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Abstract: Timely and accurate acquisition of crop type information is significant for irrigation
scheduling, yield estimation, harvesting arrangement, etc. The unmanned aerial vehicle (UAV) has
emerged as an effective way to obtain high resolution remote sensing images for crop type mapping.
Convolutional neural network (CNN)-based methods have been widely used to predict crop types
according to UAV remote sensing imagery, which has excellent local feature extraction capabilities.
However, its receptive field limits the capture of global contextual information. To solve this issue, this
study introduced the self-attention-based transformer that obtained long-term feature dependencies
of remote sensing imagery as supplementary to local details for accurate crop-type segmentation in
UAV remote sensing imagery and proposed an end-to-end CNN–transformer feature-fused network
(CTFuseNet). The proposed CTFuseNet first provided a parallel structure of CNN and transformer
branches in the encoder to extract both local and global semantic features from the imagery. A new
feature-fusion module was designed to flexibly aggregate the multi-scale global and local features
from the two branches. Finally, the FPNHead of feature pyramid network served as the decoder for
the improved adaptation to the multi-scale fused features and output the crop-type segmentation
results. Our comprehensive experiments indicated that the proposed CTFuseNet achieved a higher
crop-type-segmentation accuracy, with a mean intersection over union of 85.33% and a pixel accuracy
of 92.46% on the benchmark remote sensing dataset and outperformed the state-of-the-art networks,
including U-Net, PSPNet, DeepLabV3+, DANet, OCRNet, SETR, and SegFormer. Therefore, the
proposed CTFuseNet was beneficial for crop-type segmentation, revealing the advantage of fusing
the features found by the CNN and the transformer. Further work is needed to promote accuracy
and efficiency of this approach, as well as to assess the model transferability.

Keywords: precision agriculture; UAV remote sensing; semantic segmentation; deep learning; CNN;
transformer; feature fusion

1. Introduction

Global food security is a worldwide issue and presents serious challenges. Precision
agriculture is crucial to ensuring food security, as well as the social and economic develop-
ment [1]. Accurate and timely crop-type-segmentation information facilitates the precision
agriculture activities, e.g., irrigation scheduling, yield estimation, land use assessment, as
well as governmental agricultural policy decisions [2].

As compared to the manual surveys that consume a large amount of human and
material resources, remote sensing is capable of acquiring information in a rapid, large-
scale, non-destructive way and has been involved in various fields, e.g., crop biomass
estimation, crop yield estimation, crop area estimation, plant protection, and agricultural
disaster prediction [3]. In addition to spaceborne and airborne platforms, unmanned aerial
vehicles (UAVs) have recently emerged as effective tools for agriculture monitoring. UAVs
are able to fly at low altitudes and obtain images with very high spatial resolution and are
not affected by clouds [4]. Due to these outstanding advantages, UAVs have been applied
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in agricultural applications, such as weed mapping [5], insect detection [6], plant disease
detection [7], crop yield prediction [8], etc.

Machine learning (ML) algorithms, such as maximum likelihood [9], support vector
machines [10], and random forests [11], have long been applied in a variety of agriculture
applications to construct linear or non-linear patterns and correlations from samples. A
typical ML-based crop-type-segmentation pipeline includes the study area selection, data
acquisition, data preprocessing, feature selection or transformation, and the application
of ML algorithms. However, the performance of ML-based methods relies heavily on
handcrafted feature extraction techniques and expertise. Deep-learning (DL) models
have demonstrated superior performance in accuracy, efficiency, and generalization, over
traditional machine-learning algorithms in complex tasks, due to their powerful automatic
feature extraction and non-linear expression capabilities. In the past years, DL has achieved
success in various fields, including natural language processing, computer vision, etc., as
well as in the remote sensing community.

Early attempts demonstrated that crop-type determination using DL-based image
classification algorithms could achieve high accuracy [12,13]. However, DL-based image
classification could only determine the type of the input images and often required classifi-
cation with a sliding window on large-scale images to generate crop maps, which limits
its efficiency. Meanwhile, semantic segmentation predicts the class of each pixel for the
images, which is more accurate and efficient for crop type mapping. Since the fully con-
volutional network (FCN) [14] first expanded the use of end-to-end convolutional neural
networks (CNNs) for semantic segmentation, the accuracy of image semantic segmentation
has been continuously improved, and many advanced CNN-based semantic segmentation
networks, e.g., SegNet [15], U-Net [16] and DeepLab [17] have been proposed. Research on
crop-type segmentation on UAV remote sensing images is emerging [18,19] and becoming
mainstream. These networks are typically using an encoder–decoder architecture, which
uses CNNs for feature extraction in the encoder and pixel-level class segmentation in the
decoder. In the feature extraction of the encoder, the contextual information of an image
is crucial [20,21]. However, due to the limitation of the receptive field of CNNs [22], only
limited contextual information can be processed, and the restriction of long-range scene
perception of the full image may lead to the wrong categorization of the crop field when
processed by segmentation networks.

In recent years, an attention mechanism that allocates limited attention resources to
quickly filter valuable information has been widely applied in the field of computer vision,
including such methods as CBAM [23], SENet [24], and GSoP [25] for CNNs. Recently, trans-
formers with an architecture based on an self-attention mechanism proposed by Google
have achieved state-of-the-art results in natural language processing [26]. Dosovitskiy et al.
proposed a vision transformer (ViT) based on the concept of transformers, in which they
had replaced the CNN architecture with a self-attentive mechanism and attained excellent
results in computer vision tasks [27]. A transformer was able to extract the global features
of images, and transformer-based semantic segmentation algorithms such as SETR [21],
SegFormer [28], and Swin Transformer [29] have achieved state-of-the-art results and been
applied in remote sensing applications, such as land-cover mapping [30].

