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Abstract: As high-resolution global coverage cannot easily be achieved by direct bathymetry, the use
of gravity data is an alternative method to predict seafloor topography. Currently, the commonly
used algorithms for predicting seafloor topography are mainly based on the approximate linear
relationship between topography and gravity anomaly. In actual application, it is also necessary to
process the corresponding data according to some empirical methods, which can cause uncertainty in
predicting topography. In this paper, we established analytical observation equations between the
gravity anomaly and topography, and obtained the corresponding iterative solving method based on
the least square method after linearizing the equations. Furthermore, the regularization method and
piecewise bilinear interpolation function are introduced into the observation equations to effectively
suppress the high-frequency effect of the boundary sea region and the low-frequency effect of the far
sea region. Finally, the seafloor topography beneath a sea region (117.25◦–118.25◦E, 13.85◦–14.85◦N)
in the South China Sea is predicted as an actual application, where gravity anomaly data of the study
area with a resolution of 1′ × 1′ are from the DTU17 model. Comparing the prediction results with the
data of ship soundings from the National Geophysical Data Center (NGDC), the root-mean-square
(RMS) error and relative error can be up to 127.4 m and approximately 3.4%, respectively.

Keywords: gravity anomalies; topography; regularization; bilinear interpolation

1. Introduction

As a natural density interface of the earth, the seafloor topography plays an important
role in many geoscience fields [1–6]. Apart from the direct measurement of sea depth by
single/multi-beam technology, remote sensing technology and marine gravity data are also
important for the indirect measurement of sea depth [7–9]. For a multi-beam echosounder,
although it has a high accuracy, the distribution of actual ship soundings data is very
sparse due to large time consumption and high cost [10]. For remote sensing technology,
satellites including Sentinel-2, ICEsat, and others can measure the depth of shallow seas
near islands and reefs with an accuracy of less than 1 m. However, depth prediction by
remote sensing technology is limited as it can only capture the topographic features of
sea areas with depths less than 18 m [11]. Compared with multi-beam echosounder and
remote sensing technology, marine gravity data are well distributed across the ocean. For
example, geoid heights with a resolution better than 2 km can be obtained by integrating
data of many altimetry satellites, such as Topex/Poseion (T/P) satellite, Jason-1 satellite,
and Cryosat-2 satellite, etc. [12], from which gravity data, such as the gravity anomaly
and gravity gradients, can be satisfactorily computed [13,14]. Therefore, a highly effective
method for mapping seafloor topography is as follows: first, gravity data with a high
resolution (e.g., 2 km) can be used to predict seafloor topography with the same resolution,
and the data of sea depths from ship soundings and remote sensing can then be combined
to refine the topography. In fact, using gravity anomaly to predict seafloor topography
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can effectively fill the lack of ship sounding data and improve the overall accuracy of the
seafloor topography.

Considering the research status quo of using gravity data to predict seafloor topog-
raphy, gravity anomaly has been used as the main type of data [15–17]. Additionally,
vertical gravity gradient data have also been used to a lesser extent [18–21]. The prediction
methods are mainly divided into the spatial- and frequency-domain methods. A typical
representative of the spatial method is the gravity-geologic method (GGM) based on the
Bouguer correction formula; namely, the relationship between the gravity generated by
an infinite uniform thick plate and the height of the thick plate is linear; thus, the relation-
ship between the gravity anomaly and seafloor topography can be fitted by existing ship
soundings [22,23]. Essentially, the GGM is a fitting method that can be easily computed,
but it cannot predict heavily undulating seafloor topography [20]. The frequency-domain
method for predicting seafloor topography is based on the Parker formula [24] that is
essentially a first-order approximate formula omitting the high-order terms of sea depth.
The frequency-domain method needs to consider the flexural isostatic compensation theory
to improve its accuracy; thus, more geophysical parameters are required [25,26]. Although
the Parker formula has been widely used in predicting seafloor topography, the omitted
higher-order terms still have a large impact in rugged areas. Yang et al. [20] pointed out that
the Parker formula is less accurate in sea areas with large variations in seafloor topography.

The purpose of this paper is to directly compute the gravity generated by a rectangular
prism to establish a rigorous set of observation equations between the gravity anomaly and
sea depth. Subsequently, the solvability and anti-error properties of the observation equa-
tions are investigated by numerical simulation. Simultaneously, the spectral characteristics
of the measured gravity anomaly are also analyzed to eliminate disturbances in the gravity
anomaly and accurately predict seafloor topography. Finally, to verify the effectiveness of
our algorithm, a sea region in the South China Sea is selected as a test area to predict its
seafloor topography.

