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Abstract: Green tide beaching events have occurred frequently in the Yellow Sea since 2007, causing
a series of ecological and economic problems. Satellite imagery has been widely applied to monitor
green tide outbreaks in open water. Traditional satellite sensors, however, are limited by coarse
resolution or a low revisit rate, making it difficult to provide timely distribution of information about
green tides in the nearshore. In this study, both PlanetScope Super Dove images and unmanned
aerial vehicle (UAV) images are used to monitor green tide beaching events on the southern side
of Shandong Peninsula, China. A deep learning model (VGGUnet) is used to extract the green tide
features and quantify the green tide coverage area or biomass density. Compared with the U-net
model, the VGGUnet model has a higher accuracy on the Super Dove and UAV images, with F1-scores
of 0.93 and 0.92, respectively. The VGGUnet model is then applied to monitor the distribution of
green tide on the beach and in the nearshore water; the results suggest that the VGGUnet model
can accurately extract green tide features while discarding other confusing features. By using the
Super Dove and UAV images, green tide beaching events can be accurately monitored and are
consistent with field investigations. From the perspective of near real-time green tide monitoring,
high-resolution imagery combined with deep learning is an effective approach. The findings pave the
way for monitoring and tracking green tides in coastal zones, as well as assisting in the prevention
and control of green tide disasters.

Keywords: Super Dove; unmanned aerial vehicle (UAV); deep learning; green tide; U-net; VGGUnet

1. Introduction

Green tides are marine ecological disasters caused by the excessive proliferation,
growth, and accumulation of opportunistic green macroalgae [1], which mostly occur
in coastal zones around the world [2,3]. Since 2007, massive green-tide outbreaks have
occurred in the Yellow Sea every year from May to August, with Ulva prolifera (U. prolifera)
as the main species [4–7]. Previous studies showed that the Yellow Sea U. prolifera green
tide is caused by the Porphyra aquaculture at Subei Shoal in the southern Yellow Sea [8–10].
When the aquaculture facilities are recovered, large amounts of green algae attached to the
ropes are discarded and enter the seawater. These green algae continue to drift northward,
driven by wind and waves [11,12]. As a result, in late June and early July, millions of tonnes
of green algae biomass accumulate in the offshore waters of the Shandong Peninsula [13–15].
Some green algae are carried ashore by tides and waves and accumulate on the beach of
the southern side of Shandong Peninsula, China. During the process of decomposition
of these macroalgae, a large amount of hydrogen sulfide gas and ammonia are released,
resulting in both ecological risks and human health problems [3,16].
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Satellite remote sensing is a useful tool for monitoring and tracking green tides, where
timely information extracted from the remote sensing images plays an important part in
decision-making and disaster prevention [17–19]. In recent years, there have been many
studies focusing on green tide monitoring using the Geostationary Ocean Color Imager
(GOCI) and the Moderate Resolution Imaging Spectroradiometer (MODIS) in the Yellow
Sea [20,21]. However, because of their coarse resolution, it is difficult to make an accurate
estimation of the biomass of green tide on the beaches and in nearshore waters [22,23].
When higher spatial resolution images are available, i.e., Sentinel-2 MSI (10 m), Gaofen-1
WVF (16 m), and Landsat-8 OLI (30 m), small scale features of green tides can be identified
and extracted [24,25]. Nonetheless, as their revisiting periods are approximately 4–16 days,
it is difficult to realize continuous and real-time monitoring [26,27].

Recent years have seen the development of small, inexpensive satellites (known as
CubeSats) that can provide both frequent revisits and high spatial resolution for dynamic
monitoring of coastal zones. For instance, the PlanetScope constellation is made up of more
than 200 satellites with Dove or Super Dove sensors that can make daily observations for
many coastal areas at 3 m resolution [28,29]. It has been demonstrated that Dove imagery
is capable of monitoring harmful algal blooms, marine plastic debris, and Sargassum mats
in coastal areas [30–33]. However, to our best knowledge, there are no reports on using
the Dove or Super Dove imagery to monitor green tide beaching events in the Yellow
Sea. Meanwhile, unmanned aerial vehicle (UAV) imagery has been applied to detect the
distribution of green algae and evaluate the initial biomass of green algae attached to
aquaculture rafts because of its strengths of strong flexibility, low cost, and high spatial
resolution [34–36]. Thus, it is an indispensable data source for monitoring green tide
beaching events.

