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Abstract: Feature selection (FS) can increase the accuracy of forest aboveground biomass (AGB)
prediction from multiple satellite data and identify important predictors, but the role of FS in AGB
estimation has not received sufficient attention. Here, we aimed to quantify the degree to which FS
can benefit forest AGB prediction. To this end, we extracted a series of features from Landsat, Phased
Array L-band Synthetic Aperture Radar (PALSAR), and climatic and topographical information, and
evaluated the performance of four state-of-the-art FS methods in selecting predictive features and
improving the estimation accuracy with selected features. We then proposed an ensemble FS method
that takes inro account the stability of an individual FS algorithm with respect to different train-
ing datasets used; the heterogeneity or diversity of different FS methods; the correlations between
features and forest AGB; and the multicollinearity between the selected features. We further investi-
gated the performance of the proposed stability-heterogeneity-correlation-based ensemble (SHCE)
method for AGB estimation. The results showed that selected features by SHCE provided a more
accurate prediction of forest AGB than existing state-of-the-art FS methods, with R2 = 0.66 ± 0.01,
RMSE = 14.35 ± 0.12 Mg ha−1, MAE = 9.34 ± 0.09 Mg ha−1, and bias = 1.67 ± 0.11 Mg ha−1 at 90 m
resolution. Boruta yielded comparable prediction accuracy of forest AGB, but could not identify the
importance of features, which led to a slightly greater bias than the proposed SHCE method. SHCE
not only ranked selected features by importance but provided feature subsets that enabled accurate
AGB prediction. Moreover, SHCE provides a flexible framework to combine FS results, which will
be crucial in many scenarios, particularly the wide-area mapping of land-surface parameters from
various satellite datasets.

Keywords: forest aboveground biomass; feature selection; Landsat; PALSAR; XGBoost

1. Introduction

The estimation of forest aboveground biomass (AGB) is crucial to understanding the
activity of the global carbon cycle, predicting changes in the climate system, providing guid-
ance for sustainable forest management, and improving forest conservation services [1–3].
In recent decades, numerous studies have attempted to quantify forest AGB and its spatial
patterns using a combination of field measurements and multiple remotely sensed data at
local or global scales [4,5]. Some studies have focused on determining promising predictors
from optical imagery, synthetic aperture radar (SAR), and lidar data. The results of these
studies suggested that surface reflectance [6,7]; vegetation indices [8,9]; texture informa-
tion [10]; canopy height and height of the median energy extracted from lidar data [11,12];
and SAR backscatter and relative height metrics [13,14], are important for AGB estimation.
To further improve prediction accuracy, an increasing number of variables have been used
to estimate forest AGB with the aid of machine learning and deep learning methods [15–18].

In many research fields, such as bioinformatics [19,20], image analysis [21], anomaly
detection [22,23], and natural language processing [24], feature selection (FS), also known
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as variable selection, is often carried out before training a model since it can improve the
prediction accuracy, speed up the training process, and facilitate data interpretation [25].
The inclusion of some unimportant or redundant variables often leads to poor prediction
accuracy and high computational cost [26,27]. It is thus essential to perform feature selection
for accurate estimation rather than use as many predictors as possible. However, published
studies have confirmed and systematically explored the role of sample size, sensor type,
and prediction methods in forest biomass estimation [28,29] but have largely ignored the
role of feature selection in improving the prediction performance of forest AGB. Therefore,
in this study, we aimed to explore the impacts of FS in AGB estimation.

According to the relationship with learning models, FS methods can be categorized
into three types: filter, wrapper, and embedded algorithms [30]. Filter algorithms do not
associate with a specific learning model and can be considered as a pre-processing step
that ranks variables by importance or selects subsets of variables using some criterion
(e.g., correlation or similarity measure). They are fast and intuitive but usually cannot
provide optimal features for subsequent modelling [31]. Wrapper algorithms depend on
the predictions of a learning model. They determine the subset of features that minimizes
the generalization error of the learning model used. For this reason, wrapper methods
enable more accurate estimations than filter methods in most cases [32], but they are
computationally intensive and greatly dependent on the learning model used. Embedded
methods, such as the least absolute shrinkage and selection operator (LASSO) technique
and decision tree algorithms, select features as a part of the learning or model creation
process [33,34]. There are also some hybrid algorithms that combine the merits of various
FS algorithms [26,35–38]. Most of these are combinations of filter and wrapper methods
and adopt a two-step strategy in which a filter algorithm is first employed to select features
based on a specific criterion, and then a wrapper algorithm is applied to the selected
features for further feature selection [39]. A hybrid feature-selection method can reduce
computational complexity by removing unimportant features. However, it may also
decrease prediction accuracy since the features removed by the filter algorithm might
provide complementary information to the final selected feature set.