However, when applying a transformer-based networks to crop-type segmentation
with UAV remote sensing images directly, satisfactory results can not always be obtained
mainly due to the following reasons. Spatial information and local features, e.g., edge
details, color, texture and shape of crops, in remote sensing images are crucial factors
affecting the semantic segmentation results [31]. However, a transformer divides the
high-resolution UAV imagery into patches, which may lead to an incomplete structure of
crop-field edges [32]. In addition, transformers compress the image into one-dimensional
tokens and send them to the transformer encoder as a sequence, which then leads to the
loss of spatial information and local information. This is not conducive to recovering the
detailed information in the decoder stage of semantic segmentation networks, resulting in
a decrease in the accuracy [33].
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Recently, there have been a few attempts to use CNNs and transformers simultane-
ously for crop type mapping. Li et al. [34] combined the ability of a CNN to express
spatial and spectral correlations of remote sensing images with that of a transformer to
obtain temporal correlations, and they installed a CNN and a transformer on the same
processing flow. Wang et al. [32] designed a coupled CNN–transformer network using
different feature-fusion modules for different resolutions and additional loss functions
during the model training process. In the wider range of areas for remote sensing image
interpretation, more research towards combining CNN and transformer architectures to
improve performance have been conducted, such as for object detection [35], image pan-
sharpening [36], SAR image classification [37], and fine-grained ship classification [38]. In
these studies, combining a CNN and a transformer to take advantage of both methods’
benefits is challenging. Typically, the features extracted by the CNN have been fed into
the transformer, or vice versa. Meanwhile, the separate global and local feature extraction
processes provide the flexibility to switch backbone networks and use their pre-trained
weights. However, fully aggregating and decoding the global and local features is difficult.
In computer vision, there have been efforts in aggregating and decoding local and global
features to improve performance. For the CNN-based semantic segmentation, U-Net [16]
used concatenation and deconvolution to aggregate features at different scales while PSP-
Net [39] and DeepLabV3+ [40] employed pyramid-structured decoders to aggregate and
decode features at various scales. For the transformer-based semantic segmentation, Seg-
Former [28] integrated a lightweight decoder composed of various multi-layer perceptrons
(MLP) and a Swin transformer [29] utilized UperHead from UperNet [41] to aggregate the
self-attention generated from windows of different sizes. The aforementioned works that
aggregated local features from CNNs and global features from transformers are discussed
in Section 5.3.

Therefore, in this study, we proposed an end-to-end CNN–transformer feature-fused
network (CTFuseNet) to achieve accurate crop-type segmentation in order to solve the
main issues, as previously mentioned: (1) CNN-based crop segmentation methods lack
long-range contextual information, which may lead to the wrong categorization of the crop
field; (2) transformer-based methods slice the high-resolution UAV imagery into patches,
which may lead to the loss of spatial information; and (3) fully extracting, aggregating and
decoding the multi-scale global and local features with a transformer and a CNN has yet to
be fully examined. Comprehensive experiments with advanced segmentation networks
including U-Net, PSPNet, DeepLabV3+, DANet, OCRNet, SETR and SegFormer, as well as
the performance analysis of the proposed module, were conducted. The experimental re-
sults showed the effectiveness of the proposed method. Specifically, the main contributions
of this paper are listed, as follows:

• We proposed CTFuseNet, a global–local feature-fused network based on transformer
and CNN architectures for accurate crop-type segmentation. It provides a parallel
structure of CNN and transformer branches in the encoder to extract both local and
global semantic features of remote sensing imagery and outputs multi-scale features
for aggregation.

• We design a new lightweight feature-fusion module to flexibly aggregate the multi-
scale local and global features output from CNN and transformer branches in the
proposed CTFuseNet.

• The FPNHead from feature pyramid network servers as the decoder in the proposed
CTFuseNet, instead of maintaining the original All-MLP decoder in SegFormer. It
allows decoding features at different scales, thus adapting to the fused features and
further improving the accuracy.

The rest of this paper is organized as follows. In Section 2, the proposed CTFuseNet
is presented, including the parallel structure of CNN and transformer branches in the
encoder, the feature-fusion module, and the decoder for the multi-scale global–local features.
The study area, the dataset, the experimental settings, and the methods for performance
comparison are provided in Section 3. The experimental results and the comprehensive



Remote Sens. 2023, 15, 1151 4 of 21

analysis are presented in Section 4. The discussion about the proposed method is given in
Section 5. Finally, conclusions are drawn in Section 6.

2. Methodology

The proposed end-to-end CNN–transformer feature-fused network (CTFuseNet) for
crop-type semantic segmentation had three major components: a parallel structure of a
CNN and a transformer to extract multi-scale local and global features in the encoder, a
newly designed multi-scale feature-fusion module, and the FPNHead from the feature
pyramid network that served as the decoder and output the crop-type segmentation results.
The overall architecture of the proposed network is shown in Figure 1. The following
subsections describe the proposed method in detail.

