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Abstract: At present, spring tea yield is mainly estimated through a manual sampling survey.
Obtaining yield information is time consuming and laborious for the whole spring tea industry,
especially at the regional scale. Remote sensing yield estimation is a popular method used in large-
scale grain crop fields, and few studies on the estimation of spring tea yield from remote sensing data
have been reported. This is a similar spectrum of fresh tea yield components to that of the tea tree
canopy. In this study, two types of unmanned aerial vehicle (UAV) hyperspectral images from the
unpicked and picked Anji white tea tree canopies are collected, and research on the estimation of
the spring tea fresh yield is performed using the differences identified in the single and combined
chlorophyll spectral indices (CSIs) or leaf area spectral indices (LASIs) while also considering the
changes in the green coverage of the tea tree canopy by way of a linear or piecewise linear function.
The results are as follows: (1) in the linear model with a single index variable (LMSV), the accuracy of
spring tea fresh yield models based on the selected CSIs was better than that based on the selected
LASIs as a whole, in which the model based on the curvature index (CUR) was the best with regard
to the accuracy metrics; (2) compared to the LMSVs, the accuracy performance of the piecewise linear
model with the same index variables (PLMSVs) was obviously improved, with an encouraging root
mean square error (RMSE) and validation determination coefficient (VR2); and (3) in the piecewise
model with the combined index variables (PLMCVs), its evaluation metrics are also improved,
in which the best performance of them was the CUR&CUR model with a RMSE (124.602 g) and
VR2 (0.625). It showed that the use of PLMSVs or PLMCVs for fresh tea yield estimation could reduce
the vegetation index saturation of the tea tree canopy. These results show that the spectral difference
discovered through hyperspectral remote sensing can provide the potential capability of estimating
the fresh yield of spring tea on a large scale.

Keywords: spring tea; hyperspectral image; CSI; LASI; piecewise linear model; combined indices;
fresh tea yield estimation

1. Introduction

Tea is an important cash crop. The total global tea yield reached 5.098 million hectares,
and the dry yield of tea was 6.269 million tons in 2020 [1]. The yield of Chinese dry tea
was 3.062 million tons in 2021, which produced an output value of USD 41.48 billion and
ranked first in the world; additionally, the yield of spring tea was about 1.6–1.8 million
tons, with an output value of USD 24.13–26.96 billion [2]. Spring tea yield is an important
agronomy parameter and is beneficial for adjusting the management of activities, including
tea picking, employing tea pickers, frying spring tea, and managing sales, in addition to
handling other links in the spring tea industry. However, the yield estimation of spring tea
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is mainly achieved through a manual sampling survey. Obtaining this yield information
using the method above is time consuming and laborious for the spring tea industry,
especially at the regional scale. A rapid method for the large-scale estimation of spring tea
yield is urgently needed.

Remote sensing technology has real-time, non-destructive, and rapid characteristics
for monitoring a plant’s growth state, stress status, and yield [3–5], establishing remote
sensing yield estimation as one of the popular methods for crop yield surveying [6–8]. At
present, hyperspectral remote sensing is regarded as an effective method for crop yield
estimation based on the spectral indices that have been discovered by many researchers.
Feng et al. analyzed the effect of different spectral indices on the yield estimation of winter
wheat via canopy hyperspectral images collected using UDH-185 equipped with a UAV
platform [9]. A good correlation between the spectral index from airborne hyperspectral
images of winter wheat and its yield was found, and the established yield estimation model
had high precision [10]. Hyperspectral images from the different growth stages of winter
wheat were used for its estimation based on the vegetation index, and the results showed
ideal accuracy [11]. Furthermore, the rice yield was hyperspectrally estimated with higher
accuracy [12]. The biomass and coverage retrieved via hyperspectral indices (for example,
chlorophyll spectral indices (CSIs) and leaf area spectral indices (LASIs)) were used for
maize yield estimation [13]. Additionally, hyperspectral data were also applied in the yield
estimation of potato [14] and soybean [15]. In the above research, the crop yield estimation
model based on hyperspectral data that was used to calculate the spectral index achieved
good yield estimation results, demonstrating why it is one of the popular methods for use
on a large scale.

In the tea yield estimation field, the remote sensing estimation of tea yield was first
reported for in situ monitoring, and then for wide-range remote sensing. Jin et al. reported
that tea yield was estimated using statistical modeling of the NDVI on the whole canopy
before and after harvest [16]. Phamchimai Phan et al. used the NDVI of the multitemporal
Medium Resolution Imaging Spectrometer to monitor tea growth and estimate tea yield [17],
and the spatial-temporal mixed stochastic forest model was used to estimate tea yield [18].

Compared with crop yield estimation, there has been little research on tea yield
estimation based on remote sensing data, especially spring tea. In addition to being
difficult, the reasons for this could be: (1) a good theoretical knowledge of grain yield, as
well as a high correlation between the growth at the vegetative growth stage that can be
well monitored and the grain yield of grain crops at the reproductive stage, is used for
estimating the yield with remote sensing data [19,20], but the tea yield components (buds
and young leaves) are a part of the tea tree canopy, and there is a relatively low correlation
between the yield and the growth of the tea tree canopy; and (2) the spectrum of fresh tea
yield components is similar to that of the tea tree canopy [21]. Thus, acquiring the spectrum
of fresh tea yield components is a critical step in estimating the fresh yield of spring tea
with remote sensing data.

Fortunately, the harvesting of spring tea is commonly performed through the manual
picking of spring tea yield components, and the spectral difference between the unpicked
and picked tea tree canopies is produced by these picked yield components. This also
provides a chance to acquire the spectrum of fresh tea yield components. However, there is
a saturation phenomenon using many spectral indices for extracting spectral characteristics
in these high-coverage canopies, such as the NDVI and RVI [22–28]. The tea tree canopy
in the spring-tea-picking stage has high coverage [29,30]. Therefore, there was a need to
reduce saturation in the extraction of spectral characteristics using the vegetation index from
unpicked and picked tea tree canopies with high coverage. Coincidentally, the saturation
phenomenon could be solved if: (1) the vegetation index model was a piecewise function
containing only a single vegetation index; or (2) the index in the vegetation index model
was a combination of indices that contained two or more vegetation indices [31–34]. In this
study, the change in the green coverage from the unpicked and picked tea tree canopy was
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used for building the piecewise function and combining the indices for the spring tea fresh
yield estimation.

The vegetation index is regarded as a powerful tool for extracting plant spectral infor-
mation [35–37] and is widely used for the inversion of plant biochemical components [38,39]
and for determining biomass [40] and yield, such as by using chlorophyll spectral indices
(CSIs) [41,42], leaf area spectral indices (LAIs) [43] and vegetation water indices [40,44].
In addition, the results from two preliminary experiments were found, which included
(the second and third figures in Section 2.1.4): (1) a significant difference in the ratio value
of chlorophyll a and b content from the tea yield components (the tea buds and young
leaves) and the mature leaves (the main component of the spectral response of the tea tree
canopy), and (2) a good correlation between the area of tea yield components (tea buds
and young leaves) and the fresh weight. Thus, in this study, chlorophyll spectral indices
(CSLs) and leaf area spectral indices (LASIs) were employed to extract the information on
spring tea yield components from the hyperspectral images, allowing for the exploration of
estimating the spring tea yield.

Therefore, in this study, the research on spring tea yield estimation via the utilization
of remote sensing data was performed in three steps. First, two types of unmanned
aerial vehicle (UAV) hyperspectral images from the unpicked and picked canopies of Anji
white tea trees were produced by picking the spring tea yield components, and then the
common 15 chlorophyll spectral indices (CSIs) and 13 leaf area spectral indices (LASIs)
were employed to extract the spectral characteristics of the spring tea yield components.
Finally, the algorithm for estimating the fresh tea yield in the high-coverage tea tree canopy
was established by using a linear model with a single index (CSI or LASI) variable (LMSV),
a piecewise linear model with the same index (CSI or LASI) variables (PLMSVs), and a
piecewise linear model with combined index (CSIs or LASIs) variables (PLMCVs).