2. Theory and Methods
2.1. Computational Formula of Gravity Generated by a Prism

The calculation of gravity anomalies is based on the work of Nagy et al. [27,28] and
Blakely [29], who derived a rigorous mathematical expression for the gravity generated by
a single rectangular column of constant density using an integral method, while complex
structures can be combined and superimposed by a series of rectangular columns, thus
allowing the forward calculation of gravity anomalies generated by complex terrain.

The mathematical expression for the vertical gravity generated by a rectangular prism
of constant density is introduced here. We assumed that
A = {(ξ, η, ζ); x1 ≤ ξ ≤ x2, y1 ≤ η ≤ y2, z1 ≤ ζ ≤ z2} is a rectangular prism of constant
density ρA in coordinates O-ξηζ, and Q(xQ, yQ, zQ) is a point outside A. Introducing
the notations 

ξ1 = x1 − xQ, ξ2 = x2 − xQ
η1 = y1 − yQ, η2 = y2 − yQ
ζ1 = z1 − zQ, ζ2 = z2 − zQ

(1)

and
r =

√
(ξ − xQ)

2 + (η − yQ)
2 + (ζ − zQ)

2 (2)

then the vertical gravity at point Q generated by A is

gA(xQ, yQ, zQ) = GρA
t

A

ζ−zQ√
[(ξ−xQ)2+(η−yQ)2+(ζ−zQ)2]

3 dξdηdζ

= GρA

∣∣∣∣∣
∣∣∣∣∣∣∣ξ ln(η + r) + η ln(ξ + r)− ζarctan ξη

ζr

∣∣∣ξ2

ξ1

∣∣∣∣η2

η1

∣∣∣∣∣
ζ2

ζ1

 (3)
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where the vertical gravity represents the derivation of the gravitational potential with
respect to the variable z.

If z1 = 0 in the prism A and zQ = 0, assuming that R = {(x, y); x1 ≤ x ≤ x2, y1 ≤ y ≤ y2}
is the rectangular region corresponding to the prism A on the sea surface, then Equation (3)
can be simplified as

gA(xQ, yQ, 0) = GρA · JR(xQ, yQ, z2) (4)

where z2 is the sea depth of A, and

JR(xQ, yQ, z2) =

∣∣∣∣∣∣∣
∣∣∣∣∣∣ξ ln

η +
√

ξ2 + η2 + z2
2

η +
√

ξ2 + η2
+ η ln

ξ +
√

ξ2 + η2 + z2
2

ξ +
√

ξ2 + η2
− z2arctan

ξη

z2

√
ξ2 + η2 + z2

2

∣∣∣∣∣∣
ξ2

ξ1

∣∣∣∣∣∣∣
η2

η1

(5)

Notably, (xQ, yQ) in Equations (4) and (5) can assume the range of whole local sea surface
O− xy. Therefore, Equations (4) and (5) are analytical formulas for the gravity on the sea surface
generated by the rectangular prism A = {(ξ, η, ζ); x1 ≤ ξ ≤ x2, y1 ≤ η ≤ y2, z1 ≤ ζ ≤ z2}
below the sea surface. The derivation details and expression form refer to the work of
Nagy et al. [28]

2.2. Establishment of the Observation Equations for Sea Depth from the Gravity Anomaly
2.2.1. Observation Equations Only for the Target Area

A local coordinate system O− xyz is established for the target area R by considering
the local sea surface as O− xy and the z-axis downward (away from the sea surface) (Shown
in Figure 1). Assuming that R = {(x, y);−a ≤ x ≤ a,−a ≤ y ≤ a} is a square area on the
sea surface (called the target area), h(x, y) is the sea depth at (x, y) (to be solved), and
Ω = {(x, y, z); (x, y) ∈ R, 0 ≤ z ≤ h(x, y)} is the curved column formed by the region of
seawater below R. If seawater in Ω is replaced by rocks beneath the seafloor, then the
gravity anomaly at point Q(xQ, yQ) on R generated by Ω is

δgR(xQ, yQ) = G∆ρ
y

Ω

ζ√
[(ξ − xQ)

2 + (η − yQ)
2 + ζ2]

3
dξdηdζ (6)

where ∆ρ = ρw− ρc, and ρc and ρw are the average densities of the lithosphere and seawater,
respectively. Assuming that t is the step length, and (xi, yj) is the partition points of R,
wherein xi = i · t, yj = j · t and a = N · t. If the length t is small, the curved column below
the segmented subdomain Rij = [xi, xi+1]× [yj, yj+1] of R can then be approximated as a
prism Ωij =

{
xi ≤ x ≤ xi+1, yj ≤ y ≤ yj+1, 0 ≤ z ≤ hij

}
, where hij is the average depth of

[xi, xi+1]× [yj, yj+1]. Using Equation (4), Equation (6) can be expressed as

δgR(xQ, yQ) = G · ∆ρ
N−1

∑
i,j=−N

JRij(xQ, yQ, hij) (7)

where JRij is computed by Equation (6). If the gravity anomaly δgR(xQ, yQ) on R is obtained
in advance, then Equation (7) is the set of observation equations for sea depths hij.