Figure 1. The framework of the proposed CTFuseNet for accurate crop-type segmentation.

2.1. Parallel Structure of CNN and Transformer for Local and Global Feature Extraction

As shown in the upper part of Figure 1, the proposed CTFuseNet consisted of a parallel
structure of CNN and transformer branches. The CNN branch was designed to extract
the local details of the remote sensing images. In this paper, ResNet [42], a CNN-based
image classification network, was used as the feature extraction backbone in the CNN
branch. It should be noted that the CNN branch enabled the integration of state-of-the-art
CNNs to enhance performance. The ResNet was composed of several residual blocks
called bottlenect, which contain a residual structure that utilized shortcut connections to
transfer features from shallow layers to deep layers and resolved the degradation issue in
deep CNN networks. According to the combinations of the bottleneck number in Layers
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1–4, the ResNet could be divided into ResNet18, ResNet34, ResNet50, ResNet101 and
ResNet152, for example, the number of bottlenecks in Layers 1–4 of ResNet50 was 3, 4, 6,
and 3, respectively.

In the CNN branch of the proposed network in this paper, a remote sensing image
of H ×W × 3 (H and W represent the resolution of the input image, and the number of
channels of RGB images was 3) was first processed into a H

2 ×
W
2 × 64 feature map by

Stem (composed of conv and activation functions) and Maxpool, and the features were
extracted at different levels through four layers. Each layer downsampled the input feature
map and input it into several bottleneck structures, for example, the input of Layer 2 was
H
4 ×

W
4 × C and the output was H

8 ×
W
8 × 2C. Finally, four feature maps are obtained, and

their resolutions and channel numbers were H
4 ×

W
4 , H

8 ×
W
8 , H

16 ×
W
16 , H

32 ×
W
32 , and C, 2C, 4C,

8C, respectively. These four feature maps with different resolutions and a different number
of channels supported the network in order to model local features at different scales.

As shown in the bottom part of Figure 1, the transformer branch in the CTFuseNet
was designed to extract the global contextual information of remote sensing images. In
this paper, SegFormer [28], a state-of-the-art transformer-based segmentation network,
was adopted in the transformer branch. The encoder of SegFormer used a hierarchical
transformer encoder without position encoding, and its encoder structure is shown in
Figure 1. In the transformer branch with SegFormer, a remote sensing image of H ×W × 3
was first divided into a series of 4× 4 patches as an input feature sequence, which are
called tokens, and then the transformer encoder was used to extract the global features of
input tokens. Finally, four feature maps of different scales and with resolutions, such as
H
4 ×

W
4 , H

8 ×
W
8 , H

16 ×
W
16 and H

32 ×
W
32 , were obtained.

The transformer feature-extraction stage consisted of a patch-embedding module
for dividing the input images into patches, and a transformer encoder consisting of four
transformer blocks, which is shown in Figure 1. Each transformer block extracted the
deep global features of the input features and reduced the resolution to 1

2 of the original.
Each transformer block contained several self-attention calculation modules and Mix-FNN
modules, and a patch-merging module, which were detailed, as follows.

The formula of self-attention calculation module in the original ViT [27] proposed by
Dosovitskiy et al. is shown as Equation (1). On this basis, the self-attention calculation
module in SegFormer performed a reshape operation on K to reduce the computational
complexity. Its formula is shown as Equations (2) and (3).

Attention(Q, K, V) = Softmax

(
QK>√

dhead

)
V (1)

K̂ = Reshape
(

N
R

, C · R
)
(K) (2)

Knew = Linear(C · R, C)
(

K̂
)

(3)

where K is the input sequence to be reshaped, N is the length of the input feature sequence,
C is the channel number of the feature sequence, and R is the ratio of the Reshape operation.
In addition, Reshape

(
N
R , C · R

)
(K) refers to reshaping K to the shape of N

R × (C · R), and

Linear(C · R, C)
(

K̂
)

refers to linear transformation of K.
The mix-FFN module was used to replace the positional encoding in ViT to obtain the

spatial information of the input image. The formula is as follows:

xout = MLP(GELU(Conv(MLP(xin)))) + xin (4)

where xin is the input features from self-attention calculation module, and GELU is the
activation function. The Conv is a convolutional operation with a kernel size of 3× 3.



Remote Sens. 2023, 15, 1151 6 of 21

The patch-merging module restored the feature sequence in the form of a one-dimensional
token to a feature map with the shape of H

2i+1 × W
2i+1 × Ci, where i denotes the i-th layer.

2.2. Multi-Scale Feature-Fusion Module

The multi-scale feature-fusion module was designed to aggregate the local features
from the CNN branch and the global features from the transformer branch. It efficiently
and flexibly fused the features with different resolutions and channel numbers, and its
structure is shown in Figure 2.

In the feature-fusion module, the features extracted by CNN and transformer (named
C and T) were first passed through a convolutional network with a kernel size of 1× 1,
respectively, to adjust their dimensions. The concatenation was then performed to merge
C and T. In this stage, the features merged by the concatenation were separated into a
third dimension. The merged features were fed into a 1× 1 convolution, followed by a
normalization operation and an activation function. Finally, the features from the CNN and
transformer branches were fully fused through a layer of 1× 1 convolution. In addition, a
residual operation was used to accelerate the convergence of the model.

Figure 2. The structure of the proposed feature-fusion module.