2. Materials and Methods
2.1. Materials
2.1.1. Research Subject and Test Plot Design

Anji white tea (Camellia sinensis cv. Baiye1), a typical planting variety of tea that is only
produced in the spring [45,46], was selected as the research subject in this study. Its yield
estimation has a practical application and can act as a significant reference for developing a
yield estimation method for spring tea in general. Anji white tea was originally produced in
Anji County at the northern foot of Tianmu Mountain in the northwest of Zhejiang Province,
China [47]. The geographical range of Anji County is 30◦23′~30◦53′N, 119◦14′–119◦53′E.
The climate and ecological conditions here are very favorable, and it has always been a
famous, high-quality producing area for spring tea [48]. This study was conducted at
Bauming Tea Garden in Anji County (see Figure 1). The altitude difference of the test area
was less than 5 m a.s.l.

As the picked buds and young leaves comprise the components of the spring tea yield,
the spectral difference in the picked and unpicked tea tree canopies is produced by picking
these components. In this study, research on the relationship between the spectral index
difference in unpicked and picked tea tree canopies and yield was performed. The 24 test
plots (within a rectangle: about 4 m × 6 m) with markedly variable green coverage and
a fresh yield were selected, and the test data from each plot, including the hyperspectral
images of unpicked and picked tea tree canopies, the fresh weight of the tea yield, and
the auxiliary data acquisition (near-ground photos of picked and unpicked canopies for
measuring the green coverage change, the chlorophyll content of tea yield components,
and mature leaves, and the tea yield component area), were collected from 4–6 April 2019.



Remote Sens. 2023, 15, 1100 4 of 31

Remote Sens. 2023, 15, x FOR PEER REVIEW 4 of 31 
 

 

measuring the green coverage change, the chlorophyll content of tea yield components, 
and mature leaves, and the tea yield component area), were collected from 4–6 April 2019. 

 
Figure 1. Location of the test area. 

2.1.2. Hyperspectral Data Collection and Preprocessing. 
The DJI M600 UAV (Figure 2) was used as the flight platform, and the UHD-185 hy-

perspectral imager (Figure 2a) was equipped to obtain hyperspectral images (Figure 2b). 
The total weight of the sensor was 470 g, and hyperspectral images of 125 spectral chan-
nels from 450 to 950 nm were obtained. 

 
Figure 2. (a) Dji M600 UAV; (b) UHD-185 Easy and reliable imaging spectrometer for UAV. 

The acquisition of hyperspectral data was done in sunny and windless weather. 
UHD-185 sensor is installed on the platform, the lens is vertically downward, and the 
flight altitude is 50 m. The spatial resolution of the hyperspectral image was around 2 cm 
per pixel. A black-and-white reference pan was used for reflectivity conversion and radi-
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Since a single image cannot cover the whole test area, Agisoft Photoscan software 
was employed for splicing a hyperspectral 3D cube image of the test area [50]. The spliced 

Figure 1. Location of the test area.

2.1.2. Hyperspectral Data Collection and Preprocessing

The DJI M600 UAV (Figure 2) was used as the flight platform, and the UHD-185
hyperspectral imager (Figure 2a) was equipped to obtain hyperspectral images (Figure 2b).
The total weight of the sensor was 470 g, and hyperspectral images of 125 spectral channels
from 450 to 950 nm were obtained.
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Figure 2. (a) Dji M600 UAV; (b) UHD-185 Easy and reliable imaging spectrometer for UAV.

The acquisition of hyperspectral data was done in sunny and windless weather. UHD-
185 sensor is installed on the platform, the lens is vertically downward, and the flight
altitude is 50 m. The spatial resolution of the hyperspectral image was around 2 cm per
pixel. A black-and-white reference pan was used for reflectivity conversion and radiation
correction, and the spectral quality of the spliced images was checked to ensure that it met
the analysis requirements [49].
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Since a single image cannot cover the whole test area, Agisoft Photoscan software was
employed for splicing a hyperspectral 3D cube image of the test area [50]. The spliced UAV
hyperspectral images from the unpicked and picked test areas are illustrated in the upper
part of Figure 3. The noise from the soil and the other irrelevant images were contained
in the spliced hyperspectral 3D cube image, and the removal of irrelevant information
was performed with ENVI software [51]. The spectral characteristics of the unpicked and
picked tea tree canopies of the whole test area are illustrated in the lower part of Figure 3.
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Figure 3. Hyperspectral image and average spectral characteristics of the unpicked and picked tea
tree canopy of the whole test area. (a) was for the hyperspectral image of the unpicked tea tree
canopy; (b) for that of the picked tea tree canopy; (c) for the averaged spectral characteristics from
the unpicked and picked tea tree canopies in the whole test area.

2.1.3. Spring Tea Yield Data Collecting and Preprocessing

Spring tea picking is commonly carried out via the manual picking mode [52]. In this
study, skilled tea pickers were employed for tea picking and for measuring the fresh yield.
The picking action was performed for the selected 24 plots based on the standard picking
patterns [29]: single bud, 1 leaf-1 bud, and 2 leaves-1 bud (see Figure 4). The fresh weights
of the buds and young leaves were weighed using an electronic balance with a sensitivity
of 0.01 g. In this paper, yield refers to the total amount of tea picked from tea trees. In
24 plots, the maximum weight of fresh tea was 879.570 g, the minimum was 153.870 g, the
average was 483.863 g, and the standard deviation was 199.954 g.
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Figure 4. (a) The picked tea bud and leaf. The marked by the blue rectangle was for 2 leaves-1 bud,
by the yellow rectangle for 1 leaf-1 bud, and by the red rectangle for a single bud. (b) A skilled tea
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2.1.4. Auxiliary Data Acquisition

To help select the suitable vegetation index type for the spring tea yield estimation, we
also collected auxiliary data, including the measurements of the chlorophyll a/b content
ratio, the spectra of fresh tea (picked buds and young leaves), and the mature leaves from
the tea tree canopy, as well as measurements of the fresh tea area, weight, and the green
coverage change between the unpicked and picked tea tree canopies.

(1) Chlorophyll ratio and spectra between fresh tea and mature leaf measurements

For the fresh tea yield estimation test, the buds and young leaves that comprise
the fresh tea yield components, as well as the mature leaves, were collected from the
Anji white tea tree canopy. Their chlorophyll a and b content were measured following
the protocol reported by Hosgood et al. [53]. Their spectra in the range of 350–2500 nm
were measured using the method reported for using the ASD FieldSpec 4 [54]. The re-
sults showed (see Figure 5): (1) There was a stable and obvious difference in the ratio of
chlorophyll a (Chla) and chlorophyll b (Chlb) between the freshly picked tea components
(Chla/Chlb = 1.882, Figure 5a) and the mature leaves (Chla/Chlb = 3.273, Figure 5), in
which the mature leaf was the main responder to the tea tree canopy spectrum. (2) There
was also an obvious spectral difference between the fresh tea components and the mature
leaves from the tea tree canopy (Figure 5e), especially in the range of 550–690 nm, which is
the chlorophyll absorption spectral region. This provided a basis for the spectral difference
between the unpicked and picked spring tea canopies. Thus, chlorophyll spectral indices
were employed to extract information on spring tea yield components and to conduct
exploratory research on the yield estimation of spring tea with remote sensing data.

(2) Area measurement/determination of fresh tea components

In this study, LI-3000A, a leaf area meter, was employed to measure the leaf area of
the picked tea yield components (including the picked tea buds and young leaves). The
measurement method followed the protocol reported by Delalieux [55]. The relationship
between the measured area and the weight of the fresh tea components, which was a perfect
linear correlation, is illustrated in Figure 6. The leaf area is the other important factor in
the spectral response in the plant canopy. Thus, in this study, leaf area spectral indices
(LASIs) were employed to conduct exploratory research on spring tea yield estimation
using remote sensing data.
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Figure 5. Chlorophyll a/b content ratio and spectral characteristics of fresh tea and mature leaves.
(a) For the statistical chart of chlorophyll a/b content ratio of the fresh tea (the picked tea buds and
young leaves) from Anji white tea tree (Chla/Chlb = 1.882); (b) fresh tea picture; (c) chlorophyll
a/b content ratio in the mature leaf from Anji white tea tree (Chla/Chlb = 3.273); (d) mature leaf;
(e) the spectral difference of fresh tea (light green curve) and mature leaf (dark green curve). The
chlorophyll a/b is from the slopes of linear equations in Figure 5a,c for the fresh tea and the mature
leaf, respectively.
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Figure 6. (a) Fresh tea area measurement with a LI-3000A leaf area meter. (b) The relationship
between fresh tea weight and area.