Although various FS algorithms have been proposed in different fields, each algorithm
has its strength and weakness, and how to select the most appropriate approach for a
given task remains an issue to be solved [40]. This study aimed to devise suitable solutions
for forest AGB estimation. Specifically, our contributions include: (1) systematically eval-
uating the extent to which state-of-the-art FS algorithms improved the FS outcome and
the prediction accuracy of forest AGB; and (2) developing an ensemble FS algorithm to
rank predictors and produce an optimal feature subset that are stable and enable accurate
estimation of forest AGB.

2. Data and Methods
2.1. Study Area

The research area of this paper is northeast China, which includes Heilongjiang
Province, Jilin Province, Liaoning Province, as well as the eastern part of the Inner Mongolia
Autonomous Region [41]. The region is vast, and extends from 115◦32′E to 135◦09′E
and from 38◦42′N to 53◦35′N. The study area has a temperate monsoon climate. The
temperature in northeast China gradually decreases from south to north, and annual
average temperature is between −4~11.5 ◦C. Annual precipitation decreases from east
to west, is generally between 300 mm and 1000 mm, and the precipitation is mainly
concentrated from June to August [42].

Northeast China is the largest natural forest region in China, with a forest area of about
50.5 million hectares [43]. The majority of forests in northeast China are warm temperate
deciduous broadleaf forests, temperate coniferous and broadleaf mixed forests, and boreal
forests from south to north [41,44]. They are mainly distributed over three forest regions,
the Daxinganling Mountains, Xiaoxinganling Mountains, and Changbai Mountains, with
forest land areas of 15.0, 6.0, and 13.6 million ha, respectively [45].
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2.2. Forest AGB Data

Field measurements were taken at the Geoscience Laser Altimeter System (GLAS)
footprints in the Tahe and Changbai Mountain forest regions of Northeast China in 2006
and 2007 (Figure 1). A total of 86 field plots were used [45]. For each field plot, the height
and the diameter at breast height (DBH) of all the trees with a DBH larger than 5 cm were
measured, and tree biomass was computed using the allometric equation [46–48]. Plot-level
AGB were obtained by summing up all the tree biomass and then dividing by the area.
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Figure 1. The study area: (a) the red triangles showed the field measurements in the Tahe county and
Changbai Mountain region, and the points showed the GLAS footprints located in the forest region
of the study area as well as their AGB values. The background map shows the spatial distribution of
tree cover; and (b) shows the elevation map of the study area.

To obtain more training samples for AGB modelling with satellite data, the labor-
intensive field measurements and the corresponding GLAS-derived metrics were used to
develop AGB models which were further used for estimating AGB at GLAS footprints
located in the study area [49]. Four GLAS metrics were extracted from GLAS waveform
data, including the 25th percentile of canopy-reflection heights (CRH25), leading edge
extent (Lead), quadratic mean-canopy height (QMCH), and the 75th percentile of height
(TH75). The support-vector regression (SVR) algorithm was included to build the relation-
ships between field AGB and GLAS-derived metrics. Four GLAS-derived metrics and the
SVR algorithm were selected because one of our previous studies revealed that they could
enable accurate AGB predictions [49].

GLAS data are greatly affected by clouds and system noise. Only cloudless waveforms
(FRir_qa_flag = 15) that did not show any sign of saturation (SatNdx = 0) were included
in this study [48]. To exclude possible cloud cover, GLAS waveforms, where the differ-
ence between DEM elevation and GLAS elevation (i_elev in GLA14) was >85 m, were
eliminated [50]. Moreover, we only retained GLAS data with at least two Gaussian peaks
to ensure that GLAS waveforms were reflected from the forest canopy rather than bare
ground [51].

Here, we developed 100 SVR models by splitting the plot-level AGB into five folds,
which was repeated 20 times, and then used the developed models to predict forest AGB at
GLAS footprints. The average of 100 predictions was taken as the reference data (Figure 1).
To reduce the possible impacts of unbalanced data distribution of reference AGB on sub-
sequent modelling with satellite data, resampling was conducted by SMOGN, which
combines random undersampling with a synthetic minority oversampling technique for
regression (SMOTER), and the use of Gaussian noise techniques [52].

2.3. Landsat Data

The Landsat Collection 1 Level 1 Precision and Terrain (L1TP) corrected data have
the highest geometric and radiometric quality [53,54]. The Landsat 5 L1TP data from
May to September were used. For each growing season between 2007 to 2010, Landsat 5
thematic mapping (TM) images were composited into one image using the greenest NDVI
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(normalized difference vegetation index) method and Google Earth engine (GEE) [55,56].
Landsat data for 2007–2010 were selected, to be consistent with the PALSAR data in
Section 2.4. The composite images were reprojected from the original universal transverse
Mercator (UTM) projection to the WGS84 coordinate system. To reduce the spatial mismatch
between Landsat and GLAS-derived biomass data, a 3 × 3 window was applied to the
surface reflectance data, and the mean values of Landsat TM surface reflectance at the
green, red, near-infrared, and shortwave bands were computed and used as predictors
of forest AGB [57–59]. In addition to TM surface reflectance, various vegetation indices
were used to estimate forest AGB [60–62], including NDVI; enhanced vegetation index
(EVI); soil-adjusted vegetation index (SAVI); structural index (SI); normalized difference
moisture index (NDMI); normalized burn ratio (NBR); and tasseled cap (TC) components
that included TC brightness (TCB), TC greenness (TCG), TC wetness (TCW), TC distance
(TCD), TC angle (TCA) and TC disturbance index (TCDI). The formulas to derive these
metrics are shown in Table 1.