2.3. FPNHead for Multi-Scale Feature Decoding

In the proposed CTFuseNet in Figure 1, four features extracted through CNN with
the resolution of H

4 ×
W
4 , H

8 ×
W
8 , H

16 ×
W
16 , and H

32 ×
W
32 (C1, C2, C3, and C4, respectively),

and four features extracted from transformer with the same resolution (T1, T2, T3, and T4,
respectively) were obtained. The features with the same resolution were fused separately,
and finally four fusion features (F1, F2, F3, and F4, respectively) were obtained.

SegFormer originally designed a lightweight All-MLP decoder, i.e., MLPHead that
is capable of extracting the global feature and contextual information for a transformer.
However, the fused features in the CTFuseNet contained both information extracted from
the transformer and the CNN. Meanwhile, the feature pyramid network [43] was first
designed to parse the different levels of contextual information from the CNN with different
receptive fields for object detection.Considering its effectiveness on decoding features
of low-resolution, semantically strong features and high-resolution, semantically weak
features, it had been adapted to a semantic segmentation network [44].

Therefore, in this paper, the FPNHead from the feature pyramid network served as
the decoder for the local features and global fusion features in the proposed CTFuseNet.
Its structure is shown on the right of Figure 1. For features F1, F2, and F3 with a spatial
resolution less than H

4 ×
W
4 , several scale heads were performed to restore their spatial

resolution to H
4 ×

W
4 . Subsequently, four feature maps with the same resolution were

integrated in order to finally create the prediction map, which was generated through a
1× 1 convolution.
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2.4. Objective Function

The proposed CTFuseNet used the cross-entropy loss LCE to optimize its performance,
as shown in Equation (5), where N is the number of pixels in the image, C is the number of
classes, yi,c is the ground-truth label for the ith pixel and cth class, and pi,c is the predicted
probability for the ith pixel and cth class. The objective function was used to minimize the
cross-entropy loss LCE.

LCE = −
N

∑
i=1

C

∑
c=1

yi,c log(pi,c) (5)

3. Dataset and Experimental Settings
3.1. Study Area and Dataset

The benchmark dataset in this paper was the barley remote sensing dataset (Barley
dataset) derived from the UAV remote sensing images of a barley cultivation site in Xingren
City, Guizhou Province, provided by “2019 County Agricultural brain AI challenge” on
the Alibaba Cloud Tianchi Platform [45]. Xingren City is located between 104°54′–105°34′

E and 25°18′–25°47′ N, in Qianxinan Buyei and Miao Autonomous Prefectures, Guizhou
Province (as shown in Figure 3). The climate of Xingren City is suitable for the growth of
corn, flue-cured tobacco, barley, and other crops.

The dataset contained 4 labeled RGB images, with sizes of 44, 343× 3360, 18, 576× 68, 363,
44, 647× 32, 881 and 55, 128× 49, 447 pixels. The labels were given in the form of single
channel images, and the value of each pixel corresponded to the category of crops in the
RGB images. Specifically, the pixel value of “flue-cured tobacco” was 1, “corn” was 2,
“barley” was 3, “building” was 4, and all other positions were regarded as "other" with
pixel value of 0 (as shown in Figure 4). Table 1 shows the dataset information in detail.

Figure 3. The study area in this paper.

Table 1. Detail of the benchmark Barley dataset.

Resolutions Categories Pixel Value

44, 343× 3360
18, 576× 68, 363
44, 647× 32, 881
55, 128× 49, 447

flue-cured tobacco 1
corn 2

barley 3
building 4

background 0
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Figure 4. A panoramic view of the dataset. The top row is the RGB UAV remote sensing image, and
the bottom row is the corresponding label.

3.2. Data Preprocessing

To facilitate the training and testing of the Barley dataset, we cropped the original
4 large-scale images with a sliding window without overlapping, and the crop size was
512× 512. Subsequently, we sliced out the fully transparent images and obtained 13, 037
labeled 512 × 512 UAV remote sensing images. Finally, we divided the training and
testing data by the ratio of 8 : 2, that is, 10, 429 for training and 2608 for testing. Figure 5
shows examples of the cropped remote sensing images and their corresponding labels. To
further enhance the diversity of training data, we performed data augmentation during
model training, including random cropping, scaling, and flipping, as well as photometric
distortions, such as changes in brightness, contrast, hue, saturation, and random light noise.

Figure 5. Cropped remote sensing images. The top row is the RGB image, and the bottom row is the
corresponding label, in which black represents the background, red represents flue-cured tobacco,
green represents corn, blue represents barley, and gray represents building.
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3.3. Experimental Setup

The hardware platform included an Intel Xeon E5-2680 v4 CPU (https://www.intel.sg/
content/www/xa/en/products/sku/91754/intel-xeon-processor-e52680-v4-35m-cache-2-
40-ghz/specifications.html (accessed on 17 February 2023)), 64G of RAM, and an NVIDIA
RTX3090 (https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3090-3
090ti (accessed on 17 February 2023)) graphics card with 24G of video memory. The software
platform was Ubuntu 20.04 with CUDA11.1, Python 3.7 and PyTorch 1.8.1 installed.

For the network training, we use the Adam optimizer with a batch size of 8 and an
initial learning rate of 0.0001. The learning rate decayed by gamma every 10 epochs, and
the value of the gamma was set to 0.5. At the same time, in order to avoid over-fitting, the
dropout ratio was set to 0.1.