Parker [24] derived a linear formula between Fourier transforms of gR(x, y) and h(x, y)
from Equation (6) after omitting high-order quantities of h(x, y) [5,30]. As the frequency-
domain method, this formula is widely used in predicting seafloor topography. Compared
with the Parker formula, Equation (7) obviously has higher accuracy, since it is derived
without any approximation. In fact, the omitted high-order quantity O( f · h2) in the Parker
formula still has a large impact on high frequency f and large sea depth h.

Variations in the gravity anomaly on the sea surface are mainly caused by the mass
deficit of the seafloor topography, the density anomaly of the lithosphere, and the isostatic
compensation of mass below the lithosphere. The mass deficit by seafloor topography sig-
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nificantly contributes to the gravity anomaly on the sea surface, whereas the contributions
of other factors are smoothed by upward continuation [31].
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Figure 1. A local coordinate system is established for the target area, where x-axis points north, y-axis
points east and z-axis points downward, while Q is a point in R.

In terms of the magnitudes of the influences, the closer the distance to R, the larger the
influence on the gravity anomaly on R. In the following Figure 2, the regions that have an
effect on the gravity anomaly on R are divided into boundary, far, and deep regions, and
the methods to deal with these effects are individually investigated.
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Figure 2. Information and distribution of the gravity anomaly on the sea surface, where Σ and
S represent the Moho surface and seafloor topography, respectively; R, R̂ and D represent the
corresponding target, boundary and far regions on the sea surface, respectively; ρw and ρc represent
the densities of seawater and bedrock, respectively.

2.2.2. Observation Equations by Considering the Boundary Region

By extending R outside the boundary by M steps, a region
R̂ = {(x, y);−(M + N)t ≤ x, y ≤ (M + N)t} is introduced. Subsequently, R̂− R is called
the boundary region of R, and the effect of its topography on solving the sea depth below
R is called the boundary effect. By considering the boundary effect, Equation (7) can be
written as

G∆ρ
N+M−1

∑
i,j=−(N+M)

JRij(xQ, yQ, hij) = δgR̂(xQ, yQ), (xQ, yQ) ∈ R (8)
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where δgR̂(xQ, yQ) is the gravity anomaly generated by the curved column Ω̂ formed by
the seawater below R̂. Equation (8) is the system of observation equations for sea depth hij
below R after considering the boundary effect.

We then subdivided the grid points on R, namely, we consider (x̂p, ŷq) ∈ R, where
x̂p = pt

2 ,ŷq = qt
2 , and p, q = 0,±1, · · · ,±2N. If the gravity anomaly δgR̂(x̂p, ŷq) is known,

the following equation is obtained

G∆ρ
N+M−1

∑
i,j=−(N+M)

JRij(x̂p, ŷq, hij) = δgR̂(x̂p, ŷq) (9)

where p, q = 0,±1, · · · ,±2N. Notably, the number of equations in Equation (9) is (4N + 1)2

and the number of unknowns is (2N + 2M)2; thus, N ≥ M is required to ensure that
Equation (9) has enough equations. As Equation (9) is nonlinear with respect to the solved
variables hij, linearization must be conducted. After linearization, the corresponding
iterative procedure for hij is

G∆ρ
N+M−1

∑
i,j=−(N+M)

∂JRij(x̂p, ŷq, h(k)ij )

∂h(k)ij

[h(k+1)
ij − h(k)ij ] = δgR̂(x̂p, ŷq)−G∆ρ

N+M−1

∑
i,j=−(N+M)

JRij(x̂p, ŷq, h(k)ij ) (10)

where k = 0, 1, · · · , and h(0)ij is the iterative initial value of hij.

2.2.3. Effect of the Deep Region: Correction for the Moho Undulation

Figure 2 shows that the effect of the deep region of Earth on the gravity anomaly
on R is mainly derived from the undulation of the Moho surface; hereafter, this effect is
simply called the “deep effect.” In physical geodesy, Vening-Meinesz or the Airy isostatic
theory is usually used to determine the Moho surface. In this paper, the Airy isostatic
theory is recommended. Notably, for a seamount with depth h, if ρw, ρc and ρm are the
densities of seawater, lithosphere, and upper mantle, respectively, and L is the height of the
Moho surface uplift corresponding to the seamount, then L = ρc−ρw

ρm−ρc
h and T0 − L represent

the depth of the Moho surface from the sea surface below the seamount [32,33], where
T0 = 25 km is usually chosen.

