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Abstract: Urban heat islands are representative problems in urban environments. The impact of
spectral indexes on land-surface temperature (LST) under different urban forms, climates, and
functions is not fully understood. Local climate zones (LCZs) are used to characterize heterogeneous
cities. In this study, we quantified the contribution of three cities to high-temperature zones and
surface urban heat island intensity (SUHII) across LCZs and seasons, used Welch and Games–Howell
tests to analyze the difference in LST, then described the spatial pattern characteristics of LST, and
used a geographically weighted regression model to analyze the relationship between spectral indexes
and LST. The results showed that compact midrise, compact low-rise (LCZ 3), large low-rise (LCZ 8),
heavy industry (LCZ 10), and bare rock or paved (LCZ E) contributed greatly to high-temperature
zones and had strong SUHII. There were 92–98% significant differences between different LCZs.
The spatial aggregation of LST gradually weakened with a decrease in temperature. The modified
normalized difference water index (MNDWI) in most LCZs of all seasons for Wuhan could reduce
LST well, while MNDWI only had cooling effects in winter for Nanjing and Shanghai. Normalized
difference vegetation index (NDVI) in most LCZs performed a cooling role during summer and
transition seasons (spring and autumn), while it showed a warming effect in winter. The cooling
effect of NDVI in open building types was stronger than that of compact building types, while the
cooling effect of MNDWI was better in compact building types than in open building types. With
the increase of normalized difference built-up index (NDBI), all LCZs showed warming effects, and
the magnitude of LST increase varied in different cities and seasons. These results contribute further
insight into thermal environment in heterogeneous urban areas.

Keywords: spectral indexes; local climate zones; surface urban heat island intensity; urban heat
islands; land surface temperature; geographically weighted regression

1. Introduction

Urbanization is an important trend in global development [1]. More than half of the
world’s population lives in cities, which is expected to rise to 66% by 2050 with further
urbanization [2]. The process of urbanization, especially in China, has accelerated since
the late 1970s [3]. Rapid urbanization has caused a widespread land use conversion from
natural vegetation and agricultural landscapes to impervious surfaces. This transformation
is usually accompanied by dramatic changes in the energy exchange between the urban
surface and the atmosphere, which has led to numerous ecological and environmental
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problems [4]. Urban heat island (UHI) is a common environmental problem [5], defined
as a phenomenon that urban cores are usually warmer than their rural surroundings [6].
Detrimental effects of UHI have been widely reported, and it has increased building
cooling consumption [7], worsened air pollutants [8], seriously harmed human health, and
even raised heat-related deaths of urban residents [9], altered species composition and
abundance [10], and synergized with global climate change [11]. In cold climates, UHIs
have some benefits, including reduced energy consumption, improved thermal comfort,
and reduced cold-related mortality [12]. Therefore, it is extremely important to further
understand UHI in highly heterogeneous urban environments, which can help urban
planners and policymakers to propose adaptive measures.

Surface urban heat island (SUHI) driven by remote sensing has been greatly de-
veloped due to the advantages of easy access, wide spatial distribution, and short time
interval [12–14]. Land surface temperature (LST) is used to characterize SUHI, and the
relationships between LST and influencing factors are widely quantified [13]. These influ-
encing factors include land cover, urban form (building density, building height, and sky
view factor), socioeconomic indicators (nighttime lights, gross domestic product, and pop-
ulation), spectral indices, climate conditions (air temperature, precipitation, and humidity),
anthropogenic emission of heat, and materials of impervious surfaces [13–18]. Different
types of land cover significantly affect LST variation and are described by many spectral
indices, which are easy to obtain from remote sensing information and contain rich land
cover information [19]. Modified normalized difference water index (MNDWI) shows a
negative correlation with LST [20]. Normalized difference vegetation index (NDVI) is used
to describe vegetation status and greenness, and it has a significant negative correlation
with LST [12]. Normalized-difference built-up index (NDBI) describes building charac-
teristics, is an indicator of grey infrastructure, and has a significant positive correlation
with LST [19]. Peng et al. (2018) indicated that the dominant factors affecting LST were
NDBI in summer and NDVI in the transition season and winter, and these indices had more
explanations than land cover indexes [19]. Xie et al. (2018) indicated that LST decreased by
1.4, 1.7, 1.3, and 1.8 ◦C for each 0.1 increase in NDVI for built-up areas, farmland, grassland,
and forest, respectively [20]. Liu et al. (2022) indicated that every 0.1 unit of NDVI and
NDMI would have cooling effects of 1.1 to 2.0 and 2.8 to 4.1 ◦C, respectively, while NDBI
would result in a warming effect of 1.4 to 2.3 ◦C [21].

Although these previous studies investigated the relationships between spectral in-
dices and LST [22–27], most of these studies analyzed their relationships on a whole-city
or land cover basis, and the relationship between urban landscape categories and LST
under different urban forms, climate, and functions were not adequately studied due to
the high heterogeneity of urban areas. Therefore, it is very necessary to study the relation-
ships between spectral indices and LST under different urban landscapes based on the
classification framework of urban forms, climate, and function. Local climate zone (LCZ)
provides a unified classification framework for urban form, climate, and function [28,29].
LCZ is defined as a relatively homogeneous area with structure, material, and human
activity including 10 built types and 7 land cover types, and more classification details
can be found in Stewart and Oke’s (2012) study [30]. The LCZ framework incorporates
different aspects of urban forms, such as sky view factor, aspect ratio, building surface
fraction, height of rough elements, terrain roughness class, and significant differences
of climate [31,32], representing diverse urban functions: the functions of LCZ A and B
correlate with natural forest, tree cultivation, or urban park; LCZ D with natural grassland,
agriculture, or urban park; LCZ E with natural desert or urban transportation, and so on.
LCZ classification has become a new classification for characterizing urban landscapes, as
it is coupled with key factors influencing LST [1]. Therefore, to explore the relationship
between spectral indexes and LST under different urban forms, climates, and functions,
this study intends to analyze the relationship between MNDWI, NDVI, NDBI, and LST
in different LCZs. The main objectives of this study are to (1) investigate the contribution
of different LCZs to high-temperature zones and the surface heat island intensity (SUHII)
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characteristics of different LCZs; (2) determine whether there are significant differences
in LST under different LCZs; (3) characterize the spatial pattern characteristics of LST in
different cities and seasons; and (4) quantify the relationships between spectral indices and
LST under different LCZs. This study is expected to help urban planners and policymakers
to better formulate development policies to mitigate UHI by understanding the thermal
environment under the urban forms, climate, and functions described by LCZs.

2. Materials and Methods
2.1. Study Area

We selected the central districts of three cities—Wuhan, Nanjing, and Shanghai—as
study areas (Figure 1). These are major cities in the Yangtze River, i.e., the capital of
Hubei province, the capital of Jiangsu province, and a municipality directly under the
central government, China, respectively. These cities are among the top 10 municipalities
and provincial capitals in China in terms of regional GDP and had a resident population
of over 9 million people in 2020. All cities are similar in climate background (Chinese
climate zoning class 2—Jiangbei district and subtropical monsoon climate and abundant
rainfall) (Figure 1a). They have experienced serious UHI with the rapid development of
urbanization and high population density [33,34].
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2.2. Data Collection

The Landsat 8 data (LANDSAT/LC08/C02/T1_L2) came from the Google Earth En-
gine (https://earthengine.google.com/ (accessed on 1 April 2022)) in which all bands have
been calibrated radiometrically and atmospherically. LST came from Landsat8 “ST_B10”
band, inverted by a single-channel algorithm. Landsat 8 with cloud coverage greater than
20 were rejected, and the areas covered by clouds in Landsat 8 were masked. Missing values
were first filled using close times for neighboring years, and the rest were interpolated
using a co-Kriging method. Due to the poor quality of summer data in Nanjing, the median
synthesis method was used to characterize the summer data in 2020. More information
about data, cloud cover, and path/row number of Landsat 8 can be found in Table A1.