Some studies have suggested that the inclusion of texture information increases the
accuracy of AGB prediction [63–65]. The gray level co-occurrence matrix (GLCM) texture
measures associated with four TM bands including mean, variance (VAR), correlation
(COR) and homogeneity (HOM), were thus extracted. All GLCM texture measures were
calculated using 64 gray level quantization to reduce computational effort and avoid
generating sparse GLCMs [66,67]. We conducted an experiment with two window sizes
(3 × 3 and 5 × 5) to determine GLCM texture measures and found that GLCM texture
measures using a 5 × 5 pixel window had stronger correlations with forest biomass [63],
which were then used in this study.

We aggregated the forest cover data at 30 m spatial resolution [68] to 90 m resolution
through averaging. Pixels with a forest cover >10% were considered as forests and non-
forest pixels were excluded [4,45].

2.4. PALSAR Data

The ALOS PALSAR mosaics at 25 m resolution provided by the Japan Aerospace
Exploration Agency (JAXA) were available for 2007–2010 [69,70] and downloaded from
https://www.eorc.jaxa.jp/ALOS/en/palsar_fnf/fnf_index.htm (accessed on 14 March
2022). We converted digital values of original PALSAR HH and HV polarizations to
normalized gamma nought radar backscatter coefficients γ0 using (1).

γ0= 10× log10[DN2]− 83.0 dB (1)

An improved adaptive Lee filter with a window size of 5 × 5 pixels was used to
reduce salt and pepper noise. In addition to HH and HV, their difference (HH−HV) and
ratio (HH/HV) were included as predictors of forest AGB [71,72]. Four GLCM texture
measures were applied to HH and HV backscatter coefficients, generating an additional
eight predictors. To be consistent with other datasets, PALSAR-derived metrics were
averaged to the 90 m resolution.

2.5. Topographical Data

Elevation data were from the Shuttle Radar Topography Mission (SRTM) digital
elevation model (DEM) and downloaded from https://srtm.csi.cgiar.org/ (accessed on 31
December 2021) [73]. The mean aggregation algorithm was used within 3 × 3 windows to
generate the elevation data at 90 m resolution. Slope was calculated using ENVI software
based on the elevation data at 90 m resolution.

https://www.eorc.jaxa.jp/ALOS/en/palsar_fnf/fnf_index.htm
https://srtm.csi.cgiar.org/
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Table 1. Descriptions and equations for predictor variables.

Variables Descriptions References

Green, Red, NIR, SWIR2 Four spectral metrics extracted from Landsat TM 5 band 2,
band 3, band 4, and band 6.

NDVI (TM4 − TM3)/(TM4 + TM3) [74]

EVI 2.5 × (TM4 − TM3)/(TM4 + 6 × TM3 − 7.5 × TM1 + 1) [75]

SAVI 1.5 × (TM4 − TM3)/(TM4 + TM3 + 0.5) [76]

NDMI (TM4 – TM5)/(TM4 + TM5) [77,78]

SI TM4/TM5 [79]

NBR (TM4 – TM7)/(TM4 + TM7) [80]

TCB B × [TM1, TM2, TM3, TM4, TM5, TM7, 1]T [81]

TCG G × [TM1, TM2, TM3, TM4, TM5, TM7, 1]T [81]

TCW W × [TM1, TM2, TM3, TM4, TM5, TM7, 1]T [81]

TCD
√

TCB2 + TCG2 [82]

TCA artan(TCG/TCB) [83]

TM texture Four GLCM texture measures (mean, variance, correlation,
homogeneity) extracted from each spectral band. [84]

FVC The metrics were extracted from the global tree cover data
published by Hansen. [68]

HH, HV PALSAR backscatter coefficients.

HH−HV, HH/HV The difference and ratio values between HH and HV. [71]

PALSAR texture GLCM texture measure associated with HH and HV.

Elevation, Slope Topographical predictors.

Note: B = [0.2909, 0.2493, 0.4806, 0.5568, 0.4438, 0.1706, 10.3695], G = [−0.2728, −0.2174, −0.5508, 0.7221, 0.0733,
−0.1648, −0.7310], and W = [0.1446, 0.1761, 0.3322, 0.3396, −0.6210, −0.4186, −3.3828].

2.6. FS Methods

Four FS methods, including Boruta, nonlinear joint mutual information maximization
(JMIM), recursive feature elimination (RFE), and mean decrease accuracy (MDA) were
considered in this study. Random forests (RF) was the learner of the wrapper FS method.