According to the Airy isostatic theory, the depth T0 − L of the Moho surface can be
directly derived from the depth h of the seamount. As the depth of the Moho surface from
sea surface is much larger than the depth h of the seamount, the effect of the Moho surface
undulation on the gravity anomaly can be easily reduced with the help of the Airy isostatic
theory after the seafloor topography is preliminarily solved. Therefore, the deep effect,
such as the Moho surface undulation, can be corrected in advance.

2.2.4. System of Observation Equations in the General Case

If the target area R is extended to whole sea surface S in Equation (7), and the gravity
anomaly generated by the density difference of seawater with respect to the lithosphere is
δSg, then considering (x, y) ∈ R, we have

G∆ρ
N+M−1

∑
i,j=−(N+M)

JRij(x, y, hij) = δgS(x, y)− δgD(x, y) (11)

where D is the far region (Figure 2) and δDg is the gravity anomaly generated by the density
difference of seawater with respect to the lithosphere below D. Notably, δDg is the effect of
the far region on the gravity anomaly and is simply called the far effect hereafter.

Generally, assuming that v is the Earth’s gravitational potential and vS is the grav-
itational potential generated by replacing seawater in the ocean with the rock in the
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lithosphere, we obtain δgS = ∂(v−vS)
∂z on R. If V is the Somigliana gravitational potential

and T = v−V is the disturbing potential, we obtain the following on R

∂T
∂z

= δgS +
∂(vS −V)

∂z
(12)

If the isostatic theory is used to eliminate the effect of the Moho surface, then the deep
effect ∂(vS−V)

∂z exhibits characteristics of long waves on the sea surface according to the
circle construction of Earth density (i.e., Earth density is distributed in a laminar pattern).
Substituting Equation (12) into Equation (11), then at (x, y) ∈ R, we have

G∆ρ
N+M−1

∑
i,j=−(N+M)

JRij(x, y, hij) =
∂T(x, y)

∂z
− δgD(x, y)− ∂(vS −V)

∂z
(13)

As the coordinate system O-xyz (Figure 1) is locally established near R, ∂T
∂z = − ∂T

∂r = δg
on R, where δg is the gravity anomaly based on the Somigliana gravity field, for which data
can be obtained by the known gravity field models, such as EGM2008 or DTU17. Assuming
that F(x, y) = −δgD(x, y)− ∂(vS−V)

∂z , then at (x, y) ∈ R, we have

G∆ρ
N+M−1

∑
i,j=−(N+M)

JΩij(x, y, hij) = δg(x, y) + F(x, y) (14)

where F(x, y) is the long wave (or low frequency) on R and is continuous. If the values
of Fij = F(xi, yj) at partition points of R are known, then a bilinear interpolation function
F̂ij(x, y) can be obtained using the function values Fij, Fi+1,j, Fi,j+1, and Fi+1,j+1 on each
sub rectangle of Rij. In general, for any (x, y) ∈ R, we assumed that F̂(x, y, F) = F̂ij(x, y) ,
where (x, y) ∈ Rij and F is the vector comprising values Fij at all partition points. Notably,
F̂(x, y, F) is continuous on R with respect to (x, y) and linear with respect to F. Moreover,
F̂(x, y, F) is the piecewise bilinear interpolation function of F(x, y). F(x, y) is the long
wave on R and its wavelength is much larger than the step length t to partition R, so
F̂(x, y, F) ≈ F(x, y). Thus, Equation (14) can be finally expressed as

G∆ρ
N+M−1

∑
i,j=−(N+M)

JΩij(x, y, hij) = δg(x, y) + F̂(x, y, F), (x, y) ∈ R (15)

where hij and Fij are the variables to be solved.
So far, we have established three sets of observation equations for predicting sea

depth hij, namely, Equations (7), (9), and (15), where Equation (7) is established by only
considering the target region R; Equation (9) is established after considering the boundary
effect of R; and Equation (15) is established after considering both the boundary effect of R
and the far effect. As the observation equations are nonlinear with respect to the sea depth
hij, they should be linearized for hij in actual computation. For example, Equation (10) is
the result of the linearization of Equation (9). Additionally, Equation (15) is linear with
respect to the variable F; thus, only the variable hij should be linearized in Equation (15).

