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Abstract: Space-borne hyperspectral imagery data are known for their high spectral resolution in a
number of narrow wavelength intervals, which makes these data useful for mineral mapping. How-
ever, the available free-of-charge hyperspectral scenes cover only narrow and scattered geographic
areas. In contrast, multispectral imagery scenes have a nearly complete spatial coverage and wider
wavelength intervals. The low spectral resolution of the multispectral data, however, limits their
efficiency in the mineral mapping of small geological massifs or hydrothermal alteration halos. The
present contribution presents a new transformation tool (SAM-HIT) to simulate the hyperspectral
sensor responses in unscanned areas based on partially overlapping hyperspectral and multispectral
scenes. Simulation or prediction of the pseudohyperspectral data is here accomplished by using
the simulated annealing linear optimization algorithm, which allows the lowest possible mismatch
between the original and predicted data. The high visual and numerical correlation of the resultant
data confirms the reliability of the newly adopted transformation. Further, the application of the
SAM-HIT to a well-exposed part of the Egyptian basement complex with available hyperspectral
data showed high concordance and nearly identical band signatures, opening a new outlook for
mineral exploration in vast areas by a nearly automated cost-free means.

Keywords: predicted hyperspectral data; global optimization; simulated annealing; least square
minimization; spectral mapping

1. Introduction

Satellite-based hyperspectral imagery data are widely used for mineral mapping due
to their high spectral and spatial resolution. However, available hyperspectral imagery
data cover only limited and very scattered geographic areas worldwide. In contrast, space-
borne multispectral scenes are more widely available and have better spatial coverage,
though with consistently lower spectral resolution. Therefore, efforts have been made to
extrapolate hyperspectral data over unscanned areas by applying different methods [1,2].
Chen et al. used the pixel-mixing principle to create a new hyperspectral image while [3]
being applied to the spectral unmixing approach. Both methods were based on fitting a
linear relation between acquired space-borne data and laboratory and/or field samples’
spectral profiles. The focus of their work was mainly the identification of soils, vegetation,
and water accumulations. Winter et al. [4] used inverse theory and employed a Hyperion
band as a function of all the multispectral images. A multiple linear regression method was
formulated and solved by least-squares optimization to predict suitable model parameters.
A similar approach based on multiple linear regression, the PHITA algorithm, has been
developed by [4], where the regression problem was solved using the Bayesian model
averaging method to avoid overfitting [5]. The Bayesian model averaging technique uses
generalized least-squares optimization to propose various solutions to the linear problem
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based on their posterior probabilities and whether or not the proposed model fits the
linear relation. In the present study, we adopted the idea of multiple linear regression
following [4,5] in a novel simulated annealing-based multispectral to hyperspectral im-
agery transformation (SAM-HIT) algorithm. The aim was to develop a fast simulated
annealing algorithm to find the global optimum solution of the linear relation between
the multispectral and hyperspectral data. Our proposed technique has been tested and
validated through a well-studied and well-exposed area where different lithological units
allow a knowledgeable and unbiased comparison.

2. Materials and Methods
2.1. Data and Method

For this study, we use seven Landsat 8 (L8) bands, with 30 m spatial resolution, and
155 Hyperion bands with the same spatial resolution (30 m/pixel), including bands 10–57
(447–926 nm), 81–97 (952–1115 nm), 101–119 (1154–1337 nm), 134–164 (1487–1791 nm),
and 182–221 (1971–2365 nm). The only available Hyperion scene in the study area, down-
loaded from the USGS website, was acquired on 11 March 2003 while the L8 bands were
acquired on 11 June 2022. The difference in acquisition dates has no significance on either
the method or the result, as the mathematical approach, explained in the next paragraph,
is fitted based on a linear relationship between both datasets. However, in case of land-
scape change or quarrying activities carried out between these two acquisition dates, the
simulated Hyperion data that result from our transformation should represent the geo-
logical field status imaged on the date of L8 data acquisition. Although Hyperion bands
are characterized by a low signal-to-noise ratio, they were spatially coherent and corre-
lated well with the known geology, when tested for mineral mapping at Mount Fitton
in South Australia [6]. Therefore, we use these 155 Hyperion bands as they are known
for their stability and high quality [7]. The 155 Hyperion bands along with the L8 bands
were used to train our algorithm to solve the multiple regression problem. Hyperspec-
tral satellite data from the Italian satellite Prisma [8] were used to test the accuracy of
our model visually. The satellite is owned and operated by ASI (Agenzia Spaziale Ital-
iana). These genuine hyperspectral data are composed of 237 channels in total, with
a 30 m spatial resolution. This includes 66 channel VIS/NIR bands with a spectral in-
terval of 400–1010 nm, and 171 channel NIR/SWIR bands with a spectral interval of
920–2505 nm. A comprehensive description and user guide can be obtained through
their website (https://www.eoportal.org/satellite-missions/Prisma-hyperspectral#Prisma
(accessed on 30 August 2022)).