(3) Green coverage change acquired via unpicked and picked tea tree canopy data

As the tea tree canopy in the spring-tea-picking stage had high coverage, piecewise
linear models (PLMSVs and PLMCVs) were employed to avoid the saturation phenomenon,
using CSIs or LASIs for extracting spectral characteristics in these high-coverage canopies.
In this study, the spectral difference between the unpicked and picked tea tree canopies
was produced by the picked fresh tea yield components, and these picked components
were the producers of the green coverage change between these canopies. Moreover, the
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spectral difference was extracted using CSIs, or LASIs were regarded as the variables of
the piecewise models. Thus, to avoid the saturation phenomenon, using CSIs or LASIs
for fresh tea yield estimation, the green coverage change in the unpicked and picked tea
tree canopies was defined as the piecewise reference basis for the piecewise linear models.
Here, the green coverage change and the spectral difference in the unpicked and picked tea
tree canopies are shown in Figure 7.

An industrial camera (iRAYPLE A7A20CU201) with 12 megapixels was used to take
near-ground photos of the unpicked and picked tea tree canopies from each plot. When
taking photos, the camera faced the tea tree canopy, and was kept 0.5 m away from the top
of the canopy.

In this study, to better acquire the green coverage change that was only produced
by the spring tea yield components, the HSI space was employed for the green coverage
change calculation [56]. Therefore, RGB images from industrial cameras were converted
into HSI images [57]. First, the saturation degree channel of the HSI space was used to
obtain the threshold value to remove white noise from the photos taken of the tea tree
canopy. Then, the HSI hue channel was used to obtain the threshold value according to the
Maximum Between-Class Variance (Otus Method) [58], and morphological processing [59]
was used to remove the non-green parts of the taken photos, such as soil, stems of tea trees,
etc. The total number of pixels and the number of white pixels in the original image were
calculated, and the ratio was obtained as the result, i.e., the green coverage was obtained.
Finally, the green coverage change for each test plot was obtained from photos of the
unpicked and picked tea tree canopies.
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2.2. Methods
2.2.1. Research Technical Framework

This study was mainly divided into three steps (Figure 8). The first step was data
collection, which included collecting the UAV hyperspectral data from the unpicked and
picked tee tree canopies, the fresh tea yield for 24 test plots, and the auxiliary data. The
second step was data processing, which included extracting the hyperspectral characteris-
tics, analyzing the yield data, analyzing the chlorophyll a/b ratio, analyzing the spectral
characteristics of the tea yield components and the mature leaves, and determining the
green coverage change in the unpicked and picked test plots. The third step was modeling
and validation, which included: (1) The selection of suitable chlorophyll spectral indices
(CSIs) and leaf area spectral indices (LASIs) was performed via a correlation analysis of
these collected vegetation indices. (2) The spring tea fresh yield estimation was determined
using the linear model with a single index variable (LMSV), the piecewise linear model
with the same index variables (PLMSV), and the piecewise linear model with the combined
index variables (PLMCV). (3) The built models were verified and compared to evaluate the
ability to estimate the spring tea fresh yield via UAV hyperspectral remote sensing.
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Figure 8. The technical framework of fresh yield estimation of spring tea by UAV hyperspectral
remote sensing data.

2.2.2. Fresh Yield Estimation Method for Spring Tea by Heperspectral Remote Sensing Data

The research on the fresh yield estimation of spring tea consisted of vegetation index
selection, LMSV modeling and validation, PLMSV modeling and validation, and PLMCV
modeling and validation in which the PLMSVs and PLMCVs were considered the same.
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(1) Vegetation index selection for suitable spring tea fresh yield estimation

In this paper, 15 common CSIs and 13 common LASIs were collected to extract the
hyperspectral characteristics of unpicked and picked tea tree canopies. The specific descrip-
tions of the CSIs and LASIs are shown in Tables in Section 3.1. Here, some indices were
used for extracting chlorophyll information, as well as for extracting leaf area information.
We classified these indices as CSIs or LASIs. We classified these indices as CSIs or LASIs
based on the classification of the published literature for extracting chlorophyll or leaf
area information. The suitable CSIs and LASIs for spring tea fresh yield estimation were
selected from the collected vegetation indices via a correlation analysis (see Formula (1))
of the difference in the CSIs and LASIs (dCSIs or dLASIs) of unpicked and picked tea tree
canopy spectra and of their yield (Y) from all test plots.

ρdVI,Y =
Cov(dVI, Y)
σdVI,σY

(1)

where ρdVI,Y is the correlation coefficient between dCSIs or dLASIs and Y; Cov(dVI, Y) is
the covariance between dCSIs or dLASIs and Y; and σdVI and σY are the standard deviations
between dCSIs or dLASIs and Y from all test plots, respectively.

(2) LMSV modeling and validation

A linear function with a single index variable (LMSV) was employed to establish the
model of spring tea fresh yield estimation. In this study, there were sample data from
24 test plots for determining the spring tea fresh yield estimation, in which 15 sample data,
including data on the difference in the CSIs or LASIs from the hyperspectral images of the
unpicked and picked tea tree canopies and on the fresh tea yield from the corresponding
test plots, were used to establish the model (Table in Section 3.2). The other 9 sample data
were used for the validation of the established model.

The model determination coefficient (MR2) metric was employed for the evaluation of
the established model, and a T-test was also employed to compare the difference between
the MR2 of these models and the CSIs or LASIs.

MR2 = 1−
∑n

i=1

(
Yi

mea − Yi
mod

)2

∑n
i=1

(
Yi

mea −Mean
(

Yi
mea

))2 (2)

where MR2 is the determination coefficient of the established model for fresh tea yield
estimation in a linear function; n is the employed samples from the test plot data (n = 15);
Yi

mea is the i sample of the measured yield; and Yi
mod is the modeled yield data in the

corresponding sample.
The root-mean-square error (RMSE) and validation determination coefficient (VR2)

metrics were employed for estimating the spring tea fresh yield. Additionally, a T-test was
used to compare the difference between the RMSE and VR2.

RMSE =

√
1
m ∑m

i=1

(
Yi

mea − Yi
est

)2

VR2 = 1− ∑m
i=1(Yi

mea−Yi
est)

2

∑m
i=1(Yi

mea−mean(Yi
mea))

2

(3)

where Yi
est is the yield estimation value of the model and m is the employed samples from

the test plot data (m = 9) for the evaluation of the model.

(3) PLMSV modeling and validation

The high coverage of the tea tree canopy could lead to saturation of the vegetation
index during plant canopy spectral extraction. This problem can be solved by using a
piecewise function [60,61] or by combining more vegetation indices when establishing the
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model [31]. In this study, the picked components of the spring tea yield produced a spectral
difference between the unpicked and picked tea tree canopies. Thus, the green coverage
change was used to establish a piecewise linear model with the same index variables
(PLMSVs) for estimating the spring tea fresh yield with remote sensing data.

The piecewise standard was designed to be two segments, and the median (7.465%)
of the green coverage change from the 24 test plots was used as the piecewise value. The
piecewise function contained high (n = 12 samples) and low (n = 12 samples) green coverage
change segments for the same single index (CSIs or LASIs). In the high segment, 6 samples
were used for the establishment of the model, and the other 6 samples for the validation; in
the low segment, the sample allocation method for the establishment and validation of the
model was equally divided (6 and 6 samples). The evaluation metrics RMSE and VR2 were
also applied for PLMSV validation.

(4) PLMCV modeling and validation

As the saturation of the different vegetation indices for extracting plant canopy spectra
was different [62], the piecewise linear model that combined different index variables
(PLMCVs) was employed to better explore the saturation of CSIs or LASIs for the fresh
yield estimation of spring tea.

In this study, the function (Y1) with a vegetation index (CSI or LASI) variable from
PLMSV in the high green coverage change segment was combined with the function
(Y2) with another vegetation index (CSI or LASI) variable from PLMSV in the low green
coverage change segment (Figure 9). These combined piecewise linear functions were called
PLMCV with the two combined vegetation index variables. As the different vegetation
index held the different abilities of extracting spectra for fresh yield estimation of spring
tea, the part of PLMCVs were selected and exhibited in this paper. The selection standards
for CSI were PLMSVs with a VR2 over 0.45 and a low RMSE of 180 g from the different
CSI, and the standards for LASIs were a better VR2 and RMSE from the different LASI. In
addition, when the performances of PLMSV for the yield estimation in the high and low
green coverage change segments were good, the functions (Y1 and Y2) were also combined
with a PLMCV (Figures A5a and A6a).