2.3. Regularization Method for the Solving Equations

This paragraph mainly discusses the solvability problem for observation equations.
To ensure that the descriptions are clear, only Equation (10) is discussed as an example.
Introducing matrix

Ak = G∆ρ

∂JRij(x̂p, ŷq, h(k)ij )

∂h(k)ij


pq,ij

(16)
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and vector

bk =

δgR̂(x̂p, ŷq)−G∆ρ
N+M−1

∑
i,j=−(N+M)

JΩij(x̂p, ŷq, h(k)ij )


pq

(17)

Once vector hk =
[

h(k)ij

]
ij

has been obtained, the iterative matrix form of Equation (10)

is expressed as
Akhk+1 = bk + Akhk (18)

As the known data δgR̂(x̂p, ŷq) in Equations (10) or (18) are given only on R, and the
sea depths hij to be solved (where i, j = −(N + M), · · · , 0, · · · , N + M− 1) contain the sea
depths of the boundary region in addition to those of R, directly solving Equation (18) may
lead to poor solvability of the system of equations. To ensure solvability, a regularization
factor α > 0 is introduced, namely, the actual solved system of equations is expressed as

(AT
k Ak + αE)hk+1 = AT

k (bk + Akhk) (19)

where E is the unit matrix. Notably, Equation (19) has a unique solution hk+1 if hk is known.
Notably, the sea depth below the boundary sea R̂− R is divergent when iteratively

solving Equation (19). To ensure convergence of the iterative process, the sea depth below
R̂ − R is always considered as the average of the sea depth below R in each iteration.
After this treatment, Equation (19) can be iteratively solved. The flow construction of the
analytical iterative algorithm is shown in Figure 3.
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3. Simulation Experiment
3.1. Selection of Some Parameters

This section discusses the solvability of Equation (10) or (19) by simulations, namely,
by only considering the boundary effect. In this section, the bedrock and seawater densi-
ties are chosen as ρc= 2.7× 103 kg/m3 and ρw= 1.03× 103 kg/m3, respectively, namely,
∆ρ = −1.67× 103 kg/m3. Notably, the smaller the step length of the partition for the target
region R, the higher the accuracy of the solved sea depth beneath R. However, as the gravity
anomaly on the sea surface in the actual calculation has a resolution of 1′ × 1′, the step
length is always chosen as t = 2 km in simulation computations. Additionally, as the
boundary effect is considered, the extension number M for R̂ should be carefully chosen.
According to discussions by Dixon et al. [25] and Yu et al. [34], we choose that M = 10,
namely, R̂ is obtained by extending R outward for 20 km.

We then selected a sea area of 96 km × 96 km in the South China Sea as R̂; its internal
sea area of 56 × 56 km was the target region R, and the seafloor topography beneath R̂ was
chosen from the GEBCO_22 bathymetric model. After gridding R̂ by a step length of 2 km,
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the seafloor topography beneath R̂ is shown in Figure 4a. This implies that the number of
partitions for R is N = 14. According to the GEBCO_22 model, the maximum undulation
of the seafloor topography below R is 610.0 m. Subsequently, this seafloor topography is
placed at sea depth H below R̂, and the gravity anomaly δgR̂ generated by it can then be
computed. Figure 4b shows the distribution of δgR̂ on R̂ where H = 6 km. We aimed to
solve the seafloor topography beneath R from δgR̂ on R using Equation (10) or (19), and
then compare it with the “real seafloor topography” beneath R. Notably, H is the maximum
sea depth of the seafloor topography.
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Figure 4. (a) The 2-km step segmentation seafloor topography beneath the region R̂ where the
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3.2. Selection of Regularization Factors

First, the maximum depth is chosen as H = 6 km. For the different regularization
parameter α (unit: 10−18s−4m−2), the seafloor topography beneath R is solved using
Equation (19) without any error in δgR̂ and with a random error of 1 mGal in δgR̂, re-
spectively. Subsequently, compared to the real topography, the root mean square (RMS)
error can be computed (Figure 5a). Figure 5a shows that the regularization factor α can
be appropriately small if there is no error in δgR̂ on R. For example, when α = 10−5, the
solved seafloor topography has an error of less than 1.0 m, which is caused by the boundary
effect. Additionally, if error exists in δgR̂ on R, the value of α cannot be too small; the reason
for this is that the anti-error property of matrix AT

k Ak is poor. Notably, the eigenvalues of
AT

k Ak corresponding to the sea depths below the boundary region can be easily disturbed,
which can lead to a large error in the sea depths below the boundary region, and thus affect
the accuracy of the bathymetry below R. Therefore, the selection of the regularization factor
α must consider the case of error in the gravity anomaly δgR̂. Figure 5a shows that the
optimal value of α should be between 0.1 and 1.0 in the case of maximum depth H = 6 km.
Simultaneously, the optimal value of α varies with the depth H. Generally, the larger the
depth H, the smaller the optimal value of α.