In this study, summer includes June, July and August; transitional seasons include
March, April, May, September, October, and November; winter includes December, January,
and February of the following year. Transition seasons were calculated from the mean
values of spring (March, April, and May) and autumn (September, October, and November)
due to the similar patterns of UHI in spring and autumn [35,36].

2.3. Methods
2.3.1. Spectral Indexes

In this study, we selected MNDWI, NDVI, and NDBI as spectral indexes. The Equa-
tions (1)–(3) were calculated as follows:

MNDWI =
ρGREEN − ρSWIR1

ρGREEN + ρSWIR1
, (1)

NDVI =
ρNIR − ρRED

ρNIR + ρRED
, (2)

NDBI =
ρSWIR1 − ρNIR

ρSWIR1 + ρNIR
, (3)

where ρNIR is the near-infrared band, ρRED is the red band, ρSWIR1 is the short-wave
infrared band, and ρGREEN is the green band.

2.3.2. Classification of Local Climate Zones

We used the LCZ Generator proposed by Demuzere (2021) to classify LCZs, which is
based on the classical World Urban Database and Access Portal Tools (WUDAPT) workflow,
using Landsat data and combining Sentinel-1, Sentinel-2, global forest canopy height, digital
elevation model, and other earth observation data by the random forest algorithm [37].
LCZ Generator has more robust accuracy assessments during the production of LCZ and
allows convenient quality control by allowing the user to revise training area, as the website
integrates the WUDAPT process and only requires training data of each LCZ to the URL
(https://lcz-generator.rub.de (accessed on 30 January 2022)) to generate classification
results and quality assessment. More processes about LCZs can be found in Figure A1. In
this study, the training data for the entire cities of Wuhan, Nanjing, and Shanghai in 2020
were created in Google Earth Pro, where 1997, 1443, and 1716 polygons were obtained for
generating LCZs, respectively. Description of LCZs can be found in Table 1.

2.3.3. Contribution of High-Temperature Zone

Based on previous studies [38–40], we used the natural breakpoint method to clas-
sify the LST in different cities and seasons into four categories: high-temperature zone,
sub-high-temperature zone, sub-low-temperature zone, and low-temperature zone. The
contribution index (CI) was used to describe the thermal contribution of each LCZ to the
high-temperature zone. The formula is as follows:

CI =
Shi
Si

/
Sh
S

, (4)

https://earthengine.google.com/
https://lcz-generator.rub.de
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Table 1. Definitions of local climate zones.

Built Types Land Cover Types
Class Description Class Description

LCZ 1 Compact high-rise LCZ A Dense trees
LCZ 2 Compact mid-rise LCZ B Scattered trees
LCZ 3 Compact low-rise LCZ C Bush, scrub
LCZ 4 Open high-rise LCZ D Low plants
LCZ 5 Open mid-rise LCZ E Bare rock or paved
LCZ 6 Open low-rise LCZ F Bare soil or sand
LCZ 8 Large low-rise LCZ G Water
LCZ 9 Sparsely built
LCZ 10 Heavy industry

where i is the index of LCZ type, Shi is the area of the high-temperature zone in a type
i LCZ, Si is the area of a type i LCZ, and S is the total area of the central district. CI > 1
indicates that the distribution frequency of the high-temperature zone under the LCZ type
is higher than that of the central district and provides a positive contribution to the thermal
environment of the central district; CI < 1 indicates that the LCZ type provides a negative
contribution to the thermal environment of the central district.

2.3.4. Analysis of Surface Urban Heat Islands Intensity

The SUHII is defined as the difference in LST between a particular type of LCZ
and LCZ D (low vegetation), as LCZ D could characterize non-urban landscapes and
reflect spatial variation [30,32,41]. To investigate the seasonal variation in SUHII for each
LCZ, SUHII was calculated for the three cities in different seasons. SUHII was calculated
as follows:

SUHIILCZ X = LSTLCZ X − LSTLCZ D, (5)

where LCZ X is type X of LCZ, SUHIILCZ X is SUHII of LCZ X, LSTLCZ X is the mean of LST
in LCZ X, and LSTLCZ D is the mean of LST in LCZ D.

2.3.5. Analysis of Variance and Post Hoc Test

Analysis of variance (ANOVA) was used to compare whether there were significant
differences in LST between LCZs. ANOVA requires assumptions of normality and homo-
geneity of variance [42]. Shapiro–Wilk and Kolmogorov–Smirnov tests were used to test for
normality of LST in each type of LCZ, and the Levene test was used to test for homogeneity
of variance. Tables A2 and A3 showed that both normality and homogeneity of variance
did not pass significance. Therefore, the Welch’s ANOVA and Games–Howell post hoc test
were used to determine significant differences in LST of LCZ. These are, respectively, the
classical and alternative method when the prerequisites of normality and homogeneity of
variance are not met [43].

2.3.6. Spatial Pattern Characteristics of Land Surface Temperature

In this study, the global and local Moran index were used to quantify the spatial
autocorrelation characteristics of LST in different seasons. The global Moran index was
calculated as shown:

I =
∑n

i=1 ∑n
j=1 wij(x .

l
− x

)(
xj − x

)
σ2∑n

i=1 ∑n
j=1 wij

, (6)

σ =
1
n

n

∑
i=1

(xi − x)2, (7)

where n represents the number of grids in the study area; xi and xj represent the LST of
grids i and j, respectively; x is the average of all grids in the study area; wij is the spatial
weight matrix of grids i and j; and σ is the standard deviation of all grids in the study area.
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The local Moran index was calculated as shown:

IL =
∑n

i=1 ∑n
j=1 wij(xi − x)(xJ − x)

σ2 , (8)

Moran indexes ranged from [−1, 1], where if it is less than 0, there is a negative
correlation; greater than 0 means a positive correlation; and equal to 0 means no correlation.
The results of local Moran index can be classified into four types: high–high, low–low,
high–low, and low–high. The high–high or low–low type refers to the aggregation charac-
teristics of high or low LST, while the high–low or low–high type refers to the aggregation
characteristics of high or low LST surrounded by low or high surface temperatures.

2.3.7. Geographically Weighted Regression

Geographically weighted regression (GWR) is an improvement on ordinary least
squares, as its regression coefficients are not global but vary with space. It is a local
regression and can be used to explore the spatial non-stationarity of influence factors [44].
GWR is calculated as follows:

yi = β0(ui, vi) + ∑
k
βk(ui, vi)xik + εi, (9)

where yi is the LST of grid i, (ui, vi) is the spatial coordinate of grid i, β0(ui, vi) is the
intercept of grid i, k is the number of explanatory variables (MNDWI, NDVI, and NDBI)
and equals 1 due to collinearity problems in these explanatory variables, βk(ui, vi) is the
regression coefficient of grid i at (ui, vi), and xik is the value of the kth MNDWI, NDVI, or
NDBI at grid i; εi is the residual of grid i.