The flowchart (Figure 2) illustrates the procedures to evaluate FS in the estimation
of AGB from multiple satellite data. A 10-fold cross-validation (CV) was performed on
the GLAS-derived forest AGB and the predictor variables extracted from multiple satellite
data, which was iterated five times, generating 50 training datasets and 50 test datasets.
Four FS methods were used to select variables based on 50 training datasets. We examined
the stability of each FS method with respect to different training datasets, the heterogeneity
or diversity of different FS methods, and the correlations between selected features. A
novel ensemble FS algorithm was proposed considering the stability, heterogeneity, and
correlation (SHC). The SHC ensemble (SHCE) method selected features according to the
ranking scores of all features and determined the number of top features finally selected
for AGB estimation using Akaike information criterion (AIC). FS outcomes generated by
each FS method served the inputs of RF and XGBoost model to estimate forest AGB.
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2.6.1. Boruta

Boruta measures the importance of features by comparing them with those of shadow
variables [85]. Previous studies have suggested that Boruta outperformed Vita, the permuta-
tion approach and its variant Altmann, and RFE, and was robust for both high-dimensional
and low-dimensional data analysis [86]. The Boruta procedure is summarized as follows.
Create a shadow variable for each predictor variable by shuffling values of the original
feature across samples to remove any possible correlations with the response variable and
add the shadow variables into the original features; run the RF model to obtain an internal
estimate of variable importance; label the features that have lower importance than the
maximum importance of the shadow variables (MVSA) as unimportant and those that have
greater importance than MVSA as important; remove the unimportant features; repeat the
above procedures until the importance of all features has been determined.

2.6.2. JMIM

Information theory has been widely used in filter-based FS algorithms, in which
the relevance and redundancy of features are measured by mutual information (MI),
interaction information, conditional MI, or joint MI [87,88]. We used the nonlinear JMIM
algorithm, which takes both the relevance of each feature and target variable together
with the redundancy between features into consideration using MI and a maximum-of-
the-minimum criterion [89]. The MI between forest AGB and each predictor variable was
calculated, and the feature that had the maximum MI for AGB estimation was first selected.
Candidate features with a larger minimum value of joint MI than all the other features that
had not been included in the subset of already selected features were considered as the most
relevant with forest AGB in the context of selected features and then added to the selected
subset. This greedy search process was repeated until the MI that a selected variable shared
with forest AGB no longer increased [89]. A K-nearest neighbors (KNN)-based estimation
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method was used to calculate MI for continuous variables, and the number of samples
used for estimating kernel density was set to 5 [90].

2.6.3. RFE

Recursive feature elimination (RFE) was first proposed by Guyon et al. [91] for gene
selection using support vector machines and later introduced into RF processes [92]. RFE
aims to find an optimal feature subset that gives the best prediction performance based
on a backward elimination strategy. The RFE procedure is as follows. Train the RF model
with all features; compute the importance criterion; eliminate the least important feature;
and train the RF model with the remaining features. These steps are repeated until a single
input variable remains. RFE ranks the features in order of elimination. We used a five-fold
CV to select the top k variables based on their ranking.

2.6.4. MDA

MDA quantifies feature importance based on the out-of-bag (OOB) error of a model
when it was trained [93]. In this study, the importance of each variable was calculated
by the difference averaged over all trees of RF between the mean square error of OOB
prediction in which features were randomly permutated and that of the original OOB
prediction [94]. If a variable is important, the associated change in the OOB prediction
error caused by random permuting is large. According to the importance of each variable,
a feature importance ranking was obtained. Similar to the RFE algorithm, a five-fold CV
was conducted to select the top k features.

2.6.5. Proposed Ensemble FS Algorithm

An ensemble algorithm aggregates the outputs of multiple variable selectors and thus
produced more robust and more stable FS results than a single FS algorithm [95–97]. We
developed an ensemble FS algorithm that combined the results from JMIM, MDA, RFE and
Boruta, taking into account the stability of each individual FS algorithm, the heterogeneity
or diversity between the different FS algorithms, as well as the correlations between selected
features. For simplicity, the stability-heterogeneity-correlation-based ensemble method was
abbreviated as SHCE in this study.

Stability quantifies the consistency of FS results from different datasets produced by
an individual FS algorithm. It is calculated by:

STAi =
∑N

j=1,j 6=i S( fi, f j)

N − 1
(2)

where STAi is the stability score of feature subset i, N is the number of feature subsets
produced by the FS algorithm, and S(fi,fj) is the similarity between feature subset i and
feature subset j, which is calculated by:

S( fi, f j) =
c− kikj

n

min(ki, k j)−
kikj

n

(3)

where ki is the number of features in feature subset fi, kj is the number of features in feature
subset fj, c is the number of features common to fi and fj, and n is the total number of
features [40,98]. A greater stability score suggests better stability of the FS result.