Figure 5b shows the RMS error distributions of the solved seafloor topography beneath
R for different maximum depths H in the cases of no error and a random error of 1 mGal
in δgR̂, respectively, where α = 1 is fixed. According to the examination rule for accuracy,
the error ratio (i.e., ratio of error to the average sea depth) can be usually used as an index.
For example, as the topographic relief is 610.0 m, the average sea depth is approximately
4695.0 m when H = 5 km and the RMS error is about 40.0 m (yellow curve in Figure 5b);
thus, the error ratio is 0.85%. Figure 5b shows that that all the error ratios are less than 1%;
thus, choosing the regularization factor α = 1 is appropriate.
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3.3. Anti-Error Characteristics of the Linearized Systems of Equations

This paragraph discusses the anti-error characteristics of Equation (10) or (19) where
α = 1 is chosen. As the gravity anomaly on R mainly results from satellite altimetric data,
it contains some error. In the following computations, two kinds of errors are added to the
gravity anomaly δgR̂ on R: one is the systematic error ε and the other is the random error
with a mean value of zero and standard deviation δ. Subsequently, the seafloor topogra-
phy beneath R is solved using Equation (19). Furthermore, compared to the real seafloor
topography beneath R, the RMS errors of the solved seafloor topography can be computed,
and their distributions for different maximum depths H are shown in Figure 6a,b, where
Figure 6a,b corresponds to the systematic and random errors, respectively. Figure 6a,b
shows that: (i) the systematic error in δgR̂ has less influence on the solved seafloor topog-
raphy compared to the random error; and (ii) the anti-error ability continuously weakens
with increasing sea depth. This is because the deeper the seafloor, the smoother the gravity
generated on the sea surface, and the lower its signal-to-noise ratio for the same size of
error. For example, for maximum depth H = 6 km, the RMS errors of the simulation results
for the systematic and random errors are 177.0 m and 221.0 m, respectively, when errors in
δgR̂ are both 5 mGal, indicating that the systematic error has less influence on predicted
topography. Additionally, from the statistical results of the random error with an error of
5 mGal in δgR̂ (Figure 6b), all the error ratios of the solved bathymetries are less than 4%,
which fully satisfies the general bathymetry specification necessitating error values of up
to 6%. This implies that an accuracy of 5 mGal for the gravity anomaly on the sea surface
can guarantee the demand for the inversion of seafloor topography.

Meanwhile, to examine the influence of the initial value h(0)ij and the iterative step in
solving Equation (19), the RMS error of the solved seafloor topography using Equation (19)
are shown in Figure 7a,b, where no error is added. Figure 7a shows the RMS error conver-
gence curves for different initial values of h(0)ij in the case of H = 6 km; notably, the closer

the initial value h(0)ij to the true value, the faster the convergence of iterations. Figure 7b
shows the relationship between the number of iterations and the RMS error for different
maximum sea depths H by considering h(0)ij as 100.0 m. Figure 7b shows that the errors
between the solved sea depths and their real values are negligible by solving Equation (19)
with five to eight iterations. Overall, we concluded that the sea depth obtained from the
iterative scheme, as expressed in Equation (19), rapidly converges to its real value for
seafloor topographies with different depths.
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3.4. Assessment for the Far Effect

To examine the far effect and illustrate how to control it by a piecewise bilinear
interpolation on R, the area R̂ shown in Figure 4a is extended to a square area of 200 km2

(Figure 8a) and the area D outside R̂ can be referred to as the far region. Furthermore,
if the seafloor topography beneath D is also given by the GEBCO_22 bathymetry model,
the far effect on R can then be obtained by computing the gravity anomaly generated by
the seafloor topography beneath D according maximum depth H. By choosing maximum
depth H = 6 km and assuming δgD(x, y) denotes the far effect on R, the difference between
δgD(x, y) and δĝD(x, y) is computed after introducing the piecewise bilinear interpolation
function δĝD(x, y) presented in Section 2.2.3. The statistical results of the difference are
shown in Figure 8b. Hence, the error caused by substituting δĝD(x, y) for δgD(x, y) in
Equation (14) is less than 0.3 mGal on average.
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Figure 8. (a) The simulated topography: R, R̂ and D represent the corresponding target, boundary,
and far regions. (b) Histograms of the difference of the far effect and its bilinear interpolation on
R, where the orange column indicates the distribution of the influence of the gravity anomaly error
caused by the far zone after bidirectional interpolation and the blue column represents the original
far zone contribution error distribution.