3. Results
3.1. Statistical Characteristics of Spectral Indexes and LST

The statistical characteristics of spectral indexes and LST are described in Table 2.
There were seasonal variations in MNDWI, NDVI, NDBI, and LST. The highest LST in
summer, transition season, and winter was in Shanghai; the lowest LST values for each
season were in Nanjing, Wuhan, and Wuhan, respectively. Wuhan had the highest MNDWI
values in all seasons, and the lowest were in Shanghai, Shanghai, and Nanjing, respectively.
Shanghai had the highest NDBI in different seasons, but the lowest was in Wuhan. The
highest NDVI in different seasons was in Nanjing, and the lowest values were in Nanjing,
Shanghai, and Shanghai, respectively. The dispersion of LST, MNDWI, NDVI, and NDBI
between seasons was the largest in Wuhan, especially from summer to the transition season,
which might be due to the rich LCZ type of land cover.

Table 2. Statistical characteristics of MNDWI, NDVI, NDBI, and LST.

City Season LST (◦C) MNDWI NDBI NDVI

Wuhan
Summer 44.00 ± 7.02 −0.14 ± 0.45 −0.18 ± 0.19 0.28 ± 0.41

Transition season 27.57 ± 4.25 −0.10 ± 0.34 −0.16 ± 0.13 0.25 ± 0.29
Winter 11.65 ± 1.89 0.001 ± 0.31 −0.11 ± 0.14 0.12 ± 0.21

Nanjing
Summer 39.20 ± 4.16 −0.25 ± 0.25 −0.18 ± 0.13 0.42 ± 0.25

Transition season 27.93 ± 2.84 −0.20 ± 0.24 −0.14 ± 0.11 0.33 ± 0.22
Winter 15.63 ± 2.40 −0.19 ± 0.26 −0.05 ± 0.11 0.21 ± 0.20

Shanghai
Summer 45.25 ± 3.46 −0.26 ± 0.19 −0.14 ± 0.13 0.38 ± 0.24

Transition season 37.15 ± 3.28 −0.25 ± 0.16 −0.12 ± 0.13 0.34 ± 0.22
Winter 15.75 ± 2.22 −0.17 ± 0.17 −0.07 ± 0.10 0.22 ± 0.16

The magnitude of decrease in LST, MNDWI, NDBI, and NDVI varied among cities
between seasons. These indicators showed the greatest decrease from the transition season
to winter compared to the decrease from summer to the transition season. The reductions in
LST and MNDWI were ranked from Wuhan (57.74% and 101.00%), Shanghai (57.60% and
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32.00%), and Nanjing (44.04% and 5.00%), respectively, while the decreases from summer
to the transition season were from Wuhan (37.34% and 28.57%), Nanjing (28.75% and
20.00%), and Shanghai (17.90% and 3.85%), respectively. Unlike LST and MNDWI, the
declines in NDBI from the transition season to winter were in Nanjing (64.29%), Shanghai
(41.67%), and Wuhan (31.25%); the reductions from summer to transition season were
ranked by Nanjing (22.22%), Shanghai (14.29%), and Wuhan (11.11%), respectively. The
NDVI in Wuhan, Nanjing, and Shanghai decreased by 52.00%, 36.36%, and 35.29% from
the transition season to winter, respectively, but decreased by 10.71%, 21.43%, and 10.53%
from summer to the transition season, respectively. Compared with Shanghai and Nanjing,
Wuhan has abundant agricultural land within the main urban area, and the harvesting of
crops leads to an increase in LST and large fluctuations in MNDWI and NDVI.

3.2. Classification of Local Climate Zones

The classification of LCZs was carried out based on a random forest algorithm, where
70% of the polygon data were used for training and 30% for testing. Four metrics were
used to describe the classification accuracy: overall accuracy (OA), overall accuracy for the
urban LCZ classes only (OAu), overall accuracy of the built vs. natural LCZ classes only
(OAbu), and weighted accuracy (OAw). OA and OAu can reflect the percentage of cells that
are correctly classified for all LCZs and for built type LCZs, respectively, while OAbu is the
overall accuracy for building vs. land cover LCZs, and OAw is calculated by weighting the
confusion matrix. The OA, OAu, OAbu, and OAw were 0.86, 0.76, 0.97, and 0.97 for Wuhan;
0.81, 0.70, 0.97, and 0.96 for Nanjing; and 0.79, 0.74, 0.94, and 0.95 for Shanghai, respectively.
These results have better accuracy than those in previous studies [45,46] due to the support
of a large number of training samples and could reflect LCZs more accurately. The spatial
distribution and the percentage of each type of LCZ are shown in Figure 2. The percentage
of building types exceeded 50% in all cities, ranked from highest to lowest in Shanghai,
Nanjing, and Wuhan, respectively. All cities had been dominated by open LCZ 4 and LCZ
5, which were more than one-third. In all cities, land cover types were dominated by LCZ
D and LCZ G, and Wuhan had the highest percentage of these land cover types, with nearly
50%. Built types of high density were arranged in LCZ G (Yangtze and Huangpu rivers).

3.3. Contribution of Local Climatic Zones to High-Temperature Zones

Figure 3 depicts the contribution of each LCZ in the three cities to their central district,
with heterogeneity and seasonal variations. In summer, CIs of LCZ 1, 2, 3, 8, 10, and E were
greater than other LCZs in the three cities, indicating that these LCZ types contributed
positively to high-temperature zones in the central district, increasing the thermal risk.
LCZ 4, 5, and 6 showed differences in CIs across cities, which may be related to differences
in land composition among LCZ types. In contrast, CIs of LCZ 9, A, B, C, D, F, and G were
less than 1, which means that these LCZs contributed negatively to high-temperature zones,
and increasing these LCZs could reduce LST well. In the transition seasons, LCZ 2, 3, 5,
8, 10, and E contributed positively, and LCZ 9, A, B, D, and G contributed negatively; in
winter, LCZs with positive contributions to the high-temperature zones gradually decreased
and only included LCZ 2, 8, 10, and F. Concurrently, LCZs with negative contribution to
high-temperature zones were LCZ 5, 6, 9, A, B, D, and G.

3.4. Surface Urban Heat Island Intensity

The results of SUHII are shown in Figure 4. They exhibits significant seasonal vari-
ations due to differences in radiation intensity and sunshine duration between seasons,
with the strongest SUHII in summer, followed by the transitional seasons, and the lowest
SUHII in winter. SUHII in summer was most prominent and significant, which is consistent
with previous studies [18]. For the magnitude of SUHII, although differences appear across
cities, LCZ 2, 3, 8, 10, and E had the higher SUHIIs in all cities and seasons, while the
SUHII of LCZ A and G was lower. The SUHII of LCZ 1 was less than that of LCZ 4 in most
cases, probably due to the mutual shading between buildings in LCZ 1 blocking part of the
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radiation. SUHIIs of LCZ 2 and LCZ 3 were both stronger than those of LCZ 5 and LCZ 6.
It can be found that the magnitudes of SUHII in Wuhan were the largest in summer and the
transition season at 21.41 and 12.31 ◦C, respectively, which might be due to the abundant
land cover type in the central district of Wuhan, especially LCZ D, accounting for more
than one-fourth. The magnitude of SUHII in winter was not as large as in other seasons.
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Figure 2. Spatial distribution and pie charts of LCZ in three cities: (a–c) are spatial distributions of
local climate zones at Wuhan, Nanjing, and Shanghai; (d–f) show pie chart of local climate zones at
Wuhan, Nanjing, and Shanghai, respectively.