For remote sensing optical sensors, there are many methods to identify and extract
green tide information; the two most commonly used indices are the floating algae index
(FAI) and the normalized difference vegetation index (NDVI) [37,38]. Green-tide infor-
mation can be extracted from these index images by the threshold segmentation method.
Because of images affected by clouds, shadows, and variable image backgrounds, the selec-
tion of thresholds may require extensive prior knowledge or expert assistance [39,40]. Deep
learning provides a possibility to overcome these limitations [41,42]. In the last few years,
deep learning has been widely used in areas such as ship detection, macroalgae extraction,
and sea ice monitoring [43–45]. For example, Arellano-Verdejo et al. proposed a Sargassum
extraction algorithm (ERISNet) based on deep learning, which was used to extract Sargas-
sum in Mexican coastal waters [46]. Wang et al. used a super-pixel segmentation method
and a convolutional neural network model (AlexNet) to extract macroalgae information
from UAV images [36]. Gao et al. proposed a deep learning framework known as AlgaeNet
for detecting green tide information from SAR and optical imagery [47]. Comparatively,
the classic U-net model has been extensively applied in remote sensing image classification
due to its efficient network architecture and good image segmentation performance [42,48],
so it should also be capable of detecting and extracting green tides on the beaches and in
nearshore waters from high-resolution imagery.

Therefore, this paper aims to develop a deep learning approach to detect and extract
information about green tides on the beaches and in nearshore waters from Super Dove
and UAV images. The remainder of this paper is arranged as follows: firstly, the VGGUnet
model is developed and the performance of the model is evaluated; secondly, in the three
areas, the spatiotemporal change processes of U. prolifera are analyzed on the beach and
in nearshore water; and finally, the strengths and weaknesses of this approach and the
prevention and control strategies of green tides on beaches and in nearshore waters are
discussed.
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2. Materials and Methods
2.1. Study Areas

Three study areas (Figure 1a) were chosen for this study (P1 (121.066◦E–121.098◦E,
36.613◦N–36.631◦N), P2 (121.129◦E–121.178◦E, 36.649◦N–36.674◦N), and P3 (121.281◦E–
121.298◦E, 36.704◦N–36.713◦N) on the southern side of the Shandong Peninsula to analyze
the changing processes of U. prolifera on beaches and in nearshore water. Since the outbreak
of the Yellow Sea green tide in 2007, massive amounts of U. prolifera have been washed
ashore by the tides and waves and accumulated on the beach in the study area every year.
The decomposition of stranded U. prolifera releases ammonia and hydrogen sulfide gas,
posing risks to both the environment and human health. To remove U. prolifera, the local
government must invest a lot of labor and resources every year. Therefore, it is critical to
obtain dynamic information on green algae in a timely and efficient manner in order to
help prevent and control green tide disasters. The tides in the study area are dominated
by regular semi-diurnal tides, with an average tidal range of 2.24 m and no overt seasonal
variations (http://www.tidescn.com/Tides/1341.html, accessed on 23 June 2021).
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Figure 1. (a) The three research areas are denoted by the letters P1, P2, and P3, respectively. The
background image is a Landsat 8 true color image composed of bands 4-3-2 on 23 June 2021 (source:
https://earthexplorer.usgs.gov/, accessed on 23 June 2021). (b) Spectral reflectance of seawater,
Ulva prolifera (U. prolifera) on the beach, and U. prolifera in nearshore water from the Super Dove
multispectral image. (c–e) U. prolifera on the beach, shot by an unmanned aerial vehicle (UAV) at P1,
P2, and P3 study areas.
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2.2. Data Preparations
2.2.1. PlanetScope Super Dove Data

