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Abstract: With the development of hyperspectral technology, it has become possible to classify alter-
ation zones using hyperspectral data. Since various altered rocks are comprehensive manifestations
of mineral assemblages, their spectra are highly similar, which greatly increases the difficulty of
distinguishing among them. In this study, a Semi-Supervised Adversarial Autoencoder (SSAAE)
was proposed to classify the alteration zones, using the drill core hyperspectral data collected from
the Pulang porphyry copper deposit. The multiscale feature extractor was first integrated into the
encoder to fully exploit and mine the latent feature representations of hyperspectral data, which were
further transformed into discrete class vectors using a classifier. Second, the decoder reconstructed
the original inputs with the latent and class vectors. Third, we imposed a categorical distribution
on the discrete class vectors represented in the one-hot form using the adversarial regularization
process and incorporated the supervised classification process into the network to better guide the
network training using the limited labeled data. The comparison experiments on the synthetic dataset
and measured hyperspectral dataset were conducted to quantitatively and qualitatively certify the
effect of the proposed method. The results show that the SSAAE outperformed six other methods for
classifying alteration zones. Moreover, we further displayed the delineated results of the SSAAE on
the cross-section, in which the alteration zones were sensible from a geological point of view and had
good spatial consistency with the occurrence of Cu, which further demonstrates that the SSAAE had
good applicability for the classification of alteration zones.

Keywords: alteration zones; drill cores; measured hyperspectral data; semi-supervised learning;
multiscale feature extraction

1. Introduction

In porphyry copper deposits, mineralization is closely related to wall rock alter-
ation [1,2], which can be intuitively cataloged and studied by geologists using surface and
subsurface geological information. Affected by surface factors such as weathering, the orig-
inal altered minerals exposed on the surface may change (e.g., oxidation of iron-bearing
minerals); therefore, compared with the surface, the alteration extracted from the drill cores
can better reflect the distribution of alteration zones associated with the mineralization
in the porphyry copper deposit. However, geological logging is a time-consuming, labor-
intensive, and qualitative task susceptible to the subjective perception of geologists [3].
With the rapid development of hyperspectral technology, it has become possible to quanti-
tatively and objectively study the alteration minerals using high-resolution spectroscopy
from visible and near-infrared (VNIR) to shortwave infrared ranges [4,5]. Since altered
rocks are comprehensive representations of relevant minerals mixed in different propor-
tions, for example, Table 1 shows that most of the alterations contain quartz in the porphyry
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copper deposit and their spectra are highly similar, which increases the difficulty in clas-
sifying them. The current hyperspectral classification methods can be categorized into
conventional methods, machine learning, and deep learning methods.

Table 1. The altered rocks and typical alteration minerals of different alteration types in porphyry
copper deposit.

Altered Rocks Alteration Zones Alteration Types Typical Alteration Minerals

Quartz monzonite porphyry;
Quartz diorite porphyrite;

Granodiorite porphyry

Silicified Silification Quartz; opal

Potassic Potassification Orthoclase; biotite; quartz

Phyllic Sericitization Sericite (muscovite/illite); quartz

Argillic Argillization Kaoline; montmorillonite; quartz

Propylic Propylitization Epidote; chlorite; quartz

Hornfelsic Horntfels Hornstone; quartz

Conventional methods distinguish different rock ores by studying their intrinsic spec-
tral absorption characteristics [6]. The studies by Hamilton et al. [7–9] demonstrated that
the structure, general composition, and types of pyroxenes can be determined from the
variant trends of absorption shape, depth, and position using the visible and thermal emis-
sion spectra. Some feature matching methods, such as the spectral angle map (SAM) [10],
spectral information divergences (SID) [11], and spectral feature fitting (SFF) [12], deter-
mine the pending spectra compared to a referenced spectral library (e.g., United States
Geological Survey (USGS) Spectral Library [13]). To better extract the weak alteration
information, Lawrence et al. [14] utilized the reflectance ratio method to enhance the useful
information and successfully discriminate the hydrothermally altered rocks using VNIR
multispectral images. In addition, some soft classification methods, such as matched
filtering (MF) [15], mixture-tuned match filtering (MTMF) [16], and constrained energy
minimization (CEM) [17], are adopted to map the alteration domains in an unmixing
manner. Although most of the above classification algorithms based on the absorption
features have achieved good results in alteration extraction domains, they require a lot of
human-computer interactions and subjectivity, which could be difficult to apply to more
complex and larger amounts of data.