3.5. Analysis of Variance and Post Hoc Comparisons

The results of Welch’s test showed significant differences (p < 0.05) between LCZs
in all cities and seasons (Table 3). The Games–Howell test was applied to test whether
there was a significant difference between any two LCZs. The results showed significant
differences in more than 90% of the two-way comparisons; specifically, the percentages
in Wuhan with significant differences in summer, transition season, and winter were 95%,
92%, and 94%, respectively; in Nanjing, 98%, 97%, and 93%; and in Shanghai, 95%, 98%,
and 93%, respectively (Figure 5). In general, the percentage with significant differences was
lower in winter compared to other seasons.
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Table 3. Results of Welch tests in different local climate zones.

City Season Statistic df1 df2 Significance

Wuhan
Summer 19,310.390 15 1028.742 0.000

Transition
season 19,288.741 15 1028.556 0.000

Winter 2747.871 15 1030.775 0.000

Nanjing
Summer 8016.538 15 1741.385 0.000

Transition
season 6199.907 15 1741.496 0.000

Winter 3365.614 15 1743.017 0.000

Shanghai
Summer 5808.144 15 9367.378 0.000

Transition
season 4903.839 15 9364.059 0.000

Winter 1425.392 15 9378.346 0.000
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3.6. Spatial Pattern Characteristics of Land Surface Temperature

In this study, global and local Moran indices were used to indicate the spatial ag-
gregation characteristics of LST in different cities and seasons. The results in Table 4
demonstrated that LST had different spatial agglomeration characteristics in different cities
and seasons, and the strength of these spatial agglomeration characteristics varied with
temperature, weakening gradually from summer through the transition season to winter.
Wuhan had the strongest spatial agglomeration characteristics, with Moran indexes of 0.95,
0.93, and 0.86 in the summer, transition seasons, and winter, respectively.
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Table 4. Result of global Moran I in different seasons.

City Season Moran’s Index z-Score p-Value

Wuhan Summer 0.95 574.47 <0.001
Transition

season 0.93 564.06 <0.001

Winter 0.86 520.92 <0.001
Nanjing Summer 0.92 386.88 <0.001

Transition
season 0.91 383.73 <0.001

Winter 0.75 317.32 <0.001
Shanghai Summer 0.87 416.87 <0.001

Transition
season 0.87 415.65 <0.001

Winter 0.82 389.50 <0.001

The spatial agglomeration characteristics of the three cities showed a similar pattern
across different seasons (Figure 6). Specifically, the distribution pattern of the “high–
high” type in Wuhan was similar in different seasons, mainly concentrated in the western,
southwestern, and central-eastern parts of the central district, and the distribution was
more discrete in winter; the “low–low” type was distributed in the Yangtze River and in
large lakes in the summer and transition season and in large lakes in winter. Moran indexes
for Nanjing and Shanghai had a similar distribution pattern, in which the “high–high” type
was discrete in the central districts of Nanjing and Shanghai; the “low–low” type in Nanjing
was mainly distributed in the Yangtze River and in large lakes in the central-eastern part
of the central district in the summer and transition seasons and in the central-eastern part
of central district in winter; the “low–low” type in Nanjing was mainly distributed in
the Yangtze River and the large green space in the central-eastern part of central district
during the summer and transition seasons, while the significance of the large green space
in the central-eastern part of the central district in Nanjing was greatly reduced in winter,
probably due to the insulation function of green areas in winter [25]; the “low–low” type in
Shanghai was mainly distributed in the Huangpu River and the southeast corner, and the
aggregation characteristics were more obvious in winter.

3.7. The Relationship between Spectral Indexes and LST

Due to the strong collinearity between MNDWI, NDBI, and NDVI, we quantified the
relationships between MNDWI, NDBI, NDVI, and LST, respectively. Table 5 describes the
fit goodness of MNDWI, NDBI, and NDVI for LST in GWR. In general, the explanatory
effects in summer and transition seasons were stronger than those in winter, and NDBI had
the highest explanation for LST. We excluded regions where the standard residuals were
not in [−2.5, 2.5], as these coefficients were unreliable [47,48].

Table 6 shows the change in LST with each 0.1 unit increase in MNDWI, NDVI, and
NDBI. MNDWI is a indicator to describe the composition of a water body, which has high
heat capacity and low thermal conductivity, and is able to reduce LST through evaporation.
The change of LST showed seasonal variation with an increase of 0.1 unit of MNDWI. In
general, the cooling effect of MNDWI decreased with the decrease of temperature, and
the cooling amplitude decreased to varying degrees in building types. MNDWI could
reduce LST well in most LCZs of all seasons for Wuhan, but for Nanjing and Shanghai,
only MNDWI in winter had cooling effects in all LCZs, and the number of LCZs with
cooling effects of MNDWI in the transition season was more than in summer. Variations
in the cooling effects of MNDWI between cities might be due to differences between the
number, size, and distribution of water bodies [49]. In the study, more cooling effects from
MNDWI were found in Wuhan than in Nanjing and Shanghai, as Wuhan has abundant
water resources with wide distribution and large numbers compared to Nanjing and
Shanghai. It is worth noting that MNDWI showed a warming effect similar to previous
studies in part of these areas [50], which may be due to the increase in water temperature
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caused by heat-absorbing substances from industries [51]. Specifically, LCZ 2 was the most
effective in reducing LST during the summer and transition seasons of Wuhan, probably
because LCZ 2 was mainly distributed in “high-high” areas (Figures 2 and 6), where the
background temperature was higher, and the water bodies have stronger cooling effects [52].
The highest LST reductions from MNDWI in the summer, transition seasons, and winter
of Nanjing were LCZ G, LCZ G, and LCZ 3, respectively, and MNDWI from LCZ G in
Shanghai had the strongest cooling effect in all seasons. The cooling effect of MNDWI was
stronger in compact building types (LCZ 1–3) than in open building types (LCZ 4–6).
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Table 5. Diagnosis of GWR model.

City Season MNDWI NDVI NDBI

Wuhan
Summer 0.83 0.88 0.89

Transition season 0.83 0.85 0.86
Winter 0.75 0.75 0.78

Nanjing
Summer 0.74 0.67 0.83

Transition season 0.78 0.78 0.82
Winter 0.57 0.56 0.54

Shanghai
Summer 0.84 0.86 0.89

Transition season 0.87 0.87 0.88
Winter 0.79 0.80 0.81

Table 6. Change of land-surface temperature with each 0.1 unit increase of spectral indices in different
seasons and cities.

Indices LCZ
Wuhan Nanjing Shanghai

Summ Tran Wint Summ Tran Wint Summ Tran Wint

MNDWI

1 −8.98 −7.78 −4.03 −0.12 −4.57 −3.88 −1.53 −3.25 −3.97
2 −11.81 −9.47 −4.05 0.23 −2.97 −1.56 0.88 −0.22 −2.14
3 −7.95 −7.16 −4.34 −5.78 −6.11 −5.10 1.56 −0.95 −1.57
4 −5.29 −6.71 −4.90 1.33 −3.01 −2.65 3.20 1.68 −2.25
5 −3.97 −5.68 −4.37 3.22 −1.77 −2.52 2.57 1.23 −1.14
6 −2.85 −4.82 −4.04 7.13 1.14 −1.41 5.33 2.51 −0.44
8 −4.32 −5.88 −4.85 5.14 0.68 −1.72 2.86 0.55 −0.98
9 −3.25 −4.82 −4.29 10.10 2.70 −0.72 4.98 2.30 −0.42