More than 200 satellites make up the PlanetScope constellation, which enables the daily
delivery of 3 m resolution images of the land surface and coastal waters. The Super Dove 3B
image products (surface reflectance data), which contain four-bands (blue, green, red, and
near-infrared), were used in this article, and the detailed attributes of the Super Dove sensor
are shown in Table 1. A total of 82 four band Super Dove images were acquired between 1
June 2021, and 31 July 2021, from Planet Lab (https://www.planet.com/explorer/, accessed
on 1 June 2021).

Table 1. Attributes of the Super Dove sensor.

Sensor Band Wavelength (nm) Spatial Resolution (m) Revisit Cycle (day)

Super
Dove

Blue 465–515

3 1
Green 547–585
Red 650–680
NIR 845–885

2.2.2. UAV Data

From 28 June to 8 July 2021, a MATRICE M600 Pro UAV (Figure 2a) (SZ DJI Technology
Co., Ltd., Shenzhen, China) equipped with a DJI Zenmuse X3 RGB camera (Figure 2b) was
used to take images of U. prolifera on the beach and in nearshore water in the three study
areas: P1, P2, and P3. The global navigation and positioning system (GPS) on the UAV
enables it to record flight altitude and location data for each image. The UAV’s maximum
flight altitude was set at 150 m. A digital orthophoto map was created using Pix4Dmapper
software. Figure 1c–e shows the distribution of U. prolifera on the beaches and in nearshore
waters in the three study areas (P1, P2, and P3).
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2.3. U. prolifera Extraction and Quantification Workflow
2.3.1. U. prolifera Extraction Workflow

The workflow for the automatic U. prolifera extraction and analysis using the Super
Dove and UAV images is shown in Figure 3. When extracting U. prolifera information
from the Super Dove images, cloud has a significant impact. Therefore, when the image is
screened, images with a cloud cover of more than 50% are considered invalid observations.

https://www.planet.com/explorer/
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Clouds have a high reflectance in the blue band of the Super Dove image, making it
possible to separate clouds from other ground objects using the threshold method [31].
After numerous tests, the Super Dove blue-band image’s pixels with reflectance larger than
0.1 are designated as cloud pixels, and the image is subsequently masked. Because the
UAV flies at a low altitude, there is less interference from clouds, so cloud masking has not
been considered for UAV images.
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For the Super Dove images, the valid observation data are first generated by land
masking and cloud masking. Then the U. prolifera pixels are extracted from the Super
Dove images using the VGGUnet model (the VGGUnet model is introduced in detail
in Section 2.3.2). Finally, the corresponding coverage areas and biomass densities are
calculated from all U. prolifera-containing pixels.

For the UAV images, the UAV digital orthophoto images are first generated using
the Pix4Dmapper software. Then the U. prolifera pixels are extracted from the UAV digital
orthophoto images using the VGGUnet model. Finally, the corresponding coverage areas
and biomass densities are calculated from all U. prolifera-containing pixels.

2.3.2. The Construction of the VGGUnet Model
Model Architecture

In this study, we used the classical U-net architecture with VGG-16 [49] as the encoder.
The U-net model was first proposed in 2015 by Ronneberger et al. [50], mainly for biomed-
ical image segmentation, and was applied in later studies for the feature extraction task
of remote sensing images [44,48]. Since VGG-16 was trained on the Image-Net dataset,
using VGG-16 as the pre-trained encoder of U-net can effectively improve the performance
of segmentation [51]. Therefore, this study used the pre-trained weights obtained from
VGG-16 as the encoder of U-net, while the decoder part of U-net remains unchanged. The
detailed architecture of the model is shown in Figure 4.