In recent years, to further improve the accuracy of the classification, machine learning
and deep learning have been applied in geological fields [18–20]. These methods can be
divided into unsupervised classification, supervised classification, and semi-supervised
classification depending on whether the labeled samples are employed for training. Unsu-
pervised methods, such as K-Means [21], ISODATA [22], and GMM [23], mainly perform
clustering by calculating the distance or probability between pending spectra and other
spectral clusters. Autoencoders (AE) [24] and their variants, such as the adversarial au-
toencoder (AAE) [25], perform clustering by compressing and reconstructing the original
input data in an unsupervised way. Nonetheless, it is also a challenge to determine the
type of each cluster from a large number of highly similar spectra. The supervised methods
yield the classification results using a classifier obtained by training a batch of labeled
samples. For example, Maliheh et al. [26] adopted the support vector machine (SVM) to
separate the potassic and phyllic alterations using the fluid inclusion data in the Sungun
porphyry copper deposit. However, in actual geological tasks, considering the high cost
and efficiency of the work, it is difficult to obtain a large number of training samples; there-
fore, the semi-supervised classification algorithms, such as the semi-supervised adversarial
autoencoder [25] and Self-trained eXtreme Gradient Boosting Trees (SXGBoost) [27], which
only require a small number of training samples, have been widely applied to geological
fields [28]. In addition, compared with traditional machine learning methods, convolutional
networks (CNNs) [29], benefiting from powerful feature extraction capabilities, are widely
applied to speech recognition [30,31] and image classification [32,33]. To combine the
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advantages of both, semi-supervised CNNs have represented a research trend to further
improve classification accuracy [34].

The studies in [35–37] demonstrated that taking full advantage of spectral contexture
and multiscale information is beneficial to improving classification accuracy. Moreover,
the discrete class vectors represented in the one-hot form should follow a categorical
distribution without carrying any style information. Therefore, in the case of available
information and limited labeled samples, a novel semi-supervised adversarial autoencoder
(SSAAE) was proposed to classify alteration zones using hyperspectral data collected from
the drill cores of the Pulang porphyry copper deposit. In the encoder, the CNN-based
multiscale feature extractor was first employed to characterize the latent spectral features
of hyperspectral data, which were further transformed into discrete class vectors using a
classifier. Subsequently, we concatenated the latent continuous spectral features and the
discrete class vectors to reconstruct the original spectra in the decoder. Moreover, class
vectors were imposed on a categorical distribution using the adversarial process, and the
limited labeled samples were employed to guide the training of the network. In view of
that, the main research objectives are: (1) to fully characterize measured hyperspectral data
related to different alteration zones using the multiscale features; (2) to enhance network
performance with limited labeled data; (3) to delineate the alteration zones related to Cu
mineralization in the vertical direction and cross-section using the measured hyperspectral
data collected from drill cores.

2. Geological Settings of Study Area

The Pulang copper deposit is located at the junction of Shangri-La Yunnan Province,
Sichuan Province, and the Yidun-Zhongdian Island Arc Edge. As can be seen from Figure 1a,
the lithologies in the study area consisting of quartz diorite porphyry, quartz monzonite
porphyry, and granodiorite porphyry, were mainly produced by the intense magmatism
during the Indonesian island arc stage [38–40].
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Among them, quartz monzonite porphyry is most closely related to Cu mineralization.
Under the late magmatic-hydrothermal action, the rock mass continuously metasoma-
tized with the early protolith, resulting in different periods of medium-low temperature
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hydrothermal alteration mineral assemblages, which have alteration zoning features of
porphyry copper deposits [42,43].

Since the study area conforms to the porphyry copper deposit model, the alteration
from the core to the outer edge can be divided into silicified, potassic, phyllic, pro-
phylitic, and hornfelsic zones, corresponding to alteration types silification, potassification
(i.e., potassic feldsparization and biotization), sericitization, propylitization (i.e., chloriti-
zation and epidotization), and hornfels (Figure 1b). Affected by multi-stage magmatism,
porphyry copper deposits could occur to multiple superpositions of various alterations.
Since the argillic zone was locally superimposed on other alterations without an indepen-
dent existence, this zone was omitted in this study. At present, three areas were delineated
as industrial ore bodies, in which KT1 is the main ore body with the widest distribution.