3.4. Evaluation Criteria

Mean intersection over union (mIoU) and pixel accuracy (PA), which are commonly
used evaluation metrics for semantic segmentation [46,47], were adopted to evaluate the
precision of the crop-type segmentation in our experiment.

Accordingly, mIoU calculated the ratio of the intersection and the concatenation of the
actual values and the predicted values, so it was able to capture both the precision and the
recall in a single score, and its formula is shown below.

mIoU =
1

k + 1

k

∑
i=0

Pii

∑k
j=0 Pij + ∑k

j=0 Pji − Pii
(6)

where k represents the number of crop-type segmentation categories, Pii indicates the
number of pixels correctly predicted, and Pij represents the number of pixels whose actual
value is i but predicted to be j.

In addition, PA is the ratio of the number of correctly predicted pixels to the total
number of pixels, and its formula is shown below.

PA =
∑k

i=0 Pii

∑k
i=0 ∑k

j=0 Pij
(7)

3.5. Methods for Performance Comparison

In this paper, we compared the proposed CTFuseNet with seven advanced semantic
segmentation methods listed below. For DANet, DeepLabV3+, and PSPNet, ResNet50
was utilized as the backbone. For SegFormer, to balance the computational complexity
and precision, SegFormer-B3 was used as the backbone. For our proposed CTFuseNet,
ResNet50 and SegFormer-B3 were used as the two-branched feature-extraction backbones.

• U-Net [16] uses a U-shaped structured network to propagate contextual information
from low-resolution layers to high-resolution layers via upsampling.

• PSPNet [39] exploits the capability of global contextual information by different region-
based contextual aggregation through a pyramid pooling module.

• DeepLabV3+ [40] is the latest version of the DeepLab series networks, which uses
atrous convolution to expand the receptive field and depth-wise separable convolution
to improve feature-extraction efficiency.

• DANet [48] models semantic information using attention mechanism in both spatial
and channel dimensions.

• OCRNet [49] explicitly transforms the pixel classification problem into an object–
region classification problem using the object–contextual-representations approach.

• SETR [21] is a transformer-based network that replaces CNN completely with self-
attention modules.

• SegFormer [28] is a simple and efficient, yet powerful, semantic segmentation network
that is based on a transformer.

https://www.intel.sg/content/www/xa/en/products/sku/91754/intel-xeon-processor-e52680-v4-35m-cache-2-40-ghz/specifications.html
https://www.intel.sg/content/www/xa/en/products/sku/91754/intel-xeon-processor-e52680-v4-35m-cache-2-40-ghz/specifications.html
https://www.intel.sg/content/www/xa/en/products/sku/91754/intel-xeon-processor-e52680-v4-35m-cache-2-40-ghz/specifications.html
https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3090-3090ti
https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3090-3090ti
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4. Results and Analysis
4.1. Crop-Type Segmentation Performance

The segmentation accuracy of the proposed CTFuseNet and those of all the models
used for comparison are shown in Table 2. Examples of the segmentation results are
shown in Figure 6. Taking mIoU as the main indicator, the U-Net, based on the CNN
architecture of an encoder–decoder, achieved a score of 78.73%. The DANet, DeepLabV3+,
PSPNe, and OCRNet, which introduced attention mechanism and integrated multi-scale
features, improved the segmentation accuracy of U-Net by 6.2%, 5.8%, 6.5%, and 6.1%,
respectively, reaching 83.64%, 83.27%, 83.82%, and 83.56%, respectively. This showed that
the attention mechanism and the multi-scale feature fusion significantly improved the
crop-type segmentation performance.

After introducing the self-attention-based transformer into the crop-type segmentation,
Table 2 shows the results of SETR and SegFormer. The encoder of SETR, a transformer-
based network, completely relied on a self-attention mechanism. SETR improved the
accuracy by 6%, as compared to U-Net, but was slightly lower than DANet, DeepLabV3+,
and the other CNN-based models. SegFormer outperformed all CNN-based models and
SETR in terms of crop-type segmentation accuracy. It used a transformer exclusively in the
feature-extraction stage and fused features from different scales in the decoding stage, and
the accuracy achieved was 84.47% for mIoU and 91.92% for PA.

Combining both advantages of a CNN and a transformer, the proposed CTFuseNet
achieved the highest segmentation of 85.33% for mIoU and 92.46% for PA. Moreover, as
shown in Figure 6, the CNN-based networks resulted in biases, especially at the edge of
large ranges of crops in complex scenes (column 2 in Figure 6) while the transformer-based
networks were not accurate for the segmentation of small ranges of crops (column 6 in
Figure 6), and erroneous segmentation occurred in areas where crops were sparsely grown
(column 7 in Figure 6). The proposed CTFuseNet obtained the best segmentation results.

Table 2. Performance comparison of crop-type segmentation networks. The best results are in bold.