Each convolutional block was normalized using batch normalization [52]. The primary
activation function was the rectified linear unit (ReLU). In the final output layer, the sigmoid
activation function was used to determine the segmentation results. The VGGUnet model
received input from three-band UAV RGB images or four-band multispectral Super Dove
images. The model output is the extracted U. prolifera-containing pixels.
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Figure 4. Detailed architecture diagram of the VGGUnet model. The N in the upper-right corner
of the input image indicates that the input image has N spectral bands. For instance, the Super
Dove image includes four bands (Blue-Green-Red-Nir), and the UAV image has three bands (Blue-
Green-Red). The 1 in the upper-right corner of the output image indicates that the output image is a
single-band image containing U. prolifera pixels.

Training and Accuracy Evaluation of the VGGUnet Model

In the Super Dove and UAV images, the U. prolifera has noticeable green patch or stripe
features (Figure 1a,c–e). The Labelme software [53] was used to label samples with various
U. prolifera shapes. A total of 1265 Super Dove sub-images and corresponding labels were
selected for the Super Dove images, and 1120 UAV sub-images and corresponding labels
were prepared for the UAV RGB images. The datasets were divided into a training set, a
verification set, and a testing set according to the ratio of 7:2:1. The data augmentation
techniques (including diagonal flip, horizontal flip, and vertical flip) were used to expand
the training and validation datasets but not the testing datasets.

In this study, the adaptive moment estimation (Adam) optimizer is used to optimize
the model, the binary-cross entropy is used as the loss function, and the initial learning rate
is set to 0.001. When there is no improvement in the loss function after two consecutive
epochs, the learning rate is dropped by 20% to make a finer adjustment. All models
achieved stable performance within 200 epochs in our experiments. Table 2 summarizes the
time required for VGGUnet model training on the Super Dove and UAV training datasets.
All experiments were carried out on the same server, which was equipped with an Intel (R)
Xeon (R) E5-2678 CPU @2.50 GHz and a Nvidia GeForce RTX 3090Ti GPU.

Table 2. Statistics of the time required for VGGUnet model training.

Data Super Dove UAV

Number of training datasets 3540 3136
Batch size 32 32

Number of epochs 200 200
Average running time per epoch (s) 78 65

Model training time (h) 4.3 3.6

To evaluate the performance of the constructed VGGUnet model, four evaluation
indicators [41,54] were used to quantitatively evaluate the trained model on the testing
datasets. In this research, accuracy is defined as the proportion of accurate forecasts to total
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predictions. Precision is defined as the ratio of correctly classified positive samples to all
samples that were classified as positive. The precision gauges how well the model classifies
a sample as positive. Recall is the proportion of positive samples that were accurately
identified as being positive among all positive samples. The recall gauges how well the
model can identify positive samples. The more positive samples that are found, the greater
the recall. The F1-score is the harmonic mean of the precision and recall. It is used to assess
a model’s binary classification accuracy. The four evaluation indicators are shown in the
following formulas:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1-score =
2 × Precision × Recall

Precision + Recall
(4)

where TP, TN, FP, and FN refer to the numbers of true positive samples, true negative
samples, false positive samples, and false negative samples, respectively.

To compare the VGGUnet model with traditional threshold-based segmentation meth-
ods, the NDVI was used to quantitatively evaluate the green tide extraction results on the
Super Dove testing datasets; due to the lack of a near-infrared band, the excess green index
(EXG) [55] was used to quantitatively evaluate the green tide extraction results on the UAV
testing datasets. The calculation formulas of NDVI and EXG are as follows:

NDVI =
NIR − R
NIR + R

(5)

EXG = 2 × G − R − B (6)

where NIR, R, G, and B refer to the reflectance or pixel values of the near-infrared, red,
green, and blue bands, respectively.

2.3.3. U. prolifera Coverage Area and Biomass Density Quantification

In order to distinguish the U. prolifera on the beach and in nearshore water, a base
map for the three categories seawater, beach, and non-beach land was created by visual
interpretation from the relatively low tide Super Dove images between 1 June 2021, and
31 July 2021. Then, the base map was applied to distinguish the U. prolifera on the beach
and in nearshore water.