Additionally, assuming that δgD is the average value of δgD(x, y) on R, the statistical
results from the “blue curve” shown in Figure 8b indicate that δgD(x, y) − δgD can be
approximately referred to as the random error with a standard deviation of 0.8 mGal.
Therefore, the term δgD(x, y) in Equation (13) can be also replaced by a constant for simple
computation. Notably, Figure 8b is created by choosing M = 10 when introducing R̂. Thus,
if M is larger, the far effect δgD(x, y) on R is closer to its average value δgD. However, as
the condition M ≤ N should be satisfied, the choice of M = 10 is appropriate in this case.

Although the average value δgD is approximately equal to the far effect δgD(x, y),
the piecewise bilinear interpolation function F̂(x, y, F) is still recommended owing to the
presence of another term (i.e., the deep effect) in Equation (14).

4. Actual Application
4.1. Target Area and Datasets

A region of the South China Sea at latitudes 13.85◦–14.85◦N and longitudes 117.25◦–118.25◦E
was selected as the target area R and was then divided into four parts as shown in
Figure 9a. The underwater topography of each part is solved from the gravity anomaly
using Equation (19), and the whole seafloor topography beneath R can be obtained by
splicing four parts together. The advantage of such partition is that the boundary ef-
fect can be satisfactorily controlled, thereby weakening the complexity in solving the
observation equations.

The gravity anomaly used in this paper is chosen from the DTU17 model [13] and has
a resolution of 1′ × 1′ (Figure 9a); its accuracy is roughly between 1.50 and 5.69 mGal in the
South China Sea region [35]. The GEBCO_2022 global topography model published by the
International Hydrographic Organization (IHO) is used to evaluate our predicted seafloor
topography; its topography under the target area is shown in Figure 9b. Additionally, the
data from National Geophysical Data Center (NGDC) with 2512 ship-survey depth points
in the target area (Figure 9c) are also used to evaluate our results (www.ngdc.noaa.gov/
maps/bathymetry (accessed on 28 September 2022). The GEBCO_2022 global topography
model indicates that the maximum and minimum depths in the target area are 4340.0 and
3404.0 m, respectively, and the complexity of the topographic relief is high (Figure 9b); thus,
it is appropriate to choose such seafloor topography as the study object.

www.ngdc.noaa.gov/maps/bathymetry
www.ngdc.noaa.gov/maps/bathymetry
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Figure 9. (a) The distribution of gravity anomaly from the DTU17 model in the target region and its
spatial resolution is 1′ × 1′, where the red dashed line illustrates the zoning so that the areas a, b,
c, and d are equally divided. (b) The bathymetry from the GEBCO_2022 model in the target region.
(c) The distribution of the ship soundings data downloaded from the NGDC in the target region.

4.2. Results and Comparisons

Based on the algorithm presented in Section 3, the prediction topography is shown
in Figure 10, where the regularization parameter α = 1, the extension step width M = 10
for R̂, and the density difference ∆ρ = −1.67× 103 kg/m3. The comparison between
Figures 9a and 10a shows a certain similarity between the gravity anomaly and sea depth,
which may indicate the suitability of the GGM method to invert the seafloor topography.
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Figure 10. (a) The prediction topography by the analytic iterative algorithm; the white points are
HU939013 ship measurements for subsequent error comparison experiments, where the red dashed
line illustrates the zoning, and the a, b, c, d are corresponding to the area divided for calculation in
Figure 9a. (b) The error distribution of the prediction results compared with the ship soundings.

Then, we analyze the accuracy of the prediction topography. First, compared with the
GEBCO_2022 model, the RMS errors of the solved seafloor topographies are listed in the
last column of Table 1. Second, compared with the NGDC ship-surveyed depths (Figure 9c),
the error distributions are shown in Figure 10b and the main statistical indexes of our result
are presented in other columns in Table 1. As the NGDC data is from the ship survey, they
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are considered accurate data. The RMS error of our results to the NGDC data is 127.4 m.
Hence, the solved topography is acceptable as ship-survey data are not used in our result.

Table 1. Main statistical results of the predicted seafloor topography with known data (unit: m).

Main
Indicators

Max
Depth

Min
Depth

Mean
Depth

Max Abs
Error

Sys
Error

RMS
Error

Relative
Error

Model
Error

Sub-area a 4590.9 3698.2 4063.6 480.4 25.2 140.6 3.45% 148.0
Sub-area b 4531.4 3570.1 4018.3 533.9 17.9 116.8 2.91% 134.3
Sub-area c 4484.8 3608.3 4011.5 437.5 22.9 144.4 3.59% 153.4
Sub-area d 4473.0 3596.3 4007.6 426.5 13.1 107.8 2.68% 110.8
Region R 4590.9 3570.1 4025.3 533.9 19.8 127.4 3.16% 136.9