3. Data and Method
3.1. Hyperspectral Data Collection and Preprocessing

In this research, an Analytical Spectral Devices, Inc. (ASD, Boulder, CO, USA) Field Pro
portable spectroradiometer with wavelength coverage from 0.35 to 2.5 µm was employed
to efficiently collect the hyperspectral data from the drill cores of the Pulang copper deposit.
The spectral resolution of the ASD covers 3–10 nm corresponding to different wavelength ranges,
which is sufficient to indicate the absorption features of various alteration minerals. Before the
measurement, the instruments were calibrated according to the specifications. The drill cores
were evenly split into the fresh plane, which is perceived as the spectral acquisition plane.

The collection of hyperspectral data mainly focused on the obvious alteration and
mineralization regions of the drill cores, which can be delineated from geological logs or
scanned drill core photographs (Figure 2). Hyperspectral data can be acquired from the
specific interval depths (e.g., every 0.4 m) or depth ranges of interest. In this work, seven
significant cross-sections were selected around KT1 depicted in Figure 1a, including a total
of 31 drill cores with 20,740 hyperspectral data collected; a database was also established
to associate the measurement positions with their depths. In addition, preprocessing,
including splice correction and denoising, was employed for all measured hyperspectral
data, and the limited labeled hyperspectral data for each alteration type were also collected
from the region of interest.
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3.2. Method

As the flowchart shown in Figure 2, the SSAAE was proposed to classify the different
altered zones using measured hyperspectral data with the schematic diagram depicted in
Figure 3. Let X ∈ RN×B be the original hyperspectral data cube with N data and B bands;
V ∈ RN×M denotes the class vectors with M classes and Z ∈ RN×2M is the latent feature
vector with a length of 2M. In the following subsection, the architecture of SSAAE was
presented in detail.
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tral data. The classifier is trained on datasets given a labeled mini-batch and mostly unlabeled while
the multi-classification representation is imposed on a Categorical distribution using an adversarial
process. Where Conv1D F@ K, S represents a 1D convolutional layer with a filter size of F, kernel size
of K, and stride of S, and FCL@ m denotes an FCL with the output dimension of m.

3.2.1. AE of SSAAE

The essential function of AE is to exploit the latent feature representations and clas-
sification results of the hyperspectral data using the encoder and to incorporate both to
reconstruct the original input using the decoder. Before elaborating on the AE in detail,
a multiscale feature extractor was first introduced to fully exploit the multiscale features of
the hyperspectral data.

(1) Multiscale Feature Extractor

The hyperspectral data collected from different alterations may have great similarities
regarding absorption features, because each altered rock may contain the same or similar
minerals with diverse proportions, which greatly increases the difficulty of distinguishing
among them. Since the measured hyperspectral data disregards spatial information, only
spectral information can be employed to distinguish different categories. Therefore, to bet-
ter exploit and mine the characteristics of a single band and its correlation with contextual
bands, a CNN-based multiscale feature extractor was integrated into the encoder to extract
the multiscale features. As depicted in Figure 4, the multiscale feature extractor comprises
the following constituents.
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Grouped bottleneck: Since the morphological sizes of each absorption characteristic
peak of hyperspectral curves are usually different (i.e., different scales), a module with
diverse receptive fields is conducive to fully extracting the multi-contextual comprehen-
sive information. Research in [44] reveals that expanding cardinality (i.e., the size of the
transformations) is more effective than deepening and widening the network. In this sense,
to enhance the characterization ability of the network, we designed a grouped bottleneck
combining the idea of inception [45] and grouped convolution [46]. The grouped bottleneck
adopted the split-transform-merge [44] strategy implemented using multiple convolutional
layers with different perceptive fields to explore different scale features at the same stage.
As can be seen from Figure 4, multiscale features, extracted using multiple transformation
functions consisting of a Batch Normalization (BN) [47] and a one-dimensional convolu-
tional layer (1D Conv) with different kernel sizes, were merged using a concatenate layer.
The process can be defined as follows:

Ei = Concat(Ei,1(q), . . . , Ei,k(q), . . . , Ei,C(q)) (1)

where Ei,k(q) represents the kth transformation function in the ith grouped bottleneck Ei
with the same input q; the transformation function quantities depend on the cardinality
denoted as C. Since the topology of each grouped bottleneck is the same, the feature
extraction capability of the network increases without increasing the parameter complexity,
which could well mitigate the detrimental effect of overfitting.