The U. prolifera-containing pixels were extracted by the VGGUnet model, and then, all
U. prolifera pixels were summed to obtain the total U. prolifera coverage area on the beach
and in nearshore water.

From 29 June to 2 July 2021, the biomass densities of U. prolifera on the beach were
measured at the P1, P2, and P3 study areas (Figure 1a). Six sample quadrats (1 m by
1 m) were selected randomly, and the U. prolifera inside the sample quadrat were collected
and weighed in each area. The mean wet weight (kg/m2) of U. prolifera on the beach was
calculated by summing the wet weights of the six samples and dividing by the total number
of samples in each area. The mean wet weight (kg/m2) of U. prolifera on the beach was
10.34, 14.81, and 14.06 kg/m2 at P1, P2, and P3, respectively.

From 29 June to 2 July 2021, the biomass density of U. prolifera in nearshore water was
measured at the P1, P2, and P3 areas using a fishing net of 0.4 m diameter. Three sites were
randomly selected in each area, and each site was measured three times, repeatedly. First,
the net was carefully put underneath the U. prolifera, then lifted to collect the U. prolifera
that were within range of the net. The U. prolifera samples were put in sample bags and
numbered. After shaking off excess water, the wet weight (kg/m2) of each sample was
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measured using a digital scale in the laboratory, and the unit biomass of U. prolifera was
calculated. The mean wet weights of U. prolifera in nearshore water were 3.06, 2.74, and
2.67 kg/m2 at P1, P2, and P3, respectively.

3. Results
3.1. U. prolifera Extraction Performance from the Super Dove and UAV Images

To evaluate the extraction accuracy of the VGGUnet model from Super Dove images,
we used 126 Super Dove testing images to quantitatively compare the accuracy of NDVI,
the U-net model, and the VGGUnet model. The thresholds of the NDVI are set to 0.51 based
on several tests on the Super Dove testing images. Table 3 demonstrates the performance
of NDVI, the U-net model, and the VGGUnet model on the Super Dove testing dataset.
The NDVI achieved 91.32%, 87.26%, 79.35%, and 0.83 for the four evaluation indicators of
accuracy, precision, recall, and F1-score, respectively. The U-net model had an accuracy
score of 95.14%, a precision score of 91.13%, a recall score of 90.16%, and an F1-score of 0.91.
The VGGUnet model achieved 98.05%, 94.01%, 92.26%, and 0.93 for the four evaluation
indicators of accuracy, precision, recall, and F1-score, respectively.

Table 3. The accuracy of Ulva prolifera (U. prolifera) extraction on Super Dove and unmanned aerial
vehicle (UAV) images using different methods.

Input Data Model Accuracy (%) Precision (%) Recall (%) F1-Score

Super Dove
NDVI 91.32 87.26 79.35 0.83
U-net 95.14 91.13 90.16 0.91

VGGUnet 98.05 94.01 92.26 0.93

UAV
EXG 90.16 85.21 80.43 0.82
U-net 93.26 90.12 89.82 0.90

VGGUnet 96.43 93.57 90.53 0.92

Figure 5 shows the U. prolifera extraction results from NDVI, the U-net model, and
the VGGUnet model on Super Dove images, with most of the U. prolifera features being
effectively extracted; however, a small number of seawater pixels were misidentified as
U. prolifera pixels in the NDVI extraction results (Figure 5a–d, annotated by the green
rectangle), several small-sized U. prolifera patches are missing (Figure 5a–c, annotated
by the red rectangle) in the U-net model extraction results, and a few noise signals are
misidentified as U. prolifera pixels (Figure 5d, annotated by the red rectangle) in the U-net
model extraction results. The results showed that, in terms of performance, the VGGnet
model outperformed the NDVI and U-net model.