We assume that a Hyperion band is the product sum of several multispectral bands.
This can be generalized by the simple linear formula,

Hi = Pi + Ci1B1 + Ci2B2 + . . . + CinBn (1)

where Hi is the ith Hyperion band, Pi is the ith Hyperion band’s intercept (a constant value
that equalizes the equation’s right part to its left part, e.g., the y-intercept of a line drawn
in Cartesian coordinates), Ci1,Ci2, . . . and Cin are the coefficients of the (n) number of
multispectral bands, and B1 and Bn are the (n) number of multispectral bands. Equation (1)
can be expressed as

Hi = Gi X (2)

where Hi is the matrix of the ith Hyperion band, X is a matrix of the multispectral bands,
Gi is the Jacobian matrix (matrix of coefficients) of the ith Hyperion band, and * represents
matrix multiplication. This formulates, for each band, a system of linear equations with
many possible true solutions. However, one solution may fall in a local minimum, which
causes overfitting. This can occur with inversion using the least-squares minimization
method [5]. Hoang and Koike [4] used Bayesian model averaging (BMA) to overcome
this problem in their PHITA algorithm. However, the PHITA algorithm still uses models
derived from the standard least squares method, in which choosing the multispectral bands

https://www.eoportal.org/satellite-missions/Prisma-hyperspectral#Prisma
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with high likelihood is not sufficient. Instead, we use the very fast simulated annealing
algorithm, as it is a simpler approach that searches for the global optimum solution and
overcomes the overfitting issue.

In 1953, [9] developed the simulated annealing (SA) method, also called Metropolis
simulated annealing (MSA). It is based on the idea that, in metallurgy, the crystallization
of a liquid alloy is governed by a cooling process. This is because cooling reduces the
kinetic energy of atoms with high thermal mobility. In theory, a perfect crystal, with
minimal overall atomic energy, is produced by infinitely slow cooling. On the other hand,
a fast-cooling process freezes the solid in an imperfect or amorphous state. However,
the atoms may achieve the optimal crystal structure through a slower cooling process by
escaping from high-energy configurations through annealing. The perfect crystallization
is analogous to the stabilization of the SAM-HIT procedure at the global optimum of the
objective function while the amorphous state is analogous to the local minimum solution
achieved by least-squares optimization.

The workflow of the conventional MSA algorithm starts by looping over an initial
temperature or number of iteration steps where the assumption of a random model solution
for the linear equation is proposed. Hence, initial values are given to Ci1 and Cin and Pi.
The objective function, called energy in MSA, can then be calculated. The most widely
used objective function is the L2 norm or the root mean squared error which describes the
Euclidean distance between the real and simulated data:

E =
1
N ∑N

i=1

(
d(o)

i − d(c)
i

)2
(3)

This energy function is minimized by modifying the model parameters and looping
until a convergence is reached. The ith model parameter in the lth iteration step is modified
according to

m(l+1)
i = m(l)

i + b (4)

where b < bmax is a perturbation term and bmax is decreased as the iteration progress. After
each iteration step, the energy function E(m) is calculated and compared with the previous
one. The new model is either accepted or rejected according to the Metropolis criteria:

P(∆E, T) =
{

1, if ∆E ≤ 0
e−∆E/T, otherwise

(5)