10 2.42 2.48 0.63 3.63 −2.60 −2.34 1.21 −0.85 −1.56
A 1.95 −1.85 −4.05 10.85 0.30 −3.48 7.34 4.73 −0.17
B −1.18 −3.99 −3.95 5.50 −0.08 −1.92 5.38 2.22 −1.21
C −6.25 −6.35 −3.45 3.14 −1.78 −2.42 5.50 2.11 −1.55
D −4.96 −6.14 −4.27 1.07 −2.17 −3.47 4.37 −0.56 −1.90
E 1.12 −2.73 −6.33 −2.97 −3.44 −3.89 5.99 1.84 −1.15
F 0.00 −4.39 −4.57 2.94 −1.81 -2.13 2.67 −0.26 −1.26
G −9.49 −8.12 −3.52 −6.47 −6.44 −3.56 −7.43 −9.85 −5.12

NDVI

1 3.04 2.69 4.65 −1.43 0.63 0.86 −0.87 0.33 0.92
2 2.85 1.89 4.26 −5.17 −1.75 0.33 −3.30 −2.45 −1.70
3 −1.47 −2.24 1.83 −0.84 0.74 3.23 −4.83 −2.98 −0.90
4 −1.15 0.35 4.85 −4.08 −0.83 0.33 −4.26 −3.03 −1.54
5 −2.99 −1.52 2.47 −5.75 −1.90 0.36 −3.77 −2.71 −1.36
6 −3.41 −1.59 1.93 −9.07 −4.23 −0.40 −5.13 −3.28 −1.25
8 −4.86 −3.54 2.74 −8.26 −4.71 −0.63 −4.36 −2.22 −0.82
9 −2.86 −0.45 2.15 −9.84 −4.52 −0.87 −5.33 −3.55 −1.17
10 −6.51 −7.15 −4.23 −5.31 −0.94 0.23 −2.03 −0.12 0.37
A −5.15 −2.29 0.68 −11.90 −3.48 1.73 −6.49 −4.79 −1.63
B −2.42 −0.42 1.63 −6.82 −2.22 0.84 −5.02 −2.91 −0.51
C −0.16 0.06 0.33 −0.12 −0.51 1.48 −0.20 0.07 −0.21
D 0.62 2.10 3.88 −4.38 −0.36 2.94 −4.59 −1.69 −0.07
E −13.55 −7.40 −4.19 −1.47 0.97 4.94 −4.53 −1.48 0.78
F −1.92 2.17 5.09 −4.90 −0.63 1.25 −4.13 −1.27 0.28
G 7.92 8.25 4.18 5.79 6.93 4.69 8.50 12.22 7.11

NDBI

1 15.09 13.37 6.76 11.76 9.05 7.74 7.25 6.26 6.57
2 17.18 13.78 7.02 12.52 6.62 3.28 6.74 5.83 5.14
3 18.17 12.69 6.33 17.45 13.04 7.66 9.84 7.74 4.36
4 14.73 11.98 6.15 13.43 8.87 6.50 7.72 6.13 5.68
5 13.97 10.43 6.04 13.74 8.64 5.15 6.76 5.32 3.58
6 17.63 12.69 5.91 14.93 8.91 3.36 8.58 5.96 3.29
8 19.78 13.56 6.87 15.51 10.19 4.37 9.51 6.52 4.20
9 14.35 11.30 5.66 15.90 9.02 3.36 9.57 6.89 3.60
10 18.09 13.58 4.22 14.08 8.48 5.20 8.07 5.85 3.45
A 14.31 11.25 5.23 19.15 8.84 3.08 11.47 8.25 4.27
B 15.65 11.95 4.95 16.39 10.26 4.41 9.85 6.68 4.13
C 18.77 16.41 5.39 14.49 10.55 5.41 9.47 7.07 3.68
D 14.81 14.35 6.72 15.78 11.30 5.40 9.14 5.61 3.92
E 26.43 11.88 8.81 21.13 15.22 8.02 8.74 3.74 2.13
F 13.06 17.40 6.81 14.73 10.14 5.05 8.07 5.49 2.84
G 8.71 17.90 5.04 16.72 16.92 8.56 15.58 20.26 10.74

Note: Summ, Tran, and Wint refer to summer, transition season, and winter, respectively.

NDVI could well reflect vegetation cover, and vegetation reduces LST through transpi-
ration and its own shading [12]. The cooling effect of NDVI in different LCZs also showed
seasonal and inter-urban differences. In general, with the decrease of temperature, the
cooling effect of each LCZ gradually diminished in summer and transition seasons. In most
LCZs of summer and transition seasons, NDVI could reduce LST well, while NDVI showed
a warming effect in winter. The cooling effect of open building types was stronger than that
of compact building types, which indicated that less green space coverage did not reduce
LST well in compact building types. The cooling effect of LCZ A was stronger than that of
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LCZ B and LCZ C. There were differences in the effect of NDVI on LST among different
cities. In summer and transitional seasons, NDVI had the best cooling effect in LCZ E
of Wuhan, while NDVI could achieve the strongest cooling effect in LCZ A of Nanjing
and Shanghai.

NDBI reflects the build information. For each 0.1 unit increase in NDBI, all LCZs
showed increases of LST in all three seasons and cities. The warming effect of NDBI was
stronger in summer and transition seasons than in winter, which may be due to lower
sunlight intensity in winter [12]. For Wuhan, the strongest warming effects of NDBI in the
summer, transition seasons, and winter were found in LCZ E, G and 8, respectively; for
Nanjing, NDBI in different seasons had the strongest warming effect in LCZ E, G, and G,
respectively; for Shanghai, the strongest warming effects in different seasons were found in
LCZ G.

4. Discussion
4.1. Thermal Contribution of LCZ and the Effect of SUHII

The results of SUHII showed that there were variations in SUHII amplitude between
seasons, and SUHII amplitudes were greatest in the summer, followed by transitional
seasons and winter, which is similar to a study in Brno, Prague, and Novi Sad [53].
Further SUHII results were compared with those of the cold, temperate, and tropical
studies [1,41,53,54], where the magnitudes of SUHII were different due to differences in
background climate and vegetation differences, but higher SUHII values were still found in
LCZ 2, 3, 8, 10, and E; LCZ G and A had the lowest SUHII; and LCZ 9 had a smaller SUHII
than the other building types in LCZs. The SUHII of LCZ 1 was lower than LCZ 2 and
LCZ 3, which might be due to direct shading between high buildings partially blocking
solar radiation and preventing solar-surface interaction [42]. The smaller SUHII of LCZ G
in this study compared to LCZ A is inconsistent with previous results from eastern Africa
and Shenyang, China [1,32], which might be because this study area (especially Wuhan)
contained the Yangtze River, with larger and more water bodies to reduce LST [49]. This
study found that when the ratio of LCZ A and LCZ D was low, the SUHII of LCZ B and
LCZ D was also negative, which meant that LCZ B and D have cooling effects when the
percentage of LCZ A was low. Noteworthy, the SUHII of LCZ A in Nanjing was lower
compared to Wuhan and Shanghai, which was because Nanjing, with larger and more ag-
gregated LCZ A in the eastern area, had complete ecosystem structures to perform stronger
cooling functions. The SUHII of LCZ G in Wuhan was also lower because of the abundant
water resources that created a better cooling effect compared with Nanjing and Shanghai.