Method
IoU(%) per Category

PA(%) mIoU(%)
Background Flue-Cured Tobacco Corn Barley Building

U-Net 84.25 93.14 73.85 73.54 68.89 89.17 78.73
DANet 87.44 94.67 76.67 76.68 80.75 91.51 83.64

DeepLabV3+ 87.36 94.45 76.39 78.13 80.01 91.36 83.27
PSPNet 87.86 94.37 77.43 78.77 80.65 91.69 83.82
OCRNet 87.78 93.98 76.71 77.44 81.89 91.48 83.56

SETR 87.07 94.09 76.46 77.31 79.96 91.14 82.98
SegFormer-B3 88.25 95.39 77.08 78.98 82.67 91.92 84.47

CTFuseNet
(SegFormer-B3 + ResNet50) 88.89 95.16 78.61 80.84 83.13 92.46 85.33
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Figure 6. Examples and comparison of crop-type segmentation results.
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4.2. Performance of Feature-Fusion Module

In addition to the crop-type segmentation performance of the proposed CTFuseNet,
we analyzed the impact of our proposed feature-fusion module (CTFuse module). In
particular, the dimensions of the features extracted by the CNN and the transformer were
different, so we used Conv2d to adjust their dimensions before adding the features.

The segmentation accuracy is listed in Table 3. As compared to the mIoU of 84.47%
and the PA of 91.92% for the SegFormer-B3 without the feature fusion, simply adding the
respective features of a CNN and a transformer achieved an mIoU of 84.98% and a PA of
92.25%. It showed that the CNN features, indeed, improved the segmentation accuracy. By
comparing the feature-fusion strategies, we found that simply adding them did not make
full use of the CNN features. By using the proposed CTFuse Module, we obtained an mIoU
of 85.33%, which was 1.02% higher than the original SegFormer-B3 and 0.41% higher than
the adding strategy.

In addition, from the perspective of the model inference speed in terms of Img/s,
i.e., the speed of the inference pictures per second, the CTFuse module was a lightweight
module and had only a slight impact on the inference speed.

Table 3. Performance analysis of the feature fusion strategies. The best results are in bold.

Method Fuse Strategy Decoder PA(%) mIoU(%) Img/s

SegFormer-B3 - MLPHead 91.92 84.47 18.0

SegFormer-B3 + ResNet50 Conv2d & Add FPNHead 92.25 84.98 14.3

CTFuseNet
(SegFormer-B3 + ResNet50) CTFuse Module FPNHead 92.46 85.33 14.0

4.3. Performance of Decoders

In the semantic segmentation network based on the encoder–decoder structure, the
role of decoder was to decode the features extracted in the encoder and restore them to the
original spatial resolution of the image in order to output the prediction map. Decoders
were one of the key factors affecting the segmentation accuracy. The original SegFormer
designed a lightweight All-MLP decoder (MLPHead), which considered the characteristics
of its hierarchical transformer encoder. However, in our proposed dual-branch CTFuseNet,
both a transformer and a CNN were used to extract features. Thus, the FPNHead from the
feature pyramid network served as the decoder for the fusion features in this work, and
the results are shown in Table 4.

After fusing the CNN features, the mIoU increased from 84.47% to 85.2%, as compared
to the original SegFormer with MLPHead for feature decoding, and the PA improved from
91.92% to 92.41%. The mIoU and PA continued to increase to 85.33% and 92.46%, respec-
tively, with the FPNHead for multi-scale features. Due to the pyramid decoding structure,
FPNHead considered both global and local features and was suitable for decoding the fused
features from the CNN and the transformer. In addition, from the perspective of efficiency,
the inference speed of the network with FPNHead was similar to that with MLPHead.

Table 4. Performance analysis of the decoders. The best results are in bold.

Method Decoder PA(%) mIoU(%) Img/s

SegFormer-B3 MLPHead 91.92 84.47 18.0

SegFormer-B3 + ResNet50 MLPHead 92.41 85.2 14.0

CCTFuseNet (SegFormer-B3 + ResNet50) FPNHead 92.46 85.33 14.0
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5. Discussion
5.1. Classification vs. Segmentation for Crop Mapping

Currently, the mainstream crop-mapping methods for remote sensing images include
image classification and semantic segmentation. Since image classification can only predict
the category information of the input image, a common practice for crop mapping based
on image classification has been cropping the image into patches using a fixed-size sliding
window, inputting them into an image classification network, and then mapping the
category information based on the location of the patches in the whole image [50], as shown
in Figure 7. In addition, since only a few pixels are contained in a single patch, many studies
have attempted to improve the classification accuracy using adding additional spectral and
temporal information from hyperspectral images [51], multispectral images [52], synthetic
aperture radar (SAR) images [53,54], time series data [34,50], etc.

Figure 7. An illustration of the image classification-based method for crop mapping.

Conversely, semantic segmentation was able to process the entire image and output
the classification information of each pixel in the entire image directly, which was more
efficient for crop mapping. Semantic segmentation networks usually use the encoder–
decoder structure, where the encoder is used to extract features and reduce the spatial
dimension, and the decoder is used to parse features and recover the spatial dimension.
Since the input of the segmentation network was the entire image containing all pixels, it
enabled the semantic segmentation network to handle information over long distances and
achieve high accuracy and efficiency.

Therefore, in this paper, we exploited the semantic-segmentation-based method for
accurate and efficient crop mapping on large-scale RGB UAV images. In addition to
enhancing the feature extraction and fusion by the proposed dual-branch CTFuseNet and
CTFuse module, specifically for the importance of the decoder in the semantic segmentation
networks, we adapted the decoder to the fused features. Our proposed method showed an
accuracy of 85.33% in mIoU and 92.46% in PA, outperforming the state-of-the-art networks
in comparison.