The model is accepted when the value of energy function achieved by the new model
is lower than that of the previous one. If it is greater, there is also a probability of acceptance
depending on the energy differences and system temperature T. Therefore, the new model is
accepted if P(∆E, T)≥ α, where α is a random number with uniform probability from the in-
terval of 0 and 1. Otherwise, the model is rejected. By following these conditions, the model
will avoid local minima. Cooling of the system, according to [10], follows Equation (6):

T(l) =
T0

ln(l)
(l > 1) (6)

where T0 is a specified initial temperature to reach the global optimum. However, this cool-
ing schedule is time consuming. One of the most efficient attempts that shortens the CPU
time is the modified SA algorithm, known as very fast simulated reannealing (VFSR) [11].
This algorithm considers different ranges of variation for each model parameter:

m(min)
i ≤ m(l)

i ≤ m(max)
i , (7)

The ith model parameter is modified at iteration step (l + 1) as

m(l +1)
i = m(l)

i + yi(m
(max)
i −m(min)

i ), (8)
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where yi is a random number in the interval of −1 and 1. This number is generated from a
nonuniform probability distribution function as follows:

yi = sign(u− 0.5)Ti

[
(1 +

1
Ti
)
|2ui−1|

− 1

]
, (9)

where u is a random number in the range 0 and 1 with a uniform distribution, and the sign
is randomly chosen (+/−). According to Equation (9), each model parameter is changed
independently from the other parameters. The global optimum is then obtained when the
cooling of each ith temperature follows

T(l)
i = T0,i e(−c p√l) (10)

where T0,i is the ith parameter’s initial temperature, ci is an arbitrarily chosen ith control
parameter, and p is the number of model parameters. This does not limit the cooling
schedule to a global system’s temperature. Instead, different temperatures are assigned
to the model parameters, assuring the independent random modification of the model
parameters. The VFSR algorithm accepts new models according to the Metropolis criteria
with the exponential cooling schedule (Equation (10)) assuring much faster convergence to
the global optimum.

In this study, our proposed SAM-HIT workflow (Figure 1) starts with looping over
all Hyperion bands by constructing a data matrix with columns representing the Landsat
images, and one column representing the Hyperion image to be fitted to the Landsat
image dataset. A VFSR runs and finds the optimum solution of the linear equations for
this Hyperion band. Eventually, a database comprising the optimal solutions for all the
Hyperion bands is created. Having the database constructed, any Hyperion band can
then be predicted over the entire area covered by the multispectral bands or any region of
interest through simple matrix multiplication.

We have selected an area in the Central Eastern Desert of Egypt, the Barramiya-Um
Salatit belt (Figure 2), to test our model since the area contains good exposures of different
lithologies and varied metamorphic/deformational and intrusive structures [12].

2.2. Pre-Processing of Hyperion and L8 Images

The major problems with the Hyperion data include across-track illumination defects,
stripes, reflectance defects, and brightness distortion [13]. Thus, the Hyperion bands
were corrected for cross-track illumination defects by using the cross-track illumination
correction (CTIC) module in the ENVI 5.3 software [14], which fits a polynomial function
with a user-defined order and corrects the defect. These defects can be observed as a
brightness gradient only in the first image, with the highest eigenvalue of the transformed
minimum noise fraction (MNF) space. The correction was carried out using the CTIC
module and then tested in a second MNF transformation. The correction and testing were
repeated as a trial and error procedure until visual quality satisfaction was attained [13].

For destriping the Hyperion bands, the local destriping method was carried out in
python. This is done by matching the mean and standard deviation of each column with
the full band [15] as in the following equation:

vijk =
(

vijk − µjk

) σk
σjk

+ µk (11)

where for a band with band number k, the new pixel value vijk at the ith row and jth
column is a function of the original pixel value vijk, the arithmetic mean and standard
deviation of the jth column µjk, and σjk, respectively, as well as the arithmetic mean and
standard deviation of the kth band µk and σk.
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Figure 2. Study area with real hyperspectral data coverages.

