to evaluate the restored images in terms of RMSE, SSIM, and PSNR to compare
the effect of the five models further. Table 2 shows the results of the evaluation. The SpA-
GAN and cloud-matting methods produce the most accurate de-clouding results and cloud
transparency. The SpA-GAN metric results are very similar to cloud matting, especially
in the mean and minimum values of image de-clouding recovery, which are significantly
higher than other methods. However, this is the metric trap of SpA-GAN, which employs a
Nash equilibrium-trained model. SpA-GAN uses the model obtained by Nash equilibrium
training. Rather than removing the cloud by using the model, the better explanation is that
SpA-GAN creates a pixel to minimize the loss function via the generator. Therefore, the
model’s accuracy is often high, but the results can be better. As shown in Figures 6 and 7,
the result of SpA-GAN in the fourth row of the image is PSNR(Image) = 20.669, while the
result of our cloud-matting is PSNR(Image) = 2.820. The image element information in the
thick cloud region is completely covered. The thicker the cloud, the lower the reliability of
the cloud’s removal result. It is impossible to remove thick clouds by using only one image.
The results of SpA-GAN have significant errors, but the overall brightness and structure
of the image are very similar to the original one, which lead to large errors. In contrast,
cloud-matting results have a higher confidence level. It performs thin cloud removal well
in the presence of both thick and thin clouds without damaging the original image.

Table 2. Comparison of five cloud removal methods. The optimal value, average value, and worst
value of the cloud removal result are represented by green, blue, and red, respectively.

Metrics Dark-Channel SpA-GAN KNN Image Matting Closed-Form Matting Ours

RMSE (Image)
0.0233 0.0121 0.0073 0.0065 0.0025
0.1234 0.1098 0.8620 0.1429 0.2121
0.3396 0.3788 7.1633 1.1419 3.2967

SSIM (Image)
0.8198 0.9959 0.9922 0.9942 0.9992
0.4115 0.8321 0.6153 0.7418 0.8120
0.1542 0.2570 0.0276 0.1404 0.1040

PSNR (Image)
32.6296 44.1723 42.6939 43.6871 51.8999
19.3394 26.7704 11.1344 20.0632 23.8369
9.3797 8.4318 −17.1023 −1.1526 −10.3616

RMSE (Alpha)
0.0059 0.0071 0.0129 0.0159 0.0067
0.0803 0.0314 0.2382 0.1141 0.0263
0.2993 0.0793 0.8259 0.6057 0.0791

SSIM (Alpha)
0.9928 0.9941 0.9893 0.9953 0.9967
0.8171 0.8616 0.7537 0.8588 0.9810
0.4960 0.6412 0.0000 0.4268 0.9350

PSNR (Alpha)
44.5602 43.1151 37.7872 35.9338 43.3984
23.8009 30.5172 17.0365 21.1993 32.7192
10.4768 23.1798 1.6613 4.3540 22.0270
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4. Discussion

Tversky is an efficient and excellent balance loss function for two-class samples. This
paper expanded it to multi-class applications. It is suitable for the dataset that we generated
and can be effectively applied to other types of negative balance sample research without
manual work. Setting the weights can automatically balance the weights of the samples.

Dark channel transmittance estimation has the drawback of not adhering to the
imaging mechanism of remote sensing images, causing the image to be enhanced or
weakened depending on the brightness of the pixels. The approximate pixels will still be
output, resulting in a sharp drop in the model’s reliability.

Generally speaking, GAN added a discriminator based on CNN, which makes the
generated image close to the domain of the target image through the Nash equilibrium
principle. Therefore, GAN has an additional constraint than CNN. The discriminator
calculates the distance between the generated and target image domains, which leads to
the fact that the results obtained by GAN on this basis are more in line with human vision.
The disadvantage of the methods of CGANs is that the generated data points conform
to image distribution characteristics. Furthermore, commonly used single-image cloud
removal methods will damage the original remote sensing image’s reflection information,
resulting in inconsistent brightness changes in the input and output images.

It is not reasonable to directly apply the SpA-GAN to pin the clouded images to
cloudless images. SpA-GAN is an image translation network with an attention mechanism
that can be well applied to image restoration tasks. However, if SpA-GAN removes clouds
from a single remote sensing image, the obtained cloud removal results must be over-
corrected. Since the model learns the mapping from cloudy to cloudless images, it must
generate pixels similar to the target domain (cloudless image) in the cloud coverage area.
However, clouds in remote sensing images usually cover multiple entities rather than a
part of them, which is troublesome for image restoration tasks. Therefore, SpA-GAN and
other generated countermeasures networks will output a pixel deception discriminator
subject to the target domain. It is challenging to locate these overcorrected pixels, resulting
in errors in the cloudless image. Since the characteristics of the cloud are similar to a noise,
the discriminator considers the output image true as long as it detects that the generated
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image conforms to the reasonable noise distribution. However, the generator can easily
acquire noise signal and deceive the discriminator. The loss function value provided by the
discriminator then is almost meaningless. SpA-GAN degenerates into a CNN network that
only relies on the generator and image similarity loss.

In contrast, our cloud-matting model is of great significance for cloud removal. As
long as the cloud can be accurately segmented from remote sensing images, cloud removal
can be completed without damaging the image surface information. There are many mature
methods in the field of cloud detection. The model structure adopted by our method is
simple. The model includes only an essential multi-scale image segmentation analysis.
Therefore, the accuracy has much room to improve in the future. In the following study,
we will perform the following: 1. The model will be improved and trained with the more
reliable and advanced backbone. 2. The difficulty of model training and migration will
be reduced by combining two-step and one-step methods. 3. The image base maps of
heterogeneous areas will be collected to improve the cloud removal results of the model.

5. Conclusions

In this paper, based on the principle of image superposition, we studied the cloud
removal of remote sensing images from a new perspective and discussed the principles,
advantages, and disadvantages of various single-image cloud removal methods. A set of
simulated cloud map generation schemes have been established and is open source. The
following conclusions can be drawn from the research findings.

1. The traditional cloud removal models for a single image can only restore the surface
information covered by thin clouds. The model’s reliability is significantly reduced when
thick and thin clouds coexist.

2. Our cloud-matting scheme only takes the reflection intensity at the top of the cloud
into consideration, which is more in line with the imaging mechanism of remote sensing
images.

3. Our cloud-matting scheme uses cloud detection to restore surface information based
on cloud opacity. It is easily mathematically interpretable, and it does not affect the original
cloud-free areas.

4. The experiment results show that our cloud-matting method outperforms other
methods. It is worth noting that the GAN image element’s reconstruction ability is powerful
in the cloud removal index, but it can easily appear “fabricated” when thick and thin
clouds coexist.

5. Using deep learning combined with cloud matting to remove clouds from a single re-
mote sensing image can effectively establish a cloud mask and show good anti-interference
performances when thick clouds and thin clouds coexist without damaging the surface
information of the original image. Cloud removal with a combination model is a valuable
research direction, and we will continue to work in this direction.
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