A comparison between the LMSV, PLMSVs, and PLMCVs was performed to explore
the saturation of the spectral extraction with CSIs or LASIs in the fresh yield estimation
of spring tea. To ensure the uniformity of the data, the data (n = 24 plot samples) for the
LMSV validation were provided; 12 samples in the high green coverage change segment
and 12 samples in the low green coverage change segment were provided for the PLMSV
validation, and n = 24 plot samples were provided for PLMCV validation. The evaluation
metrics RMSE and VR2 were used for the LMSV, PLMSVs, and PLMCVs.
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the piecewise linear model with the same index variable; PLMCV for the piecewise linear model
with the combined index variable; H for PLMSV in the high green coverage change segment; L for
PLMSV in the low green coverage change segment; selected for the selected functions from PLMSV
(red dashed boxes (a-2,a-6) for PLMCV. Unselected for the unselected functions for PLMCV (a-3,a-5).

3. Results and Analysis
3.1. Vegetation Index Selection for Suitable Spring Tea Fresh Yield Estimation

To obtain information on vegetation biophysical parameters by using remote sensing
data, the employed vegetation indices should maximize sensitivity to plant biophysical
parameters well with a linear response in order that sensitivity is available for a wide range
of vegetation conditions, facilitating validation and calibration of the index [63]. In this
study, the selection standards of the employed indices from the collected CSIs or LASIs for
the estimation of the spring tea fresh yield were a linear correlation coefficient over 0.5, and
a significance test at the 0.05 level (See Tables 1 and 2).

Table 1. The common chlorophyll spectral indices (CSIs) and the correlation analysis between the
difference of CSIs (dCSIs) of unpicked and picked tea tree canopy spectra and their yield (Y) for
suitable CSI selection for spring tea fresh yield estimation.

dCSIs Name Characteristics & Functions Expression Correlation

CARI [64] Chlorophyll Absorption
Ratio index

Estimate chlorophyll
concentration

R700
R670
× |a×R670+R670+b|√

(a2+1)

a = R700−R550
150 ;

b = R550 − (a× R550)

0.117

GNDVI [65] Green Normalized Difference
Vegetative Index Estimate photosynthetic activity R800−R550

R800+R550
−0.588 ***

CUR [66] Curvature Index Estimate biochemical
constituents

R675× R690
R683

2 −0.786 ***

CI [67] Chlorophyll Index Estimate Chls content in
broadleaf tree leaves

R750
(R700+R710)−1

−0.05

RDVI [68] Renormalized Difference
Vegetation Index

Quantify variation of
multi-chemical in vegetation

R800−R670√
R800+R670

−0.693 ***

GI [69] Greenness Index
Estimate biochemical
constituents at the leaf and
canopy levels

R554
R677

−0.679 ***

PSSRa [70] Pigment Specific Simple
Ratio of Chl a

Exhibited excellent predictive
relationships for Chl a at
canopy levels

R800
R675

−0.666 ***

PSSRb [70] Pigment Specific Simple
Ratio of Chl b

Exhibited excellent predictive
relationships for Chl b at
canopy levels

R800
R650

−0.641 ***

PSNDa [70] Pigment Specific Normalized
Difference in Chl a

Estimate excellent predictive
relationships for Chl a at
canopy levels

R800−R675
R800+R675

−0.637 ***

PSNDb [70] Pigment Specific Normalized
Difference in Chl b Estimate chlorophyll b at canopy R800−R650

R800+R650
−0.632 ***

RVI [71] Ratio Vegetation Index Estimate canopy chlorophyll density R800
R670

−0.647 ***

RARSa [72] Ratio Analysis of Reflectance
Spectra of Chl a Estiamte chlorophyll a at canopy R700

R670
−0.572 ***

RARSb [72] Ratio Analysis of Reflectance
Spectra of Chl b Estiamte chlorophyll b at canopy R800

R635
−0.642 ***

PSRI [73] Plant Senescence
Reflectance Index

To quantitatively analyze leaf
senescence and fruit maturity.

R680−R500
R750

0.656 ***

PRVI [74] Polarization Ratio
Variation Index

Estimate biochemical
constituents

R800
R553

−0.625 ***

Note: *** Significant at the 0.01 level. The significance test was performed following the report by Moore,
David S. [75].
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Table 2. The common leaf area spectral indices (LASIs) and the correlation analysis between the difference of LASIs (dLASIs) and spring tea fresh yield (Y) for
suitable LASI selection for spring tea fresh yield estimation.

dLASIs Name Characteristics & Functions Expression Correlation

NDVI [76] Normalized Difference
Vegetation Index

Effective for quantifying green
vegetation. Positively correlated with

vegetation greenness.

(R800−R670)
(R800+R670)

−0.636 ***

MCARI [77] Modified Chlorophyll
Absorption Ratio Index

Respond to chlorophyll changes and estimate
chlorophyll absorption.

[
(R700 − R670)− (R700−R550)

5

]
× R700

R670
−0.447 **

TVI [78] Triangular Vegetation
Index

Estimate biochemical
constituents 0.5[120(R750 − R550)− 200(R670 − R550)] −0.655 ***

MCARI1 [79] Modified Chlorophyll
Absorption Ratio Index 1

Lower the sensitivity to
chlorophyll effects, and the

integration of a near-infrared
wavelength increases the

sensitivity to LAI changes.

1.2[2.5(R800 − R670)− 1.3(R800 − R550)] −0.686 ***

MCARI2 [79]
Modified Chlorophyll

Absorption Ratio Index
Improved

Keep the sensitivity to LAI and be less
affected by chlorophyll.

1.5[2.5(R800−R670)−1.3(R800−R550)]√
(2R800+1)2−(6R800−5

√
R670)−0.5

−0.707 ***

R740/R850 [80] Simple Ratio R740/R850

Estimate biochemical
constituents, Response
to contamination stress

R740
R850

−0.149

R761/R757 [81] Simple Ratio R761/R757

Estimate biochemical
constituents, responses
to contamination stress

R761
R757

−0.217

R750/R710 [82] Simple Ratio R750/R710

good indicators for
Estimate biochemical

constituents

R750
R710

−0.698 ***

D705/D722 [66] Derivative Indices
D705/D722

Estimate biochemical
constituents at the canopy,

map vegetation stress effects

R705
R722

0.497 **

D730/D706 [82] Derivative Indices
D730/D706

Estimate biochemical
constituents

R730
R706

−0.262

Dmax/D720 [83] Derivative Indices
Dmax/D720

Estimate leaf area index,
Estimated yield of food crops

Dmax
D720

0.273

Dmax/D745 [83] Derivative Indices
Dmax/D745

Estimate leaf area index,
Estimated yield of food crops

Dmax
D745

0.0002

D715/D705 [82] Derivative Indices
D715/D705

Estimate biochemical
constituents with less influence

D715
D705

−0.506 **

Note: *** Significant at the 0.01 level; ** Significant at the 0.05 level.
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In the collected 15 chlorophyll spectral indices (CSIs) and 13 leaf area spectral indices
(LASIs), the correlation between the difference in the CSIs (dCSIs) from unpicked and
picked tea tree canopies and their yields from all test plots (see Table 1) was better than
that between the difference in the LASIs (dLASIs) and the yields (see Table 2) as a whole.
According to the selection standards of a linear correlation coefficient over 0.5 and a sig-
nificance test at the 0.05 level, 13 CSIs were selected to build the yield estimation model
from the 15 collected CSIs. The LASIs selected for the yield model were the NDVI, TVI,
MCARI1, MCARI2, R750/R710 and D715/D705. These selected CSIs or LASIs were used to
build the spring tea fresh yield estimation model with a linear function.

3.2. LMSV Establishment and Validation for Spring Tea Fresh Yield Estimation

In the single vegetation index model with a linear function (the linear model with the
single index variable (LMSV)), the MR2 metrics of the estimation model of the spring tea
fresh yield were all over the 0.05 significance test level for the selected CSIs and LASIs
(Table 3), in which the CUR, RDVI, GI, and PSSRa from the selected CSIs and the TVI,
MCARI1, MCARI2, and R750/R710 from the selected LASIs were over the 0.01 significance
test level. As a whole, the performance of the selected CSI was better than that of the
selected LASI for establishing the spring tea fresh yield estimation model with a linear
function. The best performance of these modeling functions was from the CUR, with an
encouraging MR2 (0.611) and a 0.01 significance test level.