The radiometric calibration was then accomplished as a prerequisite for the proceeding
atmospheric correction using the FLAASH module, which delivers more reliable results
than other atmospheric correction models [16].

ASI provides the Prisma data at different levels of processing. We used the L2 level
(geolocated and geocoded atmospherically corrected).

2.3. SAM-HIT Implementation

Predicting the hyperspectral images by this algorithm is accomplished through four steps,
following the workflow of the SAM-HIT algorithm shown in Figure 1: collecting accurate
data, finding the best solution, constructing the dictionary of models, and predicting the
required bands in the region of interest. For collecting data, both L8 and Hyperion bands
were normalized to have a common data scale (16-bit unsigned integer data type). The
routine workflow in collecting these data incorporates image registration using ground
control points (GCP), then warping the hyperspectral image to fit the L8 intersection. How-
ever, this process leads to the interpolation as well as warping of hundreds of thousands
of pixels using a limited number of GCPs. In our workflow, we preferred to decrease the
uncertainty of the data used as inputs to our model. We, therefore, use the cross-correlation
function, Equation (12), for a hyperspectral band H and a multispectral band E, to define
adequate GCPs that are distributed all over the Hyperion band and represent almost all the
existing color tones. Consequently, we use these GCPs as centers for the 10 by 10 window
within which the data is collected.

G[i, j] = ∑k
u=−k ∑l

v=−l H[u, v]E[i + u, j + v] (12)
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Figure 3 shows the uncertainty of warped data compared with a 10 by 10 window
sampler as well as data representing only the GCPs. It is clear that the warped data, even
after Gaussian filtering to remove outliers, can easily cause uncertain data models. The
data collected for the 22nd Hyperion band versus the L8 third band is shown in Figure 4,
revealing an excellent correlation of the data collected using a 10 by 10 window sampler
around each GCP. The very fast simulated annealing algorithm is therefore used to solve
the linear equation defined in Equation (2). This is accomplished by first assuming an
initial random solution and modifying its parameters according to Equation (8), where
the parameters were allowed to be within a range of (0–1), as shown in Equation (7).
However, it is also possible to modify the parameters’ range to a wider interval. Hence, the
best solution is that which achieves the global minimum of the objective/energy function
defined in Equation (3), as the root mean squared error between original and predicted
images. Eventually, the cooling schedule follows Equation (10), and the full process is
accomplished through 20,000 iteration steps. This results in the best model parameters,
which are then saved to the model dictionary. While the seeking process progresses, a
single L8 band, or several bands, may be neglected by assigning a model parameter near
or equal to zero. This is what the PHITA algorithm tests. If the SAM-HIT algorithm did
not accept this solution, then it cannot be the global optimal. The SAM-HIT algorithm
is therefore a more general workflow that tests an enormous number of solutions to find
the global optimum (20,000 solutions in this case). Table 1 shows the sensitivity of the
SAM-HIT algorithm in adequate band selection for the global optimum model where some
bands were given approximately very low weight while others were given a significant
weight to keep the correlation coefficient between the original and predicted result in a
perfect fit. The next step encompasses predicting the hyperspectral image which covers
the same spatial coverage as the multispectral one. This step is carried out through simple
multiplication using the full scene of the L8 bands and their corresponding coefficients
according to Equation (1).

Table 1. Sensitivity of band selection in the SAM-HIT algorithm.

Hyperion
Band C1 C2 C3 C4 C5 C6 C7 Intercept

B018 0.743531 1.949537 −0.00211 0.796674 0.129633 0.245029 0.264724 2924.863

Having the SAM-HIT workflow completed, 155 hyperspectral bands, as per our initial
choice for healthy bands, are obtained with the advantage of covering the spatial extent of
L8 bands.
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3. Results

The method used a band-by-band comparison based on the visual similarity of original
versus predicted Hyperion bands, along with their histograms. A comparison between
both the original and the predicted Hyperion band 45 (wavelength = 803.3 nm) is shown in
Figure 5, where the spatial variation and characteristics have been successfully captured,
as indicated by their histograms. These show the predicted values with a slight shift to
the white region, though having a similar distribution. This is supported by the composite
band representations in Figure 6. Moreover, it is also seen in Figure 7 that the minimum,
mean, maximum, and quartiles of the predicted Hyperion bands match very well with
those of the original data.