To evaluate the extraction accuracy of the VGGUnet model from UAV images, we used
112 UAV testing images to quantitatively compare the accuracy of EXG, the U-net model,
and the VGGUnet model. The thresholds of the EXG are set to 47 based on several tests on
the testing images. Table 3 demonstrates the performance of EXG, the U-net model, and the
VGGUnet model on the UAV testing dataset. The EXG achieved 90.16%, 85.21%, 80.43%,
and 0.82 for the four evaluation indicators of accuracy, precision, recall, and F1-score,
respectively. The U-net model had an accuracy score of 93.26%, a precision score of 90.12%,
a recall score of 89.82%, and an F1-score of 0.90. The VGGUnet model achieved 96.43%,
93.57%, 90.53%, and 0.92 for the four evaluation indicators of accuracy, precision, recall,
and F1-score, respectively.
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Figure 5. Comparison of U. prolifera extraction results from NDVI, the U-net model, and the VGGUnet
model on Super Dove images. (a–d) Five test images: the Super Dove RGB image, the ground truth
image, the U. prolifera extraction result from NDVI, the U. prolifera extraction result from the U-net
model, and the U. prolifera extraction result from the VGGUnet model. The key parts of the comparison
between NDVI and the ground truth and the VGGUnet model are shown in red rectangles, while
those between the U-net model and the ground truth and the VGGUnet model are shown in green
rectangles.

Figure 6 shows the U. prolifera extraction results from EXG, the U-net model, and
the VGGUnet model on UAV images. The extraction results of U. prolifera are satisfactory
based on visual inspection, with the vast majority of its features successfully extracted.
Nevertheless, a small number of seawater pixels were misidentified as U. prolifera pixels in
the EXG extraction results (Figure 6a–d, annotated by the green rectangle), several seawater
pixels are misidentified as U. prolifera pixels (Figure 6a–c, annotated by the red rectangle) in
the U-net model extraction results, and a few small-sized U. prolifera patches are missing
(Figure 6d, annotated by the red rectangle).

Overall, when the VGGUnet model was tested with images from the Super Dove and
the UAV, it had an F1-score of 0.93 and 0.92, which suggests that the VGGUnet model could
be used to automatically extract U. prolifera features.
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Figure 6. Comparison of U. prolifera extraction results from EXG, the U-net model, and the VGGUnet
model on UAV images. (a–d) Five test images: the UAV RGB image, the ground truth image, the U.
prolifera extraction result from EXG, the U. prolifera extraction result from the U-net model, and the U.
prolifera extraction result from the VGGUnet model. The key parts of the comparison between NDVI
and the ground truth and the VGGUnet model are shown in red rectangles, while those between the
U-net model and the ground truth and the VGGUnet model are shown in green rectangles.

3.2. The Spatiotemporal Change Analysis of U. prolifera on the Beach and in Nearshore Water

Figure 7 shows the spatiotemporal changing process of U. prolifera on the beach and in
nearshore water at P1 and P2 using the VGGUnet model from the Super Dove images. The
corresponding coverage area and biomass are shown in Figures 8 and 9, respectively.

For the P1 area, a small amount of U. prolifera first appeared on 21 June 2021. Two
days later, on 23 June 2021, the area of U. prolifera on the beach and in nearshore water
increased rapidly from 0.096 km2 to 0.51 km2. The U. prolifera area continued to increase
from 0.51 km2 on 23 June 2021, to 0.87 km2 on 2 July 2021, on the beach and in nearshore
water. From 2 July 2021, to 9 July 2021, the U. prolifera area decreased gradually from
0.87 km2 to 0.46 km2. From 21 June 2021, to 9 July 2021, the U. prolifera biomass also varied
significantly, increasing at first but then decreasing. On 2 July 2021, the daily maximum
biomass of U. prolifera on the beach and in nearshore water was about 2718 tonnes and
1872 tonnes, respectively, covering 56.4% of the entire beach area in the P1 area.