Table 3. LMSV establishment and validation for spring tea yield estimation.

Type dVI
Modeling (n = 15) Validation (m = 9)

Yield Estimation Model MR2 RMSE (g) VR2

dCSI

GNDVI Y = −6007.3dVI + 472.77 0.34 ** 173.218 0.465 **
CUR Y = −8870.4dVI − 103.25 0.611 *** 146.247 0.880 ***
RDVI Y = −6796.6dVI + 302.08 0.514 *** 160.626 0.456 **
GI Y = −675.09dVI + 523.28 0.425 *** 148.821 0.554 **
PSSRa Y = −98.101dVI + 484.46 0.426 *** 154.844 0.511 **
PSSRb Y = −116.91dVI + 542.22 0.389 ** 159.135 0.492 **
PSNDa Y = −2465.5dVI + 532.76 0.365 ** 158.271 0.573 **
PSNDb Y = −2712.2dVI + 560.91 0.361 ** 159.488 0.562 **
RARSa Y = −387.73dVI + 683.32 0.291 ** 166.791 0.414 *
RARSb Y = −141.18dVI + 527.64 0.39 ** 159.315 0.500 **
PSRI Y = 5346.7dVI + 533.89 0.367 ** 152.974 0.683 ***
PRVI Y = −383.47dVI + 406.15 0.396 ** 167.388 0.444 **
RVI Y = −92.724dVI + 522.78 0.403 ** 158.607 0.483 **

dLASI

NDVI Y = −2466.7dVI + 554.07 0.364 ** 158.734 0.566 **
TVI Y = −147.08dVI + 236.36 0.479 *** 169.785 0.375 *
MCARI1 Y = −5524.3dVI + 175.38 0.529 *** 165.552 0.398 *
MCARI2 Y = −3787.9dVI + 341.73 0.525 *** 155.350 0.488 **
R750/R710 Y = −1602.2dVI + 327.25 0.483 *** 155.207 0.595 **
D715/D705 Y = −6158.4dVI + 782.57 0.404 ** 209.110 0.085

Note: *** Significant at the 0.01 level; ** Significant at the 0.05 level; * Significant at the 0.1 level.

For the ability of the LMSV, the VR2 metrics of the estimation model from the selected
CSI, except for that of the RARSa, were also over the 0.05 significance test level, but only
the corresponding VR2 metrics of the NDVI, MCARI2, and R750/R710 from the selected
LASI (Table 3, Appendix A) were over the 0.05 significance test level. The metrics (RMSE)
of these models for the estimation of the spring tea yield were lower than 160 g from the
selected CSIs, but only those from the NDVI, MCARI2, and R750/R710 were lower than
160 g from the selected LASIs.

In Table 3, an inconsistency was found between the evaluation metrics of MR2 for
modeling and VR2 and RMSE for validation with regard to the single vegetation index.
For example, for the RDVI, its MR2 was over 0.5 and was at a 0.01 significance test level,
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but its VR2 was lower than 0.5 and was at a 0.05 significance test level, and its RMSE was
higher than 160 g. This could be due to the tea tree canopy in the spring-tea-picking stage
having high coverage, causing these indices to display saturation during the plant canopy
spectral extraction.

3.3. PLMSV Establishment and Validation for Spring Tea Fresh Yield Estimation

The performance of the establishment and validation of the spring tea fresh yield
piecewise linear model with the same index variables (PLMSVs) is shown in Table 4 and
Appendix B. In the high green coverage change model, the validation accuracy of the yield
model based on the CUR was the highest, and the RMSE was as low as 85.067 g. The models
(Y1) based on the GI, PSSRa, PSSRb, RVI, MCARI1, and MCARI2 had good validation
accuracy, with an encouraging VR2 and RMSE that was lower than or approximate to 160 g.
In the low green coverage change model, the validation accuracy of the yield model based
on the CUR was also the highest, and the RMSE was as low as 126.369 g. The models
(Y2) based on the GI, RVI, R750/R710 and D715/D705 had good validation accuracy with an
encouraging VR2 and RMSE that was lower than or approximate to 180 g.

Compared to the LMSV, the range in the MR2, RMSE and VR2 of PLMSVs from the
selected CSIs and LASIs were all amplified by the piecewise function. The estimation
ability of the model based on the CUR was obviously improved in the high and low green
coverage changes seen in the tea tree canopy. This result shows that the sensitivities of the
selected CSIs to fresh tea yield models improved, and the saturation of these vegetation
indices due to the high coverage of the spring tea tree canopy was reduced.

Table 4. PLMSV establishment and validation for spring tea yield estimation. Y1 was for a yield
estimation in the segment of high green coverage change (H) from the unpicked and picked tea tree
canopies, and Y2 was for a model in the low green coverage change (L).

Type dVI
Modeling (n = 12) Validation (m = 12)

Yield Estimation Model M-R2 RMSE (g) V-R2

dCSI

GNDVI
Y1 = −32,856dVI − 68.367 0.788 ** 441.949 0.460
Y2 = −12,356dVI + 409.49 0.452 247.639 0.443

CUR
Y1 = −10,275dVI − 257.67 0.394 85.067 0.884 ***
Y2 = −10,704dVI − 266.59 0.567 * 126.369 0.777 **

RDVI
Y1 = −9228.1dVI + 154.7 0.166 135.433 0.611 *
Y2 = −15,582dVI − 48.019 0.724 ** 337.852 0.733 **

GI
Y1 = −1372.9dVI + 425.16 0.656 ** 161.194 0.524 *
Y2 = −846.11dVI + 520.87 0.551 * 171.231 0.436

PSSRa
Y1 = −206.55dVI + 328.4 0.73 ** 163.665 0.508 *
Y2 = −126.42dVI + 471.25 0.519 * 179.242 0.399

PSSRb
Y1 = −270.69dVI + 438.66 0.74 ** 178.225 0.468
Y2 = −163.05dVI + 555.57 0.479 183.634 0.373

PSNDa
Y1 = −9862.2dVI + 366.51 0.635 ** 311.933 0.496
Y2 = −4258.5dVI + 529.34 0.554 * 208.107 0.476

PSNDb
Y1 = −11,273dVI + 479.93 0.657 ** 319.173 0.485
Y2 = −4813.9dVI + 579.56 0.555 * 215.554 0.465

RARSa
Y1 = −1001.3dVI + 811.07 0.677 ** 203.564 0.354
Y2 = −605.13dVI + 792.27 0.404 195.751 0.263

RARSb
Y1 = −342.43dVI + 399.32 0.718 ** 187.745 0.459
Y2 = −200.47dVI + 532.14 0.488 182.858 0.403

PSRI
Y1 = 19,446dVI + 403.79 0.464 245.478 0.557 *
Y2 = 9270.7dVI + 529.21 0.602 * 203.659 0.514 *

PRVI
Y1 = −1201.6dVI − 35.5 0.775 ** 252.182 0.472
Y2 = −684.55dVI + 305.65 0.499 229.277 0.432

RVI
Y1 = −198.29dVI + 402.67 0.743 ** 169.981 0.470
Y2 = −123.63dVI + 526.68 0.482 181.704 0.369
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Table 4. Cont.

Type dVI
Modeling (n = 12) Validation (m = 12)

Yield Estimation Model M-R2 RMSE (g) V-R2

dLASI

NDVI
Y1 = −10,003dVI + 451.51 0.645 ** 316.014 0.487
Y2 = −4312.8dVI + 566.44 0.555 * 211.729 0.473

TVI
Y1 = −22.706dVI + 481.47 0.005 183.798 0.601 *
Y2 = −383.43dVI − 320.9 0.717 ** 359.583 0.775 **

MCARI1
Y1 = −2692.6dVI + 343.05 0.047 142.381 0.609 *
Y2 = −12,929dVI − 380.41 0.755 ** 337.802 0.770 **

MCARI2
Y1 = −6573.7dVI + 112.36 0.325 169.586 0.614 *
Y2 = −7170.4dVI + 137.65 0.69 ** 260.667 0.684 **

R750/R710
Y1 = −4439.1dVI − 187.19 0.681 ** 210.868 0.560 *
Y2 = −2293.6dVI + 222.19 0.593 * 179.265 0.585 *

D715/D705
Y1 = 6982.1dVI + 272.99 0.103 283.262 0.023
Y2 = −10,886dVI + 929.84 0.587 * 186.288 0.746 *

Note: *** Significant at the 0.01 level; ** Significant at the 0.05 level; * Significant at the 0.1 level.