4.2. Policy Implications of Spectral Indexes in LCZs

The ability of MNDWI to reduce LST better in Wuhan compared to Nanjing and
Shanghai suggests that evenly distributed and larger water bodies can reduce LST more
extensively and effectively. The cooling effect of MNDWI was better in compact building
types than in open building types, suggesting that more water bodies should be deployed
in compact building types, such as swimming pools on rooftops. The cooling effect of
NDVI was stronger in open building types than in compact types in summer and transition
seasons, suggesting that there might be a threshold for the cooling effect of green space on
LST and that open building types are more effective in reducing LST by accelerating the
implementation of green roofs and vertical greening to enhance urban greenery. In summer,
NDVI had the strongest cooling effect in LCZ A, which suggests that the implementation
of national parks and ecological conservation should be accelerated to protect LCZ A.
The cooling effect of NDVI in LCZ A was significantly better than LCZ B and C, so it is
recommended that LCZ B and C should be replanted in high heat risk zones (“high-high”
type) to reduce the continuous heat risk. With the increase of NDBI, LST increased in all
seasons and LCZs. Although the warming effect of NDBI had differences in LST’s increase
in different LCZs, protecting LCZ G and advocating the use of high-reflectivity materials
in LCZ E and 8 are recommended. In addition, the result of SUHII suggests that planners
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should avoid concentrated configurations of LCZs 2, 3, 8, 10, and E, as the clustering of
these LCZs might further degrade the thermal environment.

4.3. Limitations

Some limitations of this study must be acknowledged. First, we selected LST in similar
periods as much as possible in the three cities due to the influence of clouds, but it was
not possible to make the acquisition times of LSTs in all cities correspond exactly, which
affected the comparison results. Second, the spatial pattern of LSTs during nighttime and
the response of spectral indexes to LCZs were not analyzed due to the limitation of data. In
the future, the LSTs from MODIS and Landsat 8 should be fused to obtain a higher spatial
and temporal resolution to analyze the pattern characteristics of LSTs in each LCZ under
the daytime and nighttime of different seasons. Finally, this study only analyzed three large
cities in the Yangtze River Economic Belt. The impact of spectral indexes on LST should be
analyzed in the future for different urban agglomerations and climate zones.

5. Conclusions

UHI is a typical problem in urban environments. For these highly heterogeneous
urban environments with complex urban morphology, climate, and functions, the impact
of spectral indexes on LST is not sufficient. To overcome this deficiency, we analyzed the
relationship between spectral indexes and LST under different LCZs to provide a basis
for urban planning and policy formulation. We quantified the contribution of each LCZ
to the high-temperature zones and SUHII in different cities and seasons, used the Welch
and Games–Howell test to detect whether there were significant differences, analyzed the
spatial autocorrelation characteristics of LST based on global and local Moran’s indexes, and
finally used GWR to separately quantify the relationships between MNDWI, NDVI, NDBI,
and LST under different LCZs. The results showed the seasonal variations in MDNWI,
NDVI, NDBI, and LST, and the largest variation appeared in Wuhan. The proportion of
building-type LCZs in the three cities exceeded 50%, ranked from high to low in Shanghai,
Nanjing, and Wuhan, with land cover type accounting for nearly 50% in Wuhan. The
contribution and SUHII of LCZ 2, 3, 8, 10, and E to the high-temperature zone were higher,
and those of LCZ G and LCZ A to the high-temperature zone were lower compared to other
LCZs. There were significant differences between 92% and 98% among LCZs and more
in summer and transition seasons than in winter. The result of Moran index showed that
LST had spatial aggregation characteristics that weakened with decreasing temperature,
with the most substantial aggregation characteristics located in Wuhan. The MNDWI in
most of LCZs of all seasons for Wuhan could reduce LST well, while MNDWI only had
cooling effects in winter for Nanjing and Shanghai. NDVI in most LCZs could reduce LST
during summer and transition seasons, while it showed a warming effect in winter. The
cooling effect of NDVI in open building types was stronger than that of compact building
types, while the cooling effect of MNDWI showed the opposite pattern. With the increase
of NDBI, all LCZs showed warming effects, and the magnitude of LST increase varied in
different cities and seasons. More water bodies in compact building types and an amount of
greening are recommended. Policies on developing national parks and conserving ecology
should be accelerated to protect LCZ A. It is suggested that upgrading LCZ B and C to LCZ
A by replanting can effectively reduce the thermal risk. Protection of LCZ G and preference
for high-reflectivity materials in LCZ E and 8 is recommended. Careful aggregation of LCZ
2, 3, 8, 10, and E is necessary. These results can provide the basis and recommendations for
urban planners and policymakers to improve the urban thermal environment.
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Table A1. Cont.

City Season Date Cloud Cover Path/Row

Nanjing

Summer
11 July 2019

12 August 2019
1 August 2021

18.65

120/38

12.18

12.86

Transition seasons

8 April 2020
24 April 2020

1 October 2020
18 November 2020

16.82

5.05

3.39

2.69

Winter
20 December 2020

6 February 2021
22 February 2021

0.52

12.59

19.10

Shanghai

Summer 16 August 2020 2.17

118/38
Transition season 12 May 2020 15.85

Winter 22 December 2020
24 February 2021

0.61

13.84

Table A2. Tests results of normality in different land-surface temperature of local climate zones.

City Season
Local Climate Zone

1 2 3 4 5 6 8 9 10 A B C D E F G

Wuhan Summer *
Transition season

Winter *
Nanjing Summer *

Transition season *
Winter

Shanghai Summer
Transition season

Winter

Note: When the sample size was less than 5000, Shapiro–Wilk test was used; when the sample size was greater
than 5000, Kolmogorov–Smirnov test was used. * represents p > 0.05 and passes the significance test.

Table A3. Levene’s tests of land-surface temperature in different local climate zones.

City Season F Statistic df1 df2 Significance

Wuhan
Summer 1120.058 15 95,447 0.000

Transition season 415.135 15 95,447 0.000
Winter 1080.428 15 95,447 0.000

Nanjing
Summer 114.394 15 90,073 0.000

Transition season 166.490 15 90,073 0.000
Winter 276.668 15 90,073 0.000

Shanghai
Summer 414.295 15 114,552 0.000

Transition season 493.091 15 114,552 0.000
Winter 142.276 15 114,552 0.000

References
1. Li, X.; Stringer, L.C.; Dallimer, M. The Role of Blue Green Infrastructure in the Urban Thermal Environment across Seasons and

Local Climate Zones in East Africa. Sustain. Cities Soc. 2022, 80, 103798. [CrossRef]
2. United Nations. World Urbanization Prospects: The 2018 Revision; The United Nations’ Department of Economic and Social

Affairs—Population Division: New York, NY, USA, 2019; p. 126.
3. Luo, J.; Wei, Y.H.D. Modeling Spatial Variations of Urban Growth Patterns in Chinese Cities: The Case of Nanjing. Landsc. Urban

Plan. 2009, 91, 51–64. [CrossRef]
4. Wang, Z.H. Reconceptualizing Urban Heat Island: Beyond the Urban-Rural Dichotomy. Sustain. Cities Soc. 2022, 77, 103581.

[CrossRef]

http://doi.org/10.1016/j.scs.2022.103798
http://doi.org/10.1016/j.landurbplan.2008.11.010
http://doi.org/10.1016/j.scs.2021.103581


Remote Sens. 2023, 15, 870 18 of 19

5. Wang, Z.H. Compound Environmental Impact of Urban Mitigation Strategies: Co-Benefits, Trade-Offs, and Unintended Conse-
quence. Sustain. Cities Soc. 2021, 75, 103284. [CrossRef]

6. Oke, T.R. City size and the urban heat island. Atmos. Environ. 1973, 7, 769–779. [CrossRef]
7. Santamouris, M. On the Energy Impact of Urban Heat Island and Global Warming on Buildings. Energy Build. 2014, 82, 100–113.