The heterogeneity score was introduced as a measure of the difference between FS
results produced by the four different FS algorithms when trained with the same dataset. It
is calculated by:

HETi =
∑M

j=1,j 6=i
ki+kj−2c

n

M− 1
(4)
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where HETi is the heterogeneity score of FS result i, and M is the number of feature selectors
used in the ensemble algorithm. A greater heterogeneity score indicated that the FS results
were diverse and could complement with each other.

The correlation score was originally derived from the correlation-based feature selec-
tion (CFS) algorithms, which selected features that had a high correlation with the target
feature but with low multicollinearity between variables [99]. We calculated the CFS of FS
result i using (5):

CFSi =
krxy√

k + k(k− 1)rxx
(5)

where rxy is the average of the coefficients of correlation between each feature within the
feature subset and the corresponding target feature (forest AGB in this study); rxx is the
average of the coefficients of correlation between pairs of features within the feature subset;
and k is the number of features in the feature subset.

After computing the STA, HET and CFS scores for each FS result, data were rescaled
using min–max normalization to eliminate dimensional differences between indicators.
The average of the normalized STA, HET and CFS scores was used as the weight of each
feature subset, and the importance of feature i in subset i was calculated by:

Scorei =
∑Num

i=1 WiFi

Num
(6)

where: Wi is the weight of feature subset Fi; and Num is the number of all feature subsets
and was 200 (50 for each of the four FS algorithms).

All features were ranked according to their importance scores. Single features were
selected sequentially for use by the RF model in AGB prediction. AIC was used to determine
the number of features.

2.7. AGB Modelling

RF algorithms have been widely used in several fields because of their accuracy and
their robustness against noise in the training data [100–102]. We selected RF as the learner to
select features extracted multiple remote sensing data. However, the use of an RF algorithm
for AGB estimation with selected features might bias the prediction results. To reduce
the impacts on the accuracy assessment, we included XGBoost for the prediction of forest
AGB using the features selected by Boruta, JMIM, MDA, RFE and SHCE as an alternative
algorithm to RF. XGBoost is a boosting algorithm which transforms weak learners into
strong learners by increasing the weights of samples misclassified or with large errors in
subsequent iterations [15,103]. XGBoost implements parallel preprocessing at the node
level, making it faster than a gradient boosting machine.

In this study, we evaluated and compared the AGB predictions obtained by RF and
XGBoost, and the algorithm with a better prediction accuracy was adopted for forest AGB
mapping for the study area.

2.8. Evaluation Metrics

The prediction accuracy was assessed in terms of the coefficient of determination (R2),
root mean square error (RMSE), mean absolute error (MAE), and bias [104]. We calculated
these metrics of AGB estimates achieved by RF and XGBoost models with selected features
from Boruta, JMIM, MDA, RFE, and SHCE, respectively.

3. Results
3.1. Important Features Identified for Forest AGB Prediction

In total, 46 features were extracted from Landsat TM, PALSAR and DEM data. FVC,
elevation, slope, HV and HV-Mean were the features most frequently identified by Boruta,
JMIM, RFE and MDA (Figure 3). The proposed SHCE algorithm ranked HV-Mean as
the most important feature, followed by elevation, FVC, slope, HV and HH (Figure 4),
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which suggested that the features derived from PALSAR data were most relevant for AGB
estimation, consistent with results from previous studies [105–108]. All the FS algorithms
confirmed the importance of topographical information and tree cover data in the prediction
of forest AGB [109–112]. The two most important variables for MDA were FVC and HV-
Mean, and for RFE they were elevation and HV-Mean.
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Figure 4. Feature importance ranked by the SHCE feature selection algorithm. The importance of
each of the selected 26 features was obtained by subtracting 47 from its ranking order.

The features NBR and SWIR2 were selected as important features from Landsat surface
reflectance and the derived vegetation indexes by Boruta, JMIM and SHCE. However,
they were outweighed by texture information such as NIR-HOM, NIR-Mean, and Red-
HOM. Results from all five FS algorithms showed that surface reflectance at the red,
green, and near-infrared bands provided limited information for AGB prediction, but the
GLCM textures applied on these bands could be important (Figures 3 and 4). The results
also suggested that TC-related variables were not as important as previous studies have
suggested [60], and they contributed less to AGB prediction than other types of variables
such as PALSAR-derived variables or texture metrics.

Results of Boruta were relatively stable, in contrast to the results of other FS algorithms,
and 36 variables were selected (Figures 3 and 5). Nine variables, including NIR, EVI, SAVI,
NDMI, SI, TCB, TCG, TCD and TCA, were excluded in all 50 results by Boruta (Figure 3).
The other FS methods produced subsets with overall smaller numbers of features, but they
were more sensitive to the training datasets used, in particular MDA, and RFE (Figure 5).



Remote Sens. 2023, 15, 1096 10 of 21

Remote Sens. 2023, 15, x FOR PEER REVIEW 10 of 21 
 

 

suggested that TC-related variables were not as important as previous studies have sug-
gested [60], and they contributed less to AGB prediction than other types of variables such 
as PALSAR-derived variables or texture metrics. 