3.4. PLMCV Validation for Spring Tea Fresh Yield Estimation

To explore the action of combining indices and their effect on reducing the saturation
of the spring tea yield estimation in the high coverage tea tree canopy, PLMCVs were
evaluated, and the results are displayed in Table 5. For the SCIs, the models (Y1) based
on the CUR, GI, PSSRa, PSSRb, and RVI for the low green coverage change segment and
the models (Y2) based on the CUR and GI were selected due to their encouraging VR2

and RMSE metrics (see Table 4) for building the combined models of spring tea fresh
yield estimation. Additionally, 10 combined models were built based on SCIs. For the
LASIs, the models (Y1) based on MCARI1 and MCARI2 for the low green coverage change
segment and the models (Y2) based on the R750/R710 and D715/D705 were selected, and
four combined models were built. Moreover, comparisons of the estimation ability of the
linear model, the piecewise linear model, and the combined model were performed in
which 24 samples from all test plots were used for the model evaluation.

Compared with the LMSV, the RMES and VR2 metrics of the combined model from
the CSIs in PLMCVs were all improved in these five combinations of indices: CUR (Y1,H)
and CUR (Y2,L), GI (Y1,H) and GI (Y2,L), PSSRa (Y1,H) and GI (Y2,L), PSSRb (Y1,H)
and GI (Y2,L), and RVI (Y1,H) and GI (Y2,L); the other five combinations did not show
improvements. Here, the best performance of a combined model was CUR (Y1,H) and CUR
(Y2,L), as it had an encouraging RMSE (124.602 g) and VR2 (0.625). However, the RMSE
metrics of the combined model based on the LASIs were reduced. The results showed that
the model based on the CSIs for spring tea fresh yield estimation could be improved with
PLMCVs but that the model based on the LASIs could not. This could be due to the fact
that for CSIs, the chlorophyll a/b ratio and spectral characteristics of spring tea fresh yield
components were different from those of the mature leaves from the tea tree canopy, but for
LASIs, the area of the components (buds and young leaves) of the fresh tea yield in spring
was small compared with the area of the tea tree canopy.

Table 5. PLMCV establishment and validation for spring tea yield estimation. Y1 was for a yield
estimation in the segment of high green coverage change (H) from the unpicked and picked tea tree
canopies, and Y2 was for a model in the low green coverage change (L).

Index
Type dVI

LMSV
(m = 24) PLMSV

(Y1,H, n = 12)
PLMSV

(Y2, L, n = 12)

PLMCV
Y1 (H)&Y2 (L)

(m = 24)
RMSE VR2 RMSE VR2

CSI

CUR 132.017 0.618 *** Y1 = −10,275dVI − 257.67 —
124.602 0.625 ***CUR 132.017 0.618 *** — Y2 = −10,704dVI − 266.59
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Table 5. Cont.

Index
Type dVI

LMSV
(m = 24) PLMSV

(Y1,H, n = 12)
PLMSV

(Y2, L, n = 12)

PLMCV
Y1 (H)&Y2 (L)

(m = 24)
RMSE VR2 RMSE VR2

CSI

GI 149.045 0.461 *** Y1 = −1372.9dVI + 425.16 —
133.838 0.617 ***CUR 132.017 0.618 *** — Y2 = −10,704dVI − 266.59

PSSRa 151.298 0.444 *** Y1 = −206.55dVI + 328.4 —
132.143 0.630 ***CUR 132.017 0.618 *** — Y2 = −10,704dVI − 266.59

PSSRb 155.832 0.411 *** Y1 = −270.69dVI + 438.66 —
136.439 0.617 ***CUR 132.017 0.618 *** — Y2 = −10,704dVI − 266.59

RVI 154.562 0.419 *** Y1 = −198.29dVI + 402.67 —
133.704 0.623 ***CUR 132.017 0.618 *** — Y2 = −10,704dVI − 266.59

CUR 132.017 0.618 *** Y1 = −10,275dVI − 257.67 —
137.928 0.527 ***GI 149.045 0.461 *** — Y2 = −846.11dVI + 520.87

GI 149.045 0.461 *** Y1 = −1372.9dVI + 425.16 —
146.325 0.515 ***GI 149.045 0.461 *** — Y2 = −846.11dVI + 520.87

PSSRa 151.298 0.444 *** Y1 = −206.55dVI + 328.4 —
144.777 0.529 ***GI 149.045 0.461 *** — Y2 = −846.11dVI + 520.87

PSSRb 155.832 0.411 *** Y1 = −270.69dVI + 438.66 —
148.708 0.516 ***GI 149.045 0.461 *** — Y2 = −846.11dVI + 520.87

RVI 154.562 0.419 *** Y1 = −198.29dVI + 402.67 —
146.203 0.522 ***GI 149.045 0.461 *** — Y2 = −846.11dVI + 520.87

LASI

MCARI1 147.246 0.471 *** Y1 = −2692.6dVI + 343.05 —
160.034 0.390 ***R750/R710 146.771 0.487 *** — Y2 = −2293.6dVI + 222.19

MCARI2 143.364 0.500 *** Y1 = −6573.7dVI + 112.36 —
159.015 0.505 ***R750/R710 146.771 0.487 *** — Y2 = −2293.6dVI + 222.19

MCARI1 147.246 0.471 *** Y1 = −2692.6dVI + 343.05 —
162.212 0.425 ***D715/D705 175.583 0.256 ** — Y2 = −10,886dVI + 929.84

MCARI2 143.364 0.500 *** Y1 = −6573.7dVI + 112.36 —
161.207 0.549 ***D715/D705 175.583 0.256 ** — Y2 = −10,886dVI + 929.84

Note: the script ‘—’ was for non-applying in PLMCV. *** Significant at the 0.01 level; ** Significant at the 0.05 level.

4. Discussion
4.1. Spectral Difference for Spring Tea Fresh Yield Estimation

Spectral monitoring/detection was greatly dependent on the spectral response of
the observed objective at the specific wavelength [84], and these spectral characteristics
are controlled by the spectral features of the matter and its light interception area of
the monitoring objective [25]. In extracting spectral characteristics for spring tea yield
estimation, the spectrum response factors of spring tea tree canopy at 450–950 nm were
mainly chlorophyll spectral properties (Figures 3 and 9) and leaf area in the tea tree canopy
and its canopy structure. Moreover, the vegetation index could avoid the effect of canopy
structure on spectrum extraction in plant information monitoring. Thus, the spectral
response factors from the extraction with vegetation index in the tea tree canopy still
contained the chlorophyll spectrum and leaf area information. In this study, the picked
components (buds and young leaves) of the spring tea fresh yield were monitored with the
spectral difference between the unpicked and picked tea tree canopies. The CSIs or LASIs
differences from the unpicked and picked tea tree canopy spectra were employed to develop
the fresh yield estimation model of spring tea. It was found that the performances of CSIs
for spring tea fresh yield estimation were better than those of LASIs. This might be due to
the small proportion of the light interception area for spring tea yield components in the tea
trees, and to the low response to the spectral difference between the unpicked and picked
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tea tree canopies (Figure 4). Although most LASIs for monitoring vegetation information
were proposed based on the chlorophyll spectral characteristics [85,86] and based on a study
by Xing et al. [87], who proposed a single vegetation index for simultaneously monitoring
the canopy chlorophyll density (CCD) and leaf area spectral index (LASI) of winter wheat,
the LASIs had a weak performance when monitoring the small objective. For the CSIs, the
obvious difference between the fresh tea yield components and the mature leaves in the
canopy (Figure 5) was determined by using the spectral difference in the unpicked and
picked tea tree canopy spectrum, in which the spectral difference method might reduce
the effect of the canopy background, including that of the mature leaves and other factors.
Thus, the CSIs for spring tea fresh yield estimation were ideal indices for spectral extraction
on the basis of considering the spectral difference between the unpicked and picked tea
tree canopies.