For the P2 area, a small amount of U. prolifera first appeared in nearshore water but
not on the beach on 21 June 2021. From 21 June 2021, to 9 July 2021, the U. prolifera area
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increased gradually from 0.067 km2 to 1.28 km2. The U. prolifera biomass also varied
significantly from 21 June 2021, to 9 July 2021. The daily maximum biomass of U. prolifera
on the beach and in nearshore water was about 4826 tonnes and 3329 tonnes on 9 July 2021
and on 2 July 2021, respectively.
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The local tide height (TH) at the time of each image acquisition is marked on the figure.
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3.3. Results of Monitoring U. prolifera Using the Super Dove Images Combined with the
UAV Images

To monitor the dynamic processes of U. prolifera on the beach and in nearshore water,
the UAV images from 29 to 30 June 2021, and the Super Dove images from 1 July 2021, at
the P3 area were collected. The UAV RGB images and Super Dove RGB images are shown
in the left column of Figure 10. The extraction results of U. prolifera using the VGGUnet
model from the UAV images and the Super Dove images are shown in the right column of
Figure 10. The corresponding coverage area and biomass data were counted and shown in
Figure 11.
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Figure 10. The extraction results of U. prolifera on the beach and in nearshore water in the P3 area.
(a) The extraction results of U. prolifera from a UAV image on 29 June 2021; (b) The extraction results
of U. prolifera from a UAV image on 30 June 2021; (c) The extraction results of U. prolifera from a Super
Dove image on 1 July 2021. The local tide height (TH) at the time of each image acquisition is marked
on the figure.

From Figure 10, we can clearly see the dynamic processes of U. prolifera on the beach
and in nearshore water in the P3 area. On 29 June 2021, there was a small amount of U.
prolifera in the P3 area; the coverage area of U. prolifera was 0.063 km2 and 0.058 km2 on the
beach and in nearshore water, respectively. One day later, the coverage area of U. prolifera
expanded from 0.063 to 0.1 km2 on the beach, and the coverage area of U. prolifera expanded
from 0.058 to 0.15 km2 in nearshore water. On 1 July 2021, the coverage area of U. prolifera
decreased from 0.1 to 0.09 km2 on the beach, but the coverage area of U. prolifera increased
from 0.15 to 0.2 km2 in nearshore water. The biomass of U. prolifera also varied significantly
on the beach and in nearshore water from 29 June 2021, to 1 July 2021, first increasing but
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then decreasing. The maximum biomass of U. prolifera on the beach and in nearshore water
was about 1408 tonnes and 523 tonnes on 30 June 2021, and 1 July 2021, respectively.
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4. Discussion
4.1. Strengths and Weaknesses of the VGGUnet Model for U. prolifera Extraction

By using deep learning technology, we accurately extracted the information of U.
prolifera on the beach and in nearshore water from the Super Dove and UAV images. This
is because deep learning can not only extract the spectral features of remote sensing images
but also extract texture features [56,57], so even if the RGB images lack near-infrared bands,
the VGGUnet model still shows good performance.

An important advantage of the VGGUnet model is its flexibility. The input to the
model can be RGB images (the UAV images) or multispectral images (the Super Dove
images). By adjusting the input of the model, the VGGUnet model can be applied to
different types of remote sensing images, such as the coarse-resolution MODIS and GOCI
images and the high-resolution Sentinel-2 MSI, GF-1 WFV, and Landsat-8 OLI images. By
training on different datasets, the VGGUnet model also has promising applications for
detecting other features, such as sargassum macroalgae blooms and oil slicks [58,59].
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Moreover, the VGGUnet model can be directly applied to extract green tide informa-
tion without selecting a threshold because the weight of the model has been optimized
during the model training process. Compared with the traditional threshold-based segmen-
tation method, the deep learning method can reduce some of the possible mistakes caused
by choosing the thresholds and improve the accuracy of monitoring green tides [24,42].

One of the disadvantages of deep learning is that it is difficult to interpret and diagnose
the results [60,61]. The performance of the model has high requirements for the quality of
the training data. The traditional threshold-based green-tide extraction method is intuitive
and errors can be easily found, but its use requires some prior knowledge. It is difficult to
automatically process many remote sensing images by choosing a fixed threshold. Although
deep learning is difficult to interpret and diagnose, superior performing deep learning
models are able to extract green-tide information from large amounts of high-resolution
data, as long as an appropriate network structure is chosen and training data is carefully
selected.