5.2. Local–Global Fusion Features of CTFuseNet

The results in Section 4 demonstrated the effectiveness of our proposed CTFuseNet
by taking advantage of the extraction ability of the CNN in local features and that of the
transformer in global features. Furthermore, we visualized heat maps by using gradient-
weighted class activation mapping (Grad-CAM) [55] to better illustrate the features from
the CNN and the transformer branches, as well as the fused results. Grad-CAM was able to
generate heat maps for the gradients of the target classes flowing into the final convolutional
layer and to highlight focal regions, and it was also applicable for the transformer-based
networks [56].

In particular, the results of the single-branch CNN-based DeepLabV3+ (with ResNet50
as backbone), the single-branch transformer-based SegFormer (with SegFormer-B3 as
backbone), and the proposed CTFuseNet (ResNet50 + SegFormer-B3) for different crops
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were evaluated. For DeepLabV3+, we used the final bottleneck in its backbone as the target
layer to compute Grad-CAM. For SegFormer, the LayerNorm layer in its last transformer
encoder was used. For the proposed CTFuseNet, the final convolutional layer in the CTFuse
module was used. By overlaying the heat map onto the remote sensing image, we observed
the regions the model prioritized, as shown in Figures 8 and 9.

Figure 8. An example of heat map of corn and building. The rows from top to bottom are results
from DeepLabV3+, SegFormer and the proposed CTFuseNet, respectively.
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Figure 9. An example of heat map of corn and barley. The rows from top to bottom are results from
DeepLabV3+, SegFormer and the proposed CTFuseNet, respectively.

The top and the second rows in Figure 8 show that the CNN-based DeepLabV3+
prioritized local, small-scale feature information, and the transformer-based SegFormer
was more suited for extracting feature over long distances at large scales. However, for the
crop-type segmentation task, the remote sensing images not only captured information
about the crops but also about the underlying soil, so the local information, such as texture
and color, were also important. Therefore, from the segmentation results, the transformer-
based SegFormer was not accurate in segmenting the corn. In contrast, for our proposed
dual-branch CTFuseNet, the local information obtained from the CNN branch compensated
for the transformer branch, thus achieving better segmentation results.
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Another example of a heat map for core and barley is presented in Figure 9. In
the modeling of the barley features in the lower left corner of Figure 9, DeepLabV3+
identified only a small fraction of objects while SegFormer could not identify any. Due to the
proposed CTFuseNet’s ability to model both local features and long-range global features,
it surpassed the single-branch DeepLabV3+ and SegFormer’s ability to identify barley.

With the addition of the results mentioned in Section 4, our model segmented the
barley type with an accuracy of 80.84% in IoU, outperforming DeepLabV3+’s 78.13% and
SegFormer-B3’s 78.98%. Similarly, it segmented the corn type with an IoU of 78.61%, as
compared to DeepLabV3+’s 76.39% and SegFormer-B3’s 77.08%, which improved by 2.9%
and 2.0%, respectively.The above heat maps illustrate the features that contributed to the
crop-type segmentation improvement of the proposed fusion network.

5.3. Fusion Strategies of CNN and transformer

Given the huge advantages transformers have over CNN for global feature extraction
and the modeling of long-range semantic information, many researchers have started to
integrate the merits of transformers in the field of vision, such as through ViT [27] for
image classification, DETR [57] for object detection, SETR [21], and SegFormer [28] for
semantic segmentation, and they have achieved the state-of-the-art performance. However,
transformer-based networks often require cutting images into small patches, which causes
loss of spatial information, while CNN-based networks are excellent for extractin local
information. Therefore, a series of networks to combine CNNs and transformers have
emerged, such as TransUNet [58], CoAtNet [59], CvT [60], Conformer [61], CMT [33], etc.

These networks usually combine CNN and Transformer in two ways. One uses a
single-branch junction structure, where the features extracted by the CNN are then fed into
the Transformer, or the features extracted by the Transformer are then fed into the CNN,
with the goal of extracting both local features and global features in a single processing
flow. The other is to use a dual-branch structure to extract the features using a CNN and a
Transformer in different branches and then to fuse the results, which is exemplified in the
feature-coupling unit (FCU) in Conformer [61].

We adopted the latter approach in this paper, i.e., we proposed a two-branch network
that used a CNN and a transformer for feature extraction in two branches and then fused
the features using the CTFuse module. This approach provided the ability to use existing
advanced networks and their pre-trained weights to achieve satisfactory results with only
minor fine-tuning, which mitigated having to train the model from the very beginning.
This was beneficial to the field of remote sensing since labeled data is generally limited.
In addition, the feature-extraction backbone networks on both branches could be readily
replaced with lightweight networks, enabling easy switching during tasks that require high
computational speeds.

5.4. Statistical Significance Analysis

In this study, we employed the McNemar test [62] to evaluate the statistical significance
of the differences in accuracy between our proposed CTFuseNet method and the methods
adopted for comparison [63,64]. The McNemar test compared the classification results of
two methods on the same set of samples and recorded the classification results for each
method in a 2× 2 contingency table, as shown in Table 5. Where f11 is the proportion of
samples classified correctly by both classification methods, f12 is the proportion classified
correctly by classification method 1 while incorrectly by method 2, and f21 is the proportion
classified incorrectly by method 1 while correctly by method 2, and f22 is the proportion
that classified incorrectly by both methods.
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Table 5. Contingency table for McNemar test between two classification results.