4.2. Reducing Saturation of Vegetation Index in High Coverage at Tea Tree Canopy

Tea tree canopy during the picking stage of spring tea has a high level of coverage,
which can easily lead to spectral index saturation when extracting plant canopy spectra.
In this study, PLMSVs or PLMCVs were designed to explore how saturation affects the
performance of extracting the spectrum of spring tea fresh yield with CSIs and LASIs.
The results showed that (1) PLMSVs from the selected CSIs and LASIs could improve the
performance of the model determining the spring tea fresh yield (Table 5 and Figure A5a,h);
(2) PLMCVs from the selected CSIs could also improve the performance, but the combina-
tion of indices from the selected LASIs could mostly did not improve the performance. This
also shows that LASIs for spring tea fresh yield estimation had a weak performance from
another perspective. Thus, it is necessary to consider saturation when extracting spectra
with a vegetation index from a high-coverage plant canopy, especially when relying on
chlorophyll information.

The research results from using the NDVI and RVI to determine the vegetation index
saturations were the most reported for extracting the vegetation canopy spectrum [46,48].
In this study, by using PLMSVs, the performance of the model based on the NDVI did
not improve the performance with regard to yield estimation accuracy, whereas the RVI
model had a better performance (Table 5 and Figure A5e,j). This could be due to the
spectral difference between the unpicked and picked tea tree canopy, and thus, the spectral
difference was employed to reduce the spectral interference of the mature leaves and other
background spectral information of fresh tea yield components. The NDVI can reduce the
interference of the reference band information (background spectrum) and also promote the
spectral characteristics of the central band (objective spectrum) [76], whereas the RVI can
only promote the spectral characteristics of the objective and cannot reduce the background
interference [61]. Therefore, the PLMSVs, with regard to spectral difference, were not fit to
reduce NDVI saturation. Thus, further research needs to be performed by collecting more
sample data from different years and basing it on different green coverage changes in the
tea tree canopy.

In addition, only 24 samples from test plots were collected in 2019 in this study, and the
change in the median green coverage from these test plots’ tea tree canopies was employed
for the division of the PLMSVs that were used for the fresh yield estimation model of spring
tea. There could be potential problems that: (1) One year sample data (from 2019) could
lead to the instability of the fresh yield estimation model of spring tea. (2) The median of
green coverage change from 24 test plots, used for the division of the piecewise functions
with the aim of reducing the vegetation index saturation, could be a good fit for some
selected vegetation index models, not a good fit for others. Thus, further research needs to
be performed by collecting more sample data from different years and basing it on different
green coverage changes in the tea tree canopy.
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5. Conclusions

The vegetation index is regarded as a powerful tool for monitoring vegetation growth,
detecting plant stress, estimating crop yields, etc. However, the corresponding research on
tea plants that use remote sensing is minimal. In this study, the fresh yield estimation of
spring tea was performed by analyzing the difference in the chlorophyll spectral indices
(dCSIs) or leaf area spectral indices (dLASIs) from UAV hyperspectral remote sensing data
of the unpicked and picked tea tree canopies, and by considering the saturation of those
selected indices when applied to a tea tree canopy with a high level of coverage at the
spring-tea-picking stage. The results are as follows:

(1) The correlation between 13 dCSIs, 6 dLASIs, and the yield was a linear correlation
coefficient over 0.5 and a significance test at the 0.05 level, and the spectral difference
determined by using hyperspectral remote sensing can provide the potential ability
to estimate the fresh yield of spring tea.

(2) Without considering the saturation of the vegetation index (LMSV), the performance
of the selected CSIs for establishing the spring tea fresh yield estimation model was
better than that of the selected LASIs. The best performance of these models was
based on the CUR and had an encouraging MR2 (0.611) and a 0.01 significance test
level, and with good accuracy (RMSE = 146.247 g; VR2 = 0.88).

(3) Considering the saturation of vegetation index (PLMSVs or PLMCVs), the range of
the evaluation metrics (RMSE and VR2) of the model estimation yield models from the
selected dCSIs and dLASIs were amplified by taking PLMSVs, and the values of RMSE
and VR2 of some vegetation index models were optimized. These results show that
the PLMSVs could reduce saturation, such as in the CUR model with an ideal RMSE
(124.602 g) and VR2 (0.625 at the 0.01 level from the significant test), or in the GI model
with a good RMSE (146.325) and VR2 (0.515 at the 0.01 level from the significant test).
These vegetation index models showed an obvious improvement when compared
with those based on LMSV. In addition, for PLMCVs, the performance of the combined
models, including the combination of PSSRa and GI, PSSRb and GI, and RVI and
GI, could be improved when compared with that of any corresponding PLMSVs.
These results show that PLMSVs and PLMCVs could improve spring tea fresh yield
estimation ability and reduce vegetation index saturation in a high-coverage tea
tree canopy.

Our research on spring tea fresh yield estimation by UAV hyperspectral remote sensing
was first advocated, and the results provided a potential capability for the fresh yield
estimation of spring tea by UAV hyperspectral remote sensing and also a theoretical basis
for spring tea fresh yield estimation on a large scale by the spectral characteristic extracting
of yield components. Follow-up studies should be conducted to establish more accurate
and stable models for the fresh yield estimation of spring tea. In addition, this method
can be extended to the multispectral monitoring technology according to the determined
channels and bandwidths from the ideal vegetation index for spring tea yield estimation
in this study and can then be low-cost popularized and applied in the spring tea yield
estimation on a large scale.
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Appendix C

Comparisons of estimated yield performance from the linear model with a single
index variable (LMSV), the piecewise linear model with the same index variables (PLMSVs)
and the piecewise linear model with the combined index variables (PLMCVs) considering
the saturation of vegetation index.
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Figure A5. (a) The validation results of CUR estimation yield model from LMSV (a-1), PLMSVs (a-
2,a-3), and PLMCV(H + L) (a-4). (b) The validation results of PLMCVs with GI&CUR. (b-1,b-4) are 
for the GI and CUR estimation yield model (Y) from LMSV, respectively; (b-2,b-3) are for GI(Y1) 
and GI(Y2) in PLMSVs(H) and PLMSVs(L), respectively; (b-5,b-6) are for CUR(Y1) and CUR(Y2) in 
PLMSVs(H) and PLMSVs(L), respectively; (b-7) is for GI(Y1)&CUR(Y2) from PLMCVs(H + L). (c) 
The validation results of PLMCVs from PSSRa&CUR. (c-1,c-4) are for PSSRa(Y) and CUR(Y) from 
LMSV, respectively; (c-2,c-3) are for PSSRa(Y1) and PSSRa(Y2) in PLMSVs(H) and PLMSVs(L), re-
spectively; (c-5,c-6) are for CUR(Y1) and CUR(Y2) in PLMSVs (H) and PLMSVs(L), respectively; (c-
7) is for PSSRa(Y1)&CUR(Y2) from PLMCVs(H + L). (d) The validation results of PLMCVs from 
PSSRb&CUR. (d-1,d-4) are for PSSRb(Y) and CUR(Y) from LMSV, respectively; (d-2,d-3) are for 
PSSRb(Y1) and PSSRb(Y2) in PLMSVs(H) and PLMSVs(L), respectively; (d-5,d-6) are for CUR(Y1) 
and CUR(Y2) in PLMSVs(H) and PLMSVs(L), respectively; (d-7) is for PSSRb(Y1)&CUR(Y2) from 
PLMCVs(H + L). (e) The validation results of PLMCVs model from RVI&CUR. (e-1,e-4) are for 
RVI(Y) and CUR(Y) from LMSV, respectively; (e-2,e-3) are for RVI(Y1) and RVI(Y2) in PLMSVs(H) 
and PLMSVs(L), respectively; (e-5,e-6) are for CUR(Y1) and CUR(Y2) in PLMSVs(H) and 
PLMSVs(L), respectively; (e-7) is for RVI(Y1)&CUR(Y2) from PLMCVs(H + L). (f) The validation 
results of PLMCVs from CUR&GI. (f-1,f-4) are for CUR(Y) and GI(Y) from LMSV, respectively; (f-
2,f-3) are for CUR(Y1) and CUR(Y2) in PLMSVs(H) and PLMSVs(L), respectively; (f-5,f-6) are for 
GI(Y1) and GI(Y2) in PLMSVs(H) and PLMSVs(L), respectively; (f-7) is for CUR(Y1)&GI(Y2) from 
PLMCVs(H + L). (g) The validation results of GI estimation yield model from LMSV (g-1), PLMSVs 
(g-2,g-3) and PLMCV(H + L) (g-4). (h) The validation results of PLMCVs from PSSRa&GI. (h-1,h-4) 
are for PSSRa(Y) and GI(Y) from LMSV, respectively; (h-2,h-3) are for PSSRa(Y1) and PSSRa(Y2) in 
PLMSVs(H) and PLMSVs(L), respectively; (h-5,h-6) are for GI(Y1) and GI(Y2) in PLMSVs(H) and 
PLMSVs(L), respectively; (h-7) is for PSSRa(Y1)&GI(Y2) from PLMCVs(H + L). (i) The validation 
results of PLMCVs from PSSRb&GI. (i-1,i-4) are for PSSRb(Y) and GI(Y) from LMSV, respectively; 
(i-2,i-3) are for PSSRb(Y1) and PSSRb(Y2) in PLMSVs(H) and PLMSVs(L), respectively; (i-5,i-6) are 
for GI(Y1) and GI(Y2) in PLMSVs(H) and PLMSVs(L), respectively; (i-7) is for PSSRb(Y1)&GI(Y2) 
from PLMCVs(H + L). (j) The validation results of PLMCVs from RVI&GI. (j-1,j-4) are for RVI(Y) 
and GI(Y) from LMSV, respectively; (j-2,j-3) are for RVI(Y1) and RVI(Y2) in PLMSVs(H) and 
PLMSVs(L), respectively; (j-5,j-6) are for GI(Y1) and GI(Y2) in PLMSVs(H) and PLMSVs(L), respec-
tively; (j-7) is for RVI(Y1)&GI(Y2) from PLMCVs(H + L). 