[CrossRef]
8. Ngarambe, J.; Joen, S.J.; Han, C.H.; Yun, G.Y. Exploring the Relationship between Particulate Matter, CO, SO2, NO2, O3 and

Urban Heat Island in Seoul, Korea. J. Hazard. Mater. 2021, 403, 123615. [CrossRef]
9. Heaviside, C.; Macintyre, H.; Vardoulakis, S. The Urban Heat Island: Implications for Health in a Changing Environment. Curr.

Environ. Health Rep. 2017, 4, 296–305. [CrossRef]
10. Youngsteadt, E.; Ernst, A.F.; Dunn, R.R.; Frank, S.D. Responses of Arthropod Populations to Warming Depend on Latitude:

Evidence from Urban Heat Islands. Glob. Chang. Biol. 2017, 23, 1436–1447. [CrossRef]
11. Santamouris, M.; Cartalis, C.; Synnefa, A. Local Urban Warming, Possible Impacts and a Resilience Plan to Climate Change for

the Historical Center of Athens, Greece. Sustain. Cities Soc. 2015, 19, 281–291. [CrossRef]
12. Xiang, Y.; Huang, C.; Huang, X.; Zhou, Z.; Wang, X. Seasonal Variations of the Dominant Factors for Spatial Heterogeneity

and Time Inconsistency of Land Surface Temperature in an Urban Agglomeration of Central China. Sustain. Cities Soc. 2021,
75, 103285. [CrossRef]

13. Zhou, D.; Xiao, J.; Bonafoni, S.; Berger, C.; Deilami, K.; Zhou, Y.; Frolking, S.; Yao, R.; Qiao, Z.; Sobrino, J.A. Satellite Remote
Sensing of Surface Urban Heat Islands: Progress, Challenges, and Perspectives. Remote Sens. 2019, 11, 48. [CrossRef]

14. Anniballe, R.; Bonafoni, S.; Pichierri, M. Spatial and Temporal Trends of the Surface and Air Heat Island over Milan Using MODIS
Data. Remote Sens. Environ. 2014, 150, 163–171. [CrossRef]

15. Deilami, K.; Kamruzzaman, M.; Liu, Y. Urban Heat Island Effect: A Systematic Review of Spatio-Temporal Factors, Data, Methods,
and Mitigation Measures. Int. J. Appl. Earth Obs. Geoinf. 2018, 67, 30–42. [CrossRef]

16. Mathew, A.; Khandelwal, S.; Kaul, N. Analysis of Diurnal Surface Temperature Variations for the Assessment of Surface Urban
Heat Island Effect over Indian Cities. Energy Build. 2018, 159, 271–295. [CrossRef]

17. Singh, V.K.; Bhati, S.; Mohan, M.; Sahoo, N.R.; Dash, S. Numerical Simulation of the Impact of Urban Canopies and Anthropogenic
Emissions on Heat Island Effect in an Industrial Area: A Case Study of Angul-Talcher Region in India. Atmos. Res. 2022,
277, 106320. [CrossRef]

18. Xiang, Y.; Ye, Y.; Peng, C.; Teng, M.; Zhou, Z. Seasonal Variations for Combined Effects of Landscape Metrics on Land Surface
Temperature (LST) and Aerosol Optical Depth (AOD). Ecol. Indic. 2022, 138, 108810. [CrossRef]

19. Peng, J.; Jia, J.; Liu, Y.; Li, H.; Wu, J. Seasonal Contrast of the Dominant Factors for Spatial Distribution of Land Surface
Temperature in Urban Areas. Remote Sens. Environ. 2018, 215, 255–267. [CrossRef]

20. Xie, Q.; Wu, Y.; Zhou, Z.; Wang, Z. Remote Sensing Study of the Impact of Vegetation on Thermal Environment in Different
Contexts. IOP Conf. Ser. Earth Environ. Sci. 2018, 121, 22009. [CrossRef]

21. Liu, S.; Wu, Y.; Xu, J.; Zhang, L. Relationship between surface thermal environment and underlying surface index in Yan’an city.
J. Northwest A&F Univ. 2022, 37, 207214. [CrossRef]

22. Jenerette, G.D.; Harlan, S.L.; Buyantuev, A.; Stefanov, W.L.; Declet-Barreto, J.; Ruddell, B.L.; Myint, S.W.; Kaplan, S.; Li, X.
Micro-Scale Urban Surface Temperatures Are Related to Land-Cover Features and Residential Heat Related Health Impacts in
Phoenix, AZ USA. Landsc. Ecol. 2016, 31, 745–760. [CrossRef]

23. Yu, Z.; Xu, S.; Zhang, Y.; Jørgensen, G.; Vejre, H. Strong Contributions of Local Background Climate to the Cooling Effect of Urban
Green Vegetation. Sci. Rep. 2018, 8, 6798. [CrossRef] [PubMed]

24. Chen, W.; Zhang, J.; Shi, X.; Liu, S. Impacts of Building Features on the Cooling Effect of Vegetation in Community-Based
Microclimate: Recognition, Measurement and Simulation from a Case Study of Beijing. Int. J. Environ. Res. Public Health 2020,
17, 8915. [CrossRef] [PubMed]

25. Yang, G.; Yu, Z.; Jørgensen, G.; Vejre, H. How Can Urban Blue-Green Space Be Planned for Climate Adaption in High-Latitude
Cities? A Seasonal Perspective. Sustain. Cities Soc. 2020, 53, 101932. [CrossRef]

26. Guerri, G.; Crisci, A.; Messeri, A.; Congedo, L.; Munafò, M.; Morabito, M. Thermal Summer Diurnal Hot-Spot Analysis: The Role
of Local Urban Features Layers. Remote Sens. 2021, 13, 538. [CrossRef]

27. Fan, H.; Yu, Z.; Yang, G.; Liu, T.Y.; Liu, T.Y.; Hung, C.H.; Vejre, H. How to Cool Hot-Humid (Asian) Cities with Urban Trees? An
Optimal Landscape Size Perspective. Agric. For. Meteorol. 2019, 265, 338–348. [CrossRef]

28. Bechtel, B.; Alexander, P.J.; Böhner, J.; Ching, J.; Conrad, O.; Feddema, J.; Mills, G.; See, L.; Stewart, I. Mapping Local Climate
Zones for a Worldwide Database of the Form and Function of Cities. ISPRS Int. J. Geo-Inf. 2015, 4, 199–219. [CrossRef]

29. Aslam, A.; Rana, I.A. The Use of Local Climate Zones in the Urban Environment: A Systematic Review of Data Sources, Methods,
and Themes. Urban Clim. 2022, 42, 101120. [CrossRef]

30. Stewart, I.D.; Oke, T.R. Local Climate Zones for Urban Temperature Studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900.
[CrossRef]

31. Lyu, T.; Buccolieri, R.; Gao, Z. A Numerical Study on the Correlation between Sky View Factor and Summer Microclimate of
Local Climate Zones. Atmosphere 2019, 10, 438. [CrossRef]