In this paragraph, a survey line numbered HU939013 (white dashed points in
Figure 10a) in the NGDC data is compared with our results. Figure 11a shows the com-
parison between the gravity anomaly of DTU17 and that along the survey line obtained
by forward computation from our predicted seafloor topography, where the maximum
absolute, average, and RMS differences are 5.3 mGal, 0.4 mGal, and 2.2 mGal, respectively.
Figure 11b shows the comparison of the sea depths, where the maximum absolute, average,
and RMS errors of depths along the survey line are 146.3 m, 14.9 m, and 73.42 m. Figure 6b
shows the anti-error analysis results; when the maximum depth is 5 km and the random
error is 2.5 mGal, the RMS error of the simulation result is 79.0 m. The RMS error of the
gravity anomaly difference along the survey line is 2.2 mGal, and the corresponding RMS
error for the prediction depth is 73.4 m. This indicates that the numerical simulation results
can reflect the final prediction accuracy to a certain extent.
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Notably, the known bathymetry data must first be applied to examine the accuracy of
the predicted seafloor topography. However, for a certain region on the sea surface, the
bathymetry data are mainly obtained along the ship route; thus, its distribution may be
relatively sparse in the region. Therefore, using only the bathymetry data as a standard in
examining the accuracy of seafloor topography is not comprehensive. Notably, Equation (7)
indicated the relationship between the sea depth and gravity anomaly on the sea surface;
thus, the gravity anomaly on the sea surface can also be used as an auxiliary standard to
evaluate the accuracy of the seafloor topography. Dixon et al. [25] verified that the part
of gravity anomaly with wavelengths larger than 30 km is mainly controlled by the far
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topography, and only the high frequency part with wavelengths less than 30 km can be
used to examine the accuracy of the seafloor topography.

Then, the gravity anomalies on the target region R can be obtained by forward compu-
tations for the solved seafloor topography and the corresponding GEBCO_22 topography
model, respectively, and their RMS differences to the DTU17 gravity anomaly are computed
after subtracting the DTU17 gravity anomaly and filtering out the low-frequency parts
with wavelengths larger than 30 km [36]. Notably, such RMS differences can be considered
as a match degree with respect to the DTU17; namely, the smaller the RMS difference,
the better the matching of the seafloor topography with DTU17. By computations, the
RMS differences to the DTU17 on R for the solved topography and GEBCO_22 model are
1.0 mGal and 1.8 mGal, respectively, which implies that our results are a better match with
the DTU 17 gravity field model than that obtained by the GEBCO-22 bathymetry model.
Therefore, the solved topography is better than one from the GEBCO-22 bathymetry model
on R to some extent.

Finally, we indicate that the seafloor topography solved in this paper only uses the
gravity anomaly on target region R, and does not employ any known ship survey data.
Additionally, the measured sea depth data along the ship route can be regarded as a local
index to examine the seafloor topography, whereas the matching degree with the gravity
anomaly can be regarded as an overall index in the target region.

5. Conclusions

In this paper, the grid step length was 2 km, implying that the topography undulations
within an area of 2 km × 2 km were represented by the average depth, which meant that
the topography undulations within 2 km × 2 km could not be identified [21]. Hopefully,
the next generation of Surface Water and Ocean Topography (SWOT) satellites may revolu-
tionize the improvement of marine gravity anomalies with a spatial resolution of 1 km [37].
This may significantly improve the prediction accuracy of seafloor topography. Overall, it
is important for improving the accuracy of topography prediction to obtain gravity data
with higher resolutions and higher accuracies.

The advantages of the analytical iterative method established in this paper are as
follows: first, we directly utilized the original gravity anomaly data without filtering or
separating the long/short-waves; second, it was not required to introduce the isostatic
response function with empirical parameters. The only prerequisite was to weaken the
influence of the boundary and far region effects to solve the equations together, which
could simplify the calculation.

In summary, we developed a new analytical iterative method to predict topography
by building a set of observation equations using the gravity anomaly. Based on numerical
simulation experiments, we analyzed the accuracy of the prediction results by refining the
error sources and investigating the corresponding error weakening methods. Overall, the
main research results of this paper can be summarized as follows: first, based on the gravity
expression of a single rectangular prism, we established a system of observation equations
between the topography and gravity anomaly, and the solvability of the equations was
verified by numerical simulation. Second, the disturbance elements were mainly divided as
the boundary, far, and deep effects, and the regularization algorithm and piecewise bilinear
interpolation function were used to process the disturbance factors, respectively. Third, the
algorithm proposed in this paper was applied to the actual sea area, and ship soundings
were used to verify the accuracy of the prediction results. The RMS error of the prediction
topography reached 127.4 m in the sea region with an average depth of 4025.3 m, and the
relative accuracy of the prediction reached 3.16%.
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