Classification 2

Correct Incorrect ∑

Classification 1
Correct f11 f12 f11 + f12

Incorrect f21 f22 f21 + f22
∑ f11 + f21 f12 + f22 1

For the comparison of different algorithms, the McNemar test statistic was then
calculated by Formula (8). As it follows a Chi-squared distribution with one degree
of freedom, the p-value was obtained from the chi-squared distribution in table [65] or
estimated by statistical software [66]. To evaluate the statistical significance of the test,
the p-value was compared to a predetermined significance level α, which was typically
set at 0.05. If the p-value was lower than α, the null hypothesis that the two classification
methods had equivalent performance was rejected. However, if the p-value was greater
than α, there was not enough evidence to reject the null hypothesis.

χ2 =
( f12 − f21)

2

f12 + f21
(8)

We adopted the starting point U-Net and the transformer-based SegFormer with the
closest performance as baselines and employed the McNemar test on the test set to evaluate
the statistical significance of the proposed CTFuseNet against the baselines. As our model
was a multi-class semantic segmentation model, we assessed its performance by transforming
a pixel-by-pixel classification task, which resulted in a total of 512× 512× 2608 samples.

The comparison between CTFuseNet and U-Net yielded a McNemar test statistic
of 11.9949 and a p-value of 0.00053, where the p-value was much lower than the signif-
icance level 0.05, indicating a statistically significant improvement in performance by
CTFuseNet, as compared to U-Net. Similarly, the comparison between CTFuseNet and
SegFormer resulted in a McNemar test statistic of 22.7454 and a p-value of 1.85× 10−6,
further highlighting the superior performance of CTFuseNet over SegFormer.

The statistical analysis demonstrated that the proposed CTFuseNet outperformed the
benchmarks with statistical significance, providing evidence for the effectiveness of our
approach in crop-type segmentation.

5.5. Model Transferability

Changing environmental and image scene in the diverse geographic, temporal, and
sensor conditions may cause data distribution shifts [67,68]. Therefore, the deep learning
models trained on a certain set of labeled images are generally restricted to a specific
dataset [69] and may not yield satisfactory performance for unseen data when applied to
different image acquisition conditions [70]. The model transferability across domains, e.g.,
geo-locations, time, and sensors, have been a significant challenge and major concern in
the remote sensing community [71].

The proposed CTFusedNet in this paper integrated a parallel structure of CNN and
transformer branches (i.e., ResNet and SegFormer, respectively) that maintained their
independence. Current research has shown the generalization capability of ResNet [72,73]
and Vision transformer [73] by mathematical analysis and experimental results. In ad-
dition, data augmentation is also an effective way to diversify the training dataset and
improve the generalization of the DL-based method [69], and therefore, we performed data
augmentation, e.g., random cropping, scaling, flipping, and photometric distortions.

However, the benchmark dataset had a limited spatio-temporal configuration, so
the model generalization ability was evaluated by the testing dataset. For data from
different geo-locations, time, or sensors, transfer learning is a general practice considered
to foster model generalization and improve performance [70,74]. Moreover, efforts have
been divide into the following aspects, i.e., weakly supervised learning, optimal model and
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feature selection, semi-supervised domain adaptation, deep metric based methods for few-
shot learning, and meta-learning with deep metric embedding [67]. The comprehensive
assessment and promotion of model transferability across domains is a critical direction in
our future work.

6. Conclusions

In this paper, considering that the existing CNN-based crop segmentation methods
lack long-range contextual information, which limits its accuracy, we introduced a self-
attention based transformer and provided a flexible, parallel method for coupling CNN
and transformer architectures to obtain long-term feature dependencies as supplementary
while preserving local details for accurate crop-type segmentation on UAV remote sensing
imagery. Therefore, we proposed an end-to-end CNN–transformer feature-fused network
(CTFuseNet) to fully aggregate and decode the multi-scale global and local features based
on the transformer and CNN architectures.

The CTFuseNet provided a parallel global–local feature extraction structure based on
the transformer and CNN architectures in the encoder for accurate crop-type segmenta-
tion. A new feature–fusion module, CTFuse, was designed to flexibly fuse the extracted
multi-scale features from the CNN and the transformer. In addition, FPNHead from the
feature pyramid network served as the decoder to adapt to the fused multi-scale features
and further improve the accuracy. The experimental results showed that for crop-type
segmentation, according to the benchmark dataset, we achieved the highest accuracy
with an mIoU of 85.33% and a PA of 92.46%, which was an increase of 2.4% and 1.0%,
respectively, as compared to the single-branch networks, i.e., the CNN-based ResNet50 and
the transformer-based SegFormer-B3. It also outperformed the typical networks, includ-
ing U-Net, PSPNet, DeepLabV3+, DANet, OCRNet, SETR, and SegFormer. It should be
noted that, due to the high flexibility of the CTFuse module we developed, the proposed
CTFuseNet provided a framework for combining more advanced transformer or CNN
branches and to further enhance the crop-type segmentation capabilities.

Despite the performance improvements achieved by the proposed CTFuseNet, there
are still challenges, especially for real-time crop-type segmentation tasks onboard UAVs.
In the future, in addition to designing feature-fusion modules and decoders with better
performance, we will prioritize lightweight crop-type segmentation networks through
model compression technologies, such as model pruning and knowledge distillation, to
reduce the model size and computation complexity, as well as to promote the inference
efficiency. Furthermore, we will thoroughly assess and improve the model robustness and
transferability on diverse datasets.
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