For a full-data-based comparison, principal component analysis was used to reduce
the dimensionality of the original and predicted data. We found that the first three principal
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components represent more than 99% of the information given by the 155 Hyperion bands
(Table 2). The first three components for the original and predicted data were combined in
an RGB composite for a visual similarity check. Figure 8 reveals that the predicted bands
match very well with the original ones.

For a final stage of validation, the predicted Hyperion bands were compared with the
original hyperspectral bands that were not used while training our model. Since Prisma
data is slightly different from the Hyperion bands, we compared the predicted Hyperion
bands and Prisma bands based on RGB composites for similar wavelengths. In Figures 9
and 10, composite RGB of the predicted Hyperion bands (R = 83, G = 35, B = 16) and
(R = 146, G = 30, B = 13) are superimposed with a similar wavelength RGB composite of
two Prisma datasets along with the same RGB composite of the original Hyperion bands.
It is clear that the predicted Hyperion bands have successfully captured the spatial and
radiometric characteristics of the original Hyperion and Prisma datasets.
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Table 2. Principal component weights.

PCs Eigenvalue Weight Cumulative Weight

PC 1 77,483,511.41 0.821410385 0.821410385

PC 2 11,958,992.1 0.126778461 0.948188845

PC 3 4,186,135.111 0.044377633 0.992566478

...
...

...
...

Sum 94,329,841.53 1 1
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4. Discussion

In this work, we employed a very fast simulated annealing algorithm to obtain the
optimal solution for the multiregression transformation of multispectral bands (Landsat
8) into hyperspectral ones (Hyperion). The method is a global optimization method that
can avoid the local optimal solution that affects many of the other previously published
transformations (e.g., [4,5]). The input was imported from a sampling window covering all
or most of the colors through image registration based on the cross-correlation function. The
advantage of this data collection is the way it overcomes the unwanted data interpolation
resulting from the warping of the hyperspectral images on multispectral ones.

The resultant hyperspectral data were visually and statistically tested and validated.
Statistically (Figures 5 and 7), the predicted data showed excellent correlation, with almost
identical minima, maxima, average, and standard deviation values for the different bands.
Nonetheless, the resultant hyperspectral images have less color saturation (Figure 5),
which normally has no significant effect on the lithological discrimination. The predicted
pseudohyperspectral bands were then tested against the original ones in grayscale band
by band (Figure 5), and true and false RGB composites (Figure 6), which show very
good correlations.

The principal component analysis was also tested on both the original and predicted
hyperspectral data to test the global similarity between the original and predicted data.
A red-green-blue (RGB) combination of the principal components of the original and
predicted data shows excellent similarity (Figure 8). Furthermore, we have validated our
model’s result using the Prisma hyperspectral dataset, which was not used to train our
model. The result (Figures 9 and 10) demonstrates the efficiency of the transformation
presented here to predict unavailable hyperspectral data.

Moreover, as an additional validation step, the Abrams ratios [17] were processed
using the equivalent bands for Landsat-8 (6/7, 5/6, and 4/2), the original Hyperion
data, the predicted hyperspectral data (142/201, 53/142, and 30/15), and the Prisma data
(72/129, 50/72, and 34/12). The spectral response curves of rock-forming minerals show
diagnostic absorption features throughout the visible near infrared and shortwave infrared
wavelength ranges (0.325 to 2.5 µm). The main processes responsible for such features
are electronic transition, vibrational overtones, charge transfer, and conduction [18,19].
Based on vibrational transitions of Al-OH, Fe-OH, and Mg-OH, hydroxyl-bearing silicate
minerals (e.g., muscovite, kaolinite, epidote, chlorite, antigorite, chrysotile, and talc) exhibit
important absorption features near 2.20 µm and 2.32 µm SWIR wavelengths [20]. Carbonate
minerals (e.g., dolomite and calcite) show the most distinctive absorption features at
2.33 µm and 2.35 µm SWIR wavelengths [21]. In the TIR region, the silicate minerals
(e.g., feldspars, mica, amphibole, pyroxene, and olivine) display intense absorption features
in the wavelength range of 8.5 to 12 µm [22].