Figure A5. (a) The validation results of CUR estimation yield model from LMSV (a-1),
PLMSVs (a-2,a-3), and PLMCV(H + L) (a-4). (b) The validation results of PLMCVs with GI&CUR.
(b-1,b-4) are for the GI and CUR estimation yield model (Y) from LMSV, respectively; (b-2,b-3) are
for GI(Y1) and GI(Y2) in PLMSVs(H) and PLMSVs(L), respectively; (b-5,b-6) are for CUR(Y1)
and CUR(Y2) in PLMSVs(H) and PLMSVs(L), respectively; (b-7) is for GI(Y1)&CUR(Y2) from
PLMCVs(H + L). (c) The validation results of PLMCVs from PSSRa&CUR. (c-1,c-4) are for PSSRa(Y)
and CUR(Y) from LMSV, respectively; (c-2,c-3) are for PSSRa(Y1) and PSSRa(Y2) in PLMSVs(H) and
PLMSVs(L), respectively; (c-5,c-6) are for CUR(Y1) and CUR(Y2) in PLMSVs (H) and PLMSVs(L),
respectively; (c-7) is for PSSRa(Y1)&CUR(Y2) from PLMCVs(H + L). (d) The validation results of PLM-
CVs from PSSRb&CUR. (d-1,d-4) are for PSSRb(Y) and CUR(Y) from LMSV, respectively; (d-2,d-3) are
for PSSRb(Y1) and PSSRb(Y2) in PLMSVs(H) and PLMSVs(L), respectively; (d-5,d-6) are for CUR(Y1)
and CUR(Y2) in PLMSVs(H) and PLMSVs(L), respectively; (d-7) is for PSSRb(Y1)&CUR(Y2) from
PLMCVs(H + L). (e) The validation results of PLMCVs model from RVI&CUR. (e-1,e-4) are for RVI(Y)
and CUR(Y) from LMSV, respectively; (e-2,e-3) are for RVI(Y1) and RVI(Y2) in PLMSVs(H) and
PLMSVs(L), respectively; (e-5,e-6) are for CUR(Y1) and CUR(Y2) in PLMSVs(H) and PLMSVs(L),
respectively; (e-7) is for RVI(Y1)&CUR(Y2) from PLMCVs(H + L). (f) The validation results of
PLMCVs from CUR&GI. (f-1,f-4) are for CUR(Y) and GI(Y) from LMSV, respectively; (f-2,f-3) are for
CUR(Y1) and CUR(Y2) in PLMSVs(H) and PLMSVs(L), respectively; (f-5,f-6) are for GI(Y1) and GI(Y2)
in PLMSVs(H) and PLMSVs(L), respectively; (f-7) is for CUR(Y1)&GI(Y2) from PLMCVs(H + L).
(g) The validation results of GI estimation yield model from LMSV (g-1), PLMSVs (g-2,g-3) and
PLMCV(H + L) (g-4). (h) The validation results of PLMCVs from PSSRa&GI. (h-1,h-4) are for
PSSRa(Y) and GI(Y) from LMSV, respectively; (h-2,h-3) are for PSSRa(Y1) and PSSRa(Y2) in
PLMSVs(H) and PLMSVs(L), respectively; (h-5,h-6) are for GI(Y1) and GI(Y2) in PLMSVs(H) and
PLMSVs(L), respectively; (h-7) is for PSSRa(Y1)&GI(Y2) from PLMCVs(H + L). (i) The validation
results of PLMCVs from PSSRb&GI. (i-1,i-4) are for PSSRb(Y) and GI(Y) from LMSV, respectively;
(i-2,i-3) are for PSSRb(Y1) and PSSRb(Y2) in PLMSVs(H) and PLMSVs(L), respectively; (i-5,i-6) are
for GI(Y1) and GI(Y2) in PLMSVs(H) and PLMSVs(L), respectively; (i-7) is for PSSRb(Y1)&GI(Y2)
from PLMCVs(H + L). (j) The validation results of PLMCVs from RVI&GI. (j-1,j-4) are for RVI(Y) and
GI(Y) from LMSV, respectively; (j-2,j-3) are for RVI(Y1) and RVI(Y2) in PLMSVs(H) and PLMSVs(L),
respectively; (j-5,j-6) are for GI(Y1) and GI(Y2) in PLMSVs(H) and PLMSVs(L), respectively; (j-7) is
for RVI(Y1)&GI(Y2) from PLMCVs(H + L).
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Figure A6. (a) The validation results of PLMCVs from MCARI1&R750/R710. (a-1,a-4) are for 
MCARI1(Y) and R750/R710(Y) from LMSV, respectively; (a-2,a-3) are for MCARI1(Y1) and 
MCARI1(Y2) in PLMSVs(H) and PLMSVs(L), respectively; (a-5,a-6) are for R750/R710(Y1) and 
R750/R710(Y2) in PLMSVs(H) and PLMSVs(L), respectively; (a-7) is for MCARI1(Y1)&R750/R710(Y2) 
from PLMCVs(H + L). (b) The validation results of PLMCVs from MCARI2&R750/R710. (b-1,b-4) are 
for MCARI2(Y) and R750/R710(Y) from LMSV, respectively; (b-2,b-3) are for MCARI2(Y1) and 
MCARI2(Y2) in PLMSVs(H) and PLMSVs(L), respectively; (b-5,b-6) are for R750/R710(Y1) and 
R750/R710(Y2) in PLMSVs(H) and PLMSVs(L), respectively; (b-7) is for MCARI2(Y1)&R750/R710(Y2) 
from PLMCVs(H + L). (c) The validation results of PLMCVs from MCARI1&D715/D705. (c-1,c-4) are 
for MCARI1(Y) and D715/D705(Y) from LMSV, respectively; (c-2,c-3) are for MCARI1(Y1) and 
MCARI1(Y2) in PLMSVs(H) and PLMSVs(L), respectively; (c-5,c-6) are for D715/D705(Y1) and 
D715/D705(Y2) in PLMSVs(H) and PLMSVs(L), respectively; (c-7) is for MCARI1(Y1)& D715/D705(Y2) 
from PLMCVs(H + L). (d) The validation results of PLMCVs from MCARI2&D715/D705. (d-1,d-4) 
are for MCARI2(Y) and D715/D705(Y) from LMSV, respectively; (d-2,d-3) are for MCARI2(Y1) and 
MCARI2(Y2) in PLMSVs(H) and PLMSVs(L), respectively; (d-5,d-6) are for D715/D705(Y1) and 
D715/D705(Y2) in PLMSVs(H) and PLMSVs(L), respectively; (d-7) is for MCARI2(Y1)& D715/D705 
(Y2) from PLMCVs(H + L). 
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for MCARI1(Y) and D715/D705(Y) from LMSV, respectively; (c-2,c-3) are for MCARI1(Y1) and
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from PLMCVs(H + L). (d) The validation results of PLMCVs from MCARI2&D715/D705. (d-1,d-4) are
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(Y2) from PLMCVs(H + L).
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