4.2. The VGGUnet Model Application for U. prolifera near Real-Time Monitoring and Tracking

Large amounts of U. prolifera are deposited on beaches, which not only damages the
environment and seriously affects the development of local tourism, but also threatens the
health of nearby residents [62,63]. To reduce the impact of U. prolifera, local governments
need to invest a lot of labor and financial resources clearing the U. prolifera deposited on the
beach, and the timely and accurate acquisition of the distribution information of U. prolifera
on the beach and in nearshore water is very important for the government to reasonably
arrange the cleanup of U. prolifera [64]. In this paper, the Super Dove and UAV images
are used to develop a VGGUnet deep learning model for extracting U. prolifera from large
amounts of remote sensing data. This model can quickly determine where U. prolifera
is on the beach and in nearshore water, which assists the government do a better job of
preventing and dealing with disasters.

The Super Dove images can usually be obtained within one day after the satellite
overpass, which provides the possibility for near real-time monitoring of U. prolifera, and
the UAV can quickly obtain high-resolution images of the monitoring area according to the
needs of the mission. Even if satellite remote sensing is affected by clouds and cannot obtain
effective data, the UAV can still be used to monitor and track U. prolifera. By combining the
Super Dove satellite remote sensing images with the UAV images, it should be possible to
satisfy the needs of near real-time monitoring and tracking of U. prolifera on the beach and
in nearshore water.

In addition, the data processing speed is an important factor affecting the near real-time
monitoring of U. prolifera using the VGGUnet model. Table 4 summarizes the approximate
time required to extract U. prolifera from Super Dove and UAV images. For a Super
Dove image with 14,175 × 10,404 pixels, the time required to extract U. prolifera using the
VGGUnet model is about 2 min (126 s). For a UAV image with 18,000 × 9000 pixels, the time
required to extract U. prolifera using the VGGUnet model is about 3 min (182 s). This makes
it possible to extract U. prolifera information timely from a large number of high-resolution
images, meeting the requirements of near real-time monitoring and tracking of U. prolifera.

Table 4. Approximate time required to extract U. prolifera from Super Dove and UAV images. The
time required is averaged over 16 Super Dove images with 14,175 × 10,404 pixels per image and
10 UAV images with ~18,000 × 9000 pixels per image.

Data Super Dove UAV

The average time required to process each image 126 s 182 s

5. Conclusions

This study developed a green tide detection approach based on the VGGUnet model
to extract U. prolifera macroalgae from high-resolution Super Dove and UAV images. The
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VGGUnet model’s performance was evaluated and compared with the U-net model on the
Super Dove and UAV testing datasets. For the Super Dove images, the VGGUnet model
had a higher accuracy, with an F1-score of 0.93; both the precision and recall were higher
than those for the U-net model. Similarly, for the UAV images, the performance of the
VGGUnet model (F1-score = 0.92) was superior to that of the U-net model. The VGGUnet
model was then applied to extract the distribution of green tide on the beach and in the
nearshore water. The features of the green tide could be accurately extracted automatically
from a great deal of high-resolution imagery. This provides an effective tool for extracting
green tide information from the Super Dove and UAV images and can meet the needs for
near real-time green tide monitoring on beaches and in nearshore waters. Furthermore, this
method can be extended to other high-resolution remote sensing images, such as Sentinel-2
MSI, GF-1 WFV, and Landsat-8 OLI images. In addition, the VGGUnet model also has
promising applications for detecting other features, such as sargassum macroalgae blooms
and oil slicks. In the future, multi-source remote sensing images and deep learning methods
could be used to monitor the occurrence, development, and disappearance processes of the
Yellow Sea green tide, which can provide help for the prevention and control of green tides.
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