Results of Boruta were relatively stable, in contrast to the results of other FS algo-
rithms, and 36 variables were selected (Figures 3 and 5). Nine variables, including NIR, 
EVI, SAVI, NDMI, SI, TCB, TCG, TCD and TCA, were excluded in all 50 results by Boruta 
(Figure 3). The other FS methods produced subsets with overall smaller numbers of fea-
tures, but they were more sensitive to the training datasets used, in particular MDA, and 
RFE (Figure 5). 

 
Figure 5. The number of feature subsets generated by each FS method based on 50 training datasets; 
the red dashed line shows the SHCE results. 

3.2. Accuracy of Forest AGB Prediction Based on Selected Features 
We used RF and XGBoost with each of the feature sets selected by Boruta, JMIM, 

MDA, RFE and SHCE to assess the accuracy of AGB prediction. The results showed that 
the features selected by MDA and RFE provided less accurate AGB predictions. Both al-
gorithms identified fewer features as being important than the other algorithms, and the 
features selected were highly unstable, which suggests the two algorithms did not 
properly detect variables important for AGB prediction (Figures 5 and 6). JMIM selected 
slightly more features than RFE or MDA, but less than Boruta. AGB predictions using the 
JMIM features varied within a narrower range than those from RFE and MDA, which 
suggests that JMIM performed better than those two algorithms in identifying important 
features. 

Figure 5. The number of feature subsets generated by each FS method based on 50 training datasets;
the red dashed line shows the SHCE results.

3.2. Accuracy of Forest AGB Prediction Based on Selected Features

We used RF and XGBoost with each of the feature sets selected by Boruta, JMIM,
MDA, RFE and SHCE to assess the accuracy of AGB prediction. The results showed that
the features selected by MDA and RFE provided less accurate AGB predictions. Both
algorithms identified fewer features as being important than the other algorithms, and the
features selected were highly unstable, which suggests the two algorithms did not properly
detect variables important for AGB prediction (Figures 5 and 6). JMIM selected slightly
more features than RFE or MDA, but less than Boruta. AGB predictions using the JMIM
features varied within a narrower range than those from RFE and MDA, which suggests
that JMIM performed better than those two algorithms in identifying important features.
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The features selected by Boruta, and the features selected by SHCE, provided more
accurate forest AGB predictions when using RF (Figure 6), with respective indicator val-
ues R2 = 0.60 ± 0.01 and 0.59 ± 0.01, RMSE = 15.65 ± 0.12 and 15.76 ± 0.11 Mg ha−1,
MAE = 11.52 ± 0.11 and 11.52 ± 0.08 Mg ha−1, and bias = 1.55 ± 0.09 and 1.51 ± 0.09 Mg
ha−1. The XGBoost algorithm generally improved on RF AGB predictions. Similar to the
results of RF, features selected by Boruta produced the greatest value of R2 = 0.68 ± 0.01,
while for SHCE, R2 = 0.66 ± 0.01; features selected by SHCE produced AGB predictions
with lower bias than features selected by Boruta, with bias = 1.84± 0.11 Mg ha−1 for Boruta
and bias = 1.67 ± 0.11 Mg ha−1 for SHCE (Figures 6 and 7). XGBoost with SHCE selected
features gave RMSE = 14.35 ± 0.12 Mg ha−1 and MAE = 9.34 ± 0.09 Mg ha−1.
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Forest AGB predictions using SHCE selected features were highly correlated with
ground truth forest AGB produced using field measurements and GLAS data, particularly
when using XGBoost, when many points were around the 1:1 line (Figure 8). Using features
selected by Boruta provided similar results in terms of prediction accuracy. However,
Boruta did not determine which were the key parameters for AGB prediction because it
provided a feature subset rather than a feature ranking. The proposed SHCE accurately
predicted forest AGB and also identified crucial features in the prediction (Figures 4 and 6).
Use of AIC enabled us to select 26 of 46 features for further analysis. Figure 9 shows that
prediction accuracy increased with the inclusion of variables ranked as more important by
SHCE. At least ten features were indispensable for accurate AGB estimation, including HH,
HV, HH-Mean, HV-Mean, FVC, Slope, Elevation, NIR-Mean, Green-Mean and Green-COR
(Figures 4 and 9). Using only the ten most important features, predicted AGB accuracy was
indicated by R2 = 0.57 and RMSE = 16.16 Mg ha−1 using the RF model and by R2 = 0.61 and
RMSE = 15.32 Mg ha−1 using the XGBoost model. These indicators showed that prediction
accuracy increased slightly as more variables were introduced until all 26 selected variables
were included.
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3.3. Forest AGB Maps at 90 m Resolution