The Barramiya–Um Salatit district (Figure 11) has exposures of variably carbonatized
and silicified ophiolitic mélange blocks that are tectonically incorporated in variably de-
formed metasedimentary and volcano–sedimentary matrices. These rocks are intruded
by a wide spectrum of granitic intrusions ranging in composition from quartz-diorite,
granodiorite-tonalite, to leucogranite [12]. The greyscale band ratio (6/7), (142/201), and
(72/129) images clearly discriminate the variably talc-carbonatized/silicified zones as
bright to white image signatures. Also, the Fe-rich silicate bearing zones appear with bright
image signatures on the greyscale band ratio (vnir 5/vnir 6), (vnir 53/swir 142), and (vnir
50/swir 72) images (Figures 12 and 13). Based on the RGB combination of band ratios
(R: 6/7, G: 5/6, and B: 4/2) of Landsat 8, (R: 142/201, G: 53/142, and B: 30/15) of Hyperion
and (R: swir 72/swir 129, G: vnir 50/swir 72, and B: vnir 34/vnir 12) of the Prisma, the false
color band ratio composites (FCC) are best to discriminate the variably talc-carbonatized
and silicified ophiolitic rocks with yellow, rose and orange image signatures. The quartz-
diorite, granodiorite–tonalite and leucocratic granitoids appear with bluish-green, greenish,
and pinkish colors, respectively (Figures 13C and 14). On the other hand, the gabbroic rocks
and basic metavolcanics exhibit dark green image signatures, the intermediate to acidic



Remote Sens. 2023, 15, 1154 16 of 22

metavolcanics appear with brown and dark red colors, while the molasse-type sediments
and metasediments exhibit light green and lemon greenish image signatures, respectively.
It is clear that the image signatures of lithologies on the grayscale and FCC band ratio
images of both the original and predicted hyperspectral data are correlated and more
enhanced than those of multispectral Landsat-8 data. Figure 15 shows the Abrams ratio
for the original Hyperion, Prisma, predicted Hyperion, and Landsat 8. The color grades
shown in the original Hyperion and Prisma are closer to those of the predicted Hyperion
than the Landsat 8 as the predicted Hyperion and Prisma have closer wavelengths while
there are spectral gaps between them and the Landsat 8. This illustrates the success of our
transformation to model hyperspectral rather than multispectral sources.
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and (D) lithological mapping based on the spectral results derived from (C).
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Figure 15. Abrams band ratio for (a) the original Hyperion scene and Prisma on the Landsat
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5. Conclusions

In geological studies, the high spectral resolution of hyperspectral data can be em-
ployed for a sharper discrimination of lithologies and hydrothermal alteration types. Our
model demonstrates that predicting hyperspectral data for any geographic region of inter-
est is possible. The simulated annealing algorithm was used here as a global optimization
technique to train and define a global optimum model that can efficiently extrapolate hyper-
spectral data in areas not covered by Hyperion scenes. As a prerequisite, the area must have
multispectral data, e.g., Landsat 8 or ASTER. The numerical and visual comparison between
our model’s results and the original data confirm the accuracy of our newly designed trans-
formation as an efficient means and a reliable simulator of the Hyperion sensor responses
to different lithologies and offer a new means of advanced space-borne-based mapping.

Validation of the SAM-HIT transformation technique returns excellent results and
shows that our model’s behavior is not affected by overfitting. Our transformation can be
accomplished using any kind of multispectral dataset to predict hyperspectral data. We,
therefore, recommend using available hyperspectral scenes to decrease the uncertainty
of the generated hyperspectral dataset. However, a more independent method requires
finding the best global optimum model and designing an automatic global hyperspectral
simulator, which will be the subject of an outlook study. Codes, analyses, and visualizations
have been written in Python as well as ArcGIS and Envi software. The newly designed
SAM-HIT code will be published as an open-source python package in a future publication.
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