32. Yang, J.; Ren, J.; Sun, D.; Xiao, X.; Xia, J.C.; Jin, C.; Li, X. Understanding Land Surface Temperature Impact Factors Based on Local
Climate Zones. Sustain. Cities Soc. 2021, 69, 102818. [CrossRef]

http://doi.org/10.1016/j.scs.2021.103284
http://doi.org/10.1016/0004-6981(73)90140-6
http://doi.org/10.1016/j.enbuild.2014.07.022
http://doi.org/10.1016/j.jhazmat.2020.123615
http://doi.org/10.1007/s40572-017-0150-3
http://doi.org/10.1111/gcb.13550
http://doi.org/10.1016/j.scs.2015.02.001
http://doi.org/10.1016/j.scs.2021.103285
http://doi.org/10.3390/rs11010048
http://doi.org/10.1016/j.rse.2014.05.005
http://doi.org/10.1016/j.jag.2017.12.009
http://doi.org/10.1016/j.enbuild.2017.10.062
http://doi.org/10.1016/j.atmosres.2022.106320
http://doi.org/10.1016/j.ecolind.2022.108810
http://doi.org/10.1016/j.rse.2018.06.010
http://doi.org/10.1088/1755-1315/121/2/022009
http://doi.org/10.3969/j.issn.1001-7461.2022.06.28
http://doi.org/10.1007/s10980-015-0284-3
http://doi.org/10.1038/s41598-018-25296-w
http://www.ncbi.nlm.nih.gov/pubmed/29717184
http://doi.org/10.3390/ijerph17238915
http://www.ncbi.nlm.nih.gov/pubmed/33266242
http://doi.org/10.1016/j.scs.2019.101932
http://doi.org/10.3390/rs13030538
http://doi.org/10.1016/j.agrformet.2018.11.027
http://doi.org/10.3390/ijgi4010199
http://doi.org/10.1016/j.uclim.2022.101120
http://doi.org/10.1175/BAMS-D-11-00019.1
http://doi.org/10.3390/atmos10080438
http://doi.org/10.1016/j.scs.2021.102818


Remote Sens. 2023, 15, 870 19 of 19

33. Sun, F.; Zhao, H.; Deng, L.; Liu, Y.; Cheng, R.; Che, Y. Characterizing the Warming Effect of Increasing Temperatures on Land
Surface: Temperature Change, Heat Pattern Dynamics and Thermal Sensitivity. Sustain. Cities Soc. 2021, 70, 102904. [CrossRef]

34. Wang, L.; Hou, H.; Weng, J. Ordinary Least Squares Modelling of Urban Heat Island Intensity Based on Landscape Composition
and Configuration: A Comparative Study among Three Megacities along the Yangtze River. Sustain. Cities Soc. 2020, 62, 102381.
[CrossRef]

35. Li, K.; Chen, Y.; Wang, M.; Gong, A. Spatial-Temporal Variations of Surface Urban Heat Island Intensity Induced by Different
Definitions of Rural Extents in China. Sci. Total Environ. 2019, 669, 229–247. [CrossRef] [PubMed]

36. Geng, S.; Yang, L.; Sun, Z.; Wang, Z.; Qian, J.; Jiang, C.; Wen, M. Spatiotemporal Patterns and Driving Forces of Remotely Sensed
Urban Agglomeration Heat Islands in South China. Sci. Total Environ. 2021, 800, 149499. [CrossRef]

37. Demuzere, M.; Kittner, J.; Bechtel, B. LCZ Generator: A Web Application to Create Local Climate Zone Maps. Front. Environ. Sci.
2021, 9, 637455. [CrossRef]

38. Peng, J.; Xie, P.; Liu, Y.; Ma, J. Urban Thermal Environment Dynamics and Associated Landscape Pattern Factors: A Case Study
in the Beijing Metropolitan Region. Remote Sens. Environ. 2016, 173, 145–155. [CrossRef]

39. Ke, X.; Men, H.; Zhou, T.; Li, Z.; Zhu, F. Variance of the Impact of Urban Green Space on the Urban Heat Island Effect among
Different Urban Functional Zones: A Case Study in Wuhan. Urban For. Urban Green. 2021, 62, 127159. [CrossRef]

40. Hu, D.; Meng, Q.; Schlink, U.; Hertel, D.; Liu, W.; Zhao, M.; Guo, F. How Do Urban Morphological Blocks Shape Spatial Patterns
of Land Surface Temperature over Different Seasons? A Multifactorial Driving Analysis of Beijing, China. Int. J. Appl. Earth Obs.
Geoinf. 2022, 106, 102648. [CrossRef]

41. Bechtel, B.; Demuzere, M.; Mills, G.; Zhan, W.; Sismanidis, P.; Small, C.; Voogt, J. SUHI Analysis Using Local Climate Zones—A
Comparison of 50 Cities. Urban Clim. 2019, 28, 100451. [CrossRef]

42. Unal Cilek, M.; Cilek, A. Analyses of Land Surface Temperature (LST) Variability among Local Climate Zones (LCZs) Comparing
Landsat-8 and ENVI-Met Model Data. Sustain. Cities Soc. 2021, 69, 102877. [CrossRef]

43. Badaro-Saliba, N.; Adjizian-Gerard, J.; Zaarour, R.; Najjar, G. LCZ Scheme for Assessing Urban Heat Island Intensity in a Complex
Urban Area (Beirut, Lebanon). Urban Clim. 2021, 37, 100846. [CrossRef]

44. Guo, A.; Yang, J.; Sun, W.; Xiao, X.; Xia Cecilia, J.; Jin, C.; Li, X. Impact of Urban Morphology and Landscape Characteristics on
Spatiotemporal Heterogeneity of Land Surface Temperature. Sustain. Cities Soc. 2020, 63, 102443. [CrossRef]

45. Mouzourides, P.; Eleftheriou, A.; Kyprianou, A.; Ching, J.; Neophytou, M.K.A. Linking Local-Climate-Zones Mapping to Multi-
Resolution-Analysis to Deduce Associative Relations at Intra-Urban Scales through an Example of Metropolitan London. Urban
Clim. 2019, 30, 100505. [CrossRef]

46. La, Y.; Bagan, H.; Yamagata, Y. Urban Land Cover Mapping under the Local Climate Zone Scheme Using Sentinel-2 and PALSAR-2
Data. Urban Clim. 2020, 33, 100661. [CrossRef]

47. Wan, J.Z. Pasture Availability as a Spatial Indicator of Grassland Root Turnover Time on a Global Scale. Ecol. Indic. 2020,
111, 105985. [CrossRef]

48. Yang, M.; Gao, X.; Zhao, X.; Wu, P. Scale Effect and Spatially Explicit Drivers of Interactions between Ecosystem Services—A Case
Study from the Loess Plateau. Sci. Total Environ. 2021, 785, 147389. [CrossRef]

49. Yu, Z.; Yang, G.; Zuo, S.; Jørgensen, G.; Koga, M.; Vejre, H. Critical Review on the Cooling Effect of Urban Blue-Green Space: A
Threshold-Size Perspective. Urban For. Urban Green. 2020, 49, 126630. [CrossRef]

50. Shuai, C.; Sha, J.; Lin, J.; Ji, W.; Zhou, Z.; Gao, S. Spatial difference of the relationship between remote sensing index and land
surface temperature under different underlying surfaces. Geo-Inf. Sci. 2018, 20, 1657–1666. [CrossRef]

51. Roy, S.; Pandit, S.; Eva, E.A.; Bagmar, M.S.H.; Papia, M.; Banik, L.; Dube, T.; Rahman, F.; Razi, M.A. Examining the Nexus between
Land Surface Temperature and Urban Growth in Chattogram Metropolitan Area of Bangladesh Using Long Term Landsat Series
Data. Urban Clim. 2020, 32, 100593. [CrossRef]

52. Hathway, E.A.; Sharples, S. The Interaction of Rivers and Urban Form in Mitigating the Urban Heat Island Effect: A UK Case
Study. Build. Environ. 2012, 58, 14–22. [CrossRef]
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