We used XGBoost to generate forest AGB maps for 2007–2010 at 90 m resolution
(Figure 10) using SHCE selected variables from the Landsat, PALSAR, and DEM data.
The results showed that high AGB values tended to be found in regions covered by
dense forest (Figure 1). Most forest AGB predictions were in the range 80–140 Mg ha−1,
with slight interannual variation (Figures 10 and 11). Statistical analysis of the forest
AGB maps showed that predicted AGB values were 118.42 ± 10.60 Mg ha−1 for 2007,
115.38 ± 12.74 Mg ha−1 for 2008, 116.43 ± 12.92 Mg ha−1 for 2009 and 115.34 ± 12.54 Mg
ha−1 for 2010. The predicted AGB values were greater than those found in a previous
study that used MODIS data [45]. This difference is partly attributable to differences in
spatial resolution and the inclusion of PALSAR data. In this study, GLAS-derived AGB
samples were aggregated to 90 m rather than to the MODIS resolution to provide more
samples with larger AGB values for further model training. In addition, Landsat captures
more spatially distributed data than coarse resolution data, and PALSAR data contributes
significantly to AGB estimates, and this may reduce the severity of saturation which has
often hampered forest AGB prediction. For the year 2009, about 2.66 million forest pixels
had AGB values > 140 Mg ha−1 at the spatial resolution of 90 m.
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4. Discussion
4.1. The Significance of SHCE in Predicting Forest AGB

In this study, we used four state-of-the-art feature selection methods (Boruta, JMIM,
RFE and MDA) and an innovative ensemble FS algorithm, SHCE, to select important
predictive features from Landsat, PALSAR and DEM data. We analyzed their performance
in forest AGB prediction. The results showed that MDA and RFE were highly dependent
on the training data used, and both lacked the capacity to identify key variables. Overall,
they produced inaccurate predictions of AGB. Boruta and the proposed SHCE algorithm
produced relatively accurate predictions of forest AGB. Boruta used more variables than
SHCE, which suggests that there is redundancy in the features selected by Boruta. This
would account for the slight increase in bias shown in Figure 7.
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SHCE is a flexible framework that can be used to combine different FS results. It ranked
variables by importance and provided feature subsets to facilitate accurate prediction. We
used SHCE to combine features selected from different training datasets by Boruta, JMIM,
RFE and MDA. These four FS algorithms were chosen because our initial examination of
FS algorithms, which included the genetic algorithm [97], the least absolute shrinkage and
selection operator algorithm [113], sequential forward selection [114] and RReliefF [115,116],
showed that Boruta, JMIM, RFE and MDA performed better than other algorithms in terms
of stability and prediction accuracy [95].

Previous studies have shown that feature selection reduces overfitting, thus increasing
generalizability, thereby allowing the SHCE model to be used in locations for which field
measurements are unavailable [117]. This study is the first known attempt to identify
key predictive features in order to increase prediction accuracy and increase our under-
standing of their influence on forest AGB. Autonomous aerial vehicles and hyperspec-
tral techniques have both been increasingly used to inventory forests and observe forest
dynamics [118–120]; these techniques have provided abundant information for AGB pre-
diction but with feature redundancy. The identification and extraction of key features from
data recorded by these recent techniques are thus becoming more important in increasing
our understanding of their underlying relationships with forest AGB and in increasing
prediction accuracy. SHCE can also be used in other scenarios, such as the prediction
of forest AGB at different spatial resolutions or identifying features from other land sur-
face parameters from several remote sensing datasets. These possibilities merit further
investigation in future studies.

4.2. Identified Important Features for Forest AGB Prediction

A total of 46 variables were extracted from Landsat, PALSAR and DEM data. Elevation,
slope, FVC, HV and HH were identified by almost all the FS algorithms, which implied
their importance in forest AGB prediction. Previous studies have shown that PALSAR-
derived variables were crucial to forest AGB prediction [105–108]. Our results confirmed
the importance of elevation, slope, and tree cover, in addition to HV and HH, indicating that
it is necessary to include topographical data and tree cover data in forest AGB prediction
and mapping [109–112].

Fewer Landsat-derived variables were selected as predictor features than PALSAR-
derived variables. Among the spectral reflectance and vegetation indices, SWIR2, NDVI,
and NBR were identified as features that were relevant to forest AGB prediction by Boruta,
JMIM and SHCE. Some studies have shown that NIR and NDVI could be used in forest
AGB prediction [121–123]. Our results showed that SWIR2 bands were highly correlated
with AGB, consistent with previous studies [124]. NBR has been used in predictions of
burned areas and vegetation disturbance and recovery [125,126] and we found it to be a
predictor of forest AGB. Some studies have found that forest disturbance and recovery
indicators that were extracted from time-series data as predictor variables significantly
increased the accuracy of AGB prediction [127,128]. However, we did not investigate the
temporal information embedded in Landsat data, so the contribution of NBR to forest AGB
prediction was thus different from that which would be found in analyzing vegetation
disturbance and recovery.

Some GLCM textures, such as NIR_Mean, Green_Mean and Green_COR, were identi-
fied as key features and were assigned a higher priority than SWIR2, NBR and NDVI by
SHCE. This suggested that spatial information or texture metrics contributed more to AGB
prediction than spectral information. Only four GLCM texture measures, including mean,
variance, correlation, and homogeneity were used in this study. Four other measures were
examined (contrast, dissimilarity, entropy and angular second moment), but it was found
that they provided limited information for AGB prediction, and variables related to these
four measures were excluded from the final analysis and were not shown in this study.

Primary predictor variables derived from optical imagery were the Landsat surface
reflectance and multiple vegetation indexes. Some biophysical parameters, such as leaf area



Remote Sens. 2023, 15, 1096 15 of 21

index, canopy height and net primary production, which have been increasingly considered
in mapping forest AGB [129–132], were not included due to lack of data availability. With
the current development of high-resolution remotely sensed vegetation data products, more
datasets will become publicly available, and the use of these variables in AGB predictions
with GLCM texture measures applied should be fully explored in future studies.

4.3. Comparison of Forest AGB Maps with Other Studies

Forest AGB maps were generated from GLAS, Landsat and PALSAR remote sensing
data with a spatial resolution of 90 m. To the best of our knowledge, there are no forest
AGB maps of northeastern China with a finer resolution. Zhang et al. [133] found that
most forest AGB maps covering the study area were generated from GLAS and MODIS
data using tree-based modeling approaches or spatial downscaling algorithms, and all
had spatial resolutions coarser than 500 m. Zhang et al. [45] used GLAS and MODIS data
and predicted average forest AGB of 83.50 Mg ha−1 for 2005, which was lower than the
predictions of this study. Tan et al. [134] used GIMMS NDVI and field inventory data
and found that most forests had an AGB density of 90–110 Mg ha−1 carbon for the period
1982–1999 and about 30% of the forests had a carbon density of 70–90 Mg ha−1. The results
of this study showed that mean forest AGB for the years 2007–2010 was about 115 Mg ha−1,
slightly greater than was found by Tan et al. [134]. This difference may be partly due to the
overall increase in forest AGB from 2000 to 2010 [135].

Surface reflectance and vegetation indexes were widely used predictors in published
studies, but other variables that have been found to contribute significantly to AGB predic-
tions have been largely ignored in the mapping of forest AGB across northeastern China.
In this study, we extracted several features from different remote sensing datasets and
so incorporated important features into AGB mapping. Previous studies suggested that
forest AGB across northeastern China was strongly influenced by forest height [136]. The
inclusion of forest height information will probably further increase the accuracy of forest
AGB prediction in terms of both magnitude and spatial distribution. We did not include
forest height as a predictor due to the lack of high-resolution forest height maps. In future
studies, it may be necessary to map both forest height and AGB using multistage estimation
methods [137,138].

4.4. Limitations of This Study

An FS wrapper algorithm is associated with a specific learning model, and the features
selected are thus dependent on the learning model used. We used RF as the learning model
for FS. Changing from RF to another learning model could affect the accuracy of forest
AGB predictions. To reduce uncertainty in the predictions, we predicted AGB using both
RF and XGBoost with the features selected by the five FS methods. Both RF and XGBoost
produced consistent predictions for each set of features, and XGBoost made more accurate
predictions. This indicates the robustness of our assessment of the five FS algorithms.

Forest AGB values used for calibration of satellite data and in AGB modeling were
derived from field measurements and GLAS data. Cross-validation results suggested that
forest AGB was accurate, with R2 of approximately 0.60 [49], which could be increased
by using smaller footprint data or by increasing the number of field measurements [28].
However, taking these steps would surely increase the cost of predicting AGB. Landsat,
PALSAR and GLAS data were the main input datasets in this study. Some recent studies
have used GEDI and Sentinel data for AGB prediction [13,139,140], and the use of data
from these advanced sensors may increase the spatial resolution and accuracy of AGB
predictions. Field measurements that would correspond to GEDI and Sentinel data would
have to be made, but high-resolution AGB maps with a spatial resolution of about 30 m
could be generated in the future.
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5. Conclusions

We proposed the SHCE feature selection algorithm and investigated the stability of in-
dividual FS algorithms, the heterogeneity or diversity of selected features, and correlations
between features, and predicted forest AGB as well as multicollinearity between selected
features in determining key predictors of forest AGB from several remote sensing datasets
(Landsat, PALSAR and SRTM DEM). The results suggested that SHCE selected the impor-
tant predictors and so produced an accurate prediction of forest AGB. The features HH,
HV, HH-Mean, HV-Mean, FVC, slope, elevation, NIR-Mean, green-mean and green-COR
contributed significantly to the AGB predictions. A comparison between results showed
that XGBoost predictions of AGB were more accurate than RF predictions for all selected
sets of features. We generated the first forest AGB maps at 90 m resolution for 2007–2010
using XGBoost with the feature set selected by SHCE.

The proposed SHCE method can be used as a framework in similar studies because
it ranks predictor variables and generates an optimal subset for AGB prediction. De-
velopments in remote-sensing techniques coupled with an effective FS method, such as
SHCE, will increase our understanding of the relationships between the several features
that influence forest AGB and facilitate the production of regional AGB maps at several
spatial scales.
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