Global feature fusion: Each grouped bottleneck at different depths can extract mul-
tilevel scale features (i.e., continuous features) and omit the former features extracted
from the preceding grouped bottlenecks. To effectively alleviate the direct attenuation
of useful feature representations between the indirect connection layers, it is worth inte-
grally fusing the multilevel features to take full advantage of the spectral information and
achieve high-dimensional representation. As depicted in Figure 4, the fusion process can
be formulated as:

E = T (E1, . . . , Ei, . . . , EL) (2)

where T is the fusion function comprising a concatenate layer and 1D Conv with a kernel
size of 1; (E1, . . . , Ei, . . . , EL) denotes multilevel feature representations extracted using the
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grouped bottlenecks at different depths; L represents the number of the grouped bottlenecks.
Moreover, the multilevel connection structures can well alleviate the detrimental effects
posed by gradient vanishing [48].

(2) Encoder

The encoder aims to characterize the high-hierarchical feature Z ∈ RN×2M from
original hyperspectral data X ∈ RN×B in a dimensionality reduction manner and further
convert them into the classification results V ∈ RN×M using a classier.

As depicted in Figure 3, the first layer, denoted as O(1), is a 1D Conv layer with a filter
of F(1), kernel size of K(1), and stride of S(1), which was used to extract the low-hierarchical
features by transforming the original input X ∈ RN×B into higher dimensions. Then the
feature maps arranged from the first layer were fed to the second layer O(2), which was
used to comprehensively transform the low-hierarchical into high-hierarchical feature
presentations of the hyperspectral data using the multiscale feature extractor described
above. In the third layer O(3), an FCL with a linear activation was employed to convert
the high-hierarchical features into specific-length feature vectors Z ∈ RN×2M. Thereinto,
to ensure that the latent features of the hyperspectral data can be fully represented in low
dimensions, we set the length of the feature vectors at twice the classification quantities.
The fourth layer O(4), consisting of another FCL connected to a nonlinear softmax activation
was perceived as a classifier, which was used to transform the latent feature Z ∈ RN×2M

into the corresponding class vectors V ∈ RN×M (i.e., the class vector with a length of M is
represented in one-hot form). Last, we concatenated the continuous features and discrete
class vectors as the output of the encoder in the fifth layer O(5). The encoder process can be
formulated as follows:

Y = ϕE(X) ≡ Concat(Z, V) (3)

Under the processing of ϕE, the dimension of the original hyperspectral data decreased from
RN×B to RN×3M(B >> 3M). Additionally, l2 regularizations were applied in the network to
mitigate the effects of white noise [49].

(3) Decoder

The essential function of the decoder is to reconstruct the original hyperspectral data
using latent feature vectors Z ∈ RN×2M and class vectors V ∈ RN×M, as shown in Figure 3.
The decoder comprises two FCLs separately connected to the linear activation function,
denoted as O(6) and O(7), which promotes the encoder to characterize the input data using
the most relevant instantiation parameters. Considering the input dimension of the O(6)

is Y ∈ RN×3M and the output dimensions of the decoder are consistent with the original
input X ∈ RN×B, we set the output size of O(6) to 3B in this network. The formulation of
the decoder can be defined by:

X̂ = ϕD(Y) ≡W(O(7))(W(O(6))Y + b(O
(6))) + b(O

(7)) (4)

where X̂ represents the reconstructed hyperspectral data; W(O(6)), b(O
(6)) and W(O(7)), b(O

(7))

denote the weights and biases of the FCLs in layer 6 and layer 7. With the processing of ϕD,
the dimension of the latent codes Y ∈ RN×3M is restored to the original input X ∈ RN×B.

3.2.2. Adversarial Process of SSAAE

AAE performs variational inference via the max-min adversarial game between the
generator G and discriminator D to match the aggregated posterior of hidden vectors to an
appropriate prior distribution [25]. Let q(V) be the aggregated posterior distribution of the
class vectors V, which can be defined using the hyperspectral data distribution pd(X) and
the encoding function q(V|X) as follows:

q(V) =
∫

X
q(V|X)pd(X)dX (5)
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For multi-classification problems, the label vectors are usually yielded in one-hot
form, which indicates the label vectors comply with the categorical distribution p(V) ∼
Cat (V) without carrying any style information. For this purpose, the regularization of the
AAE plays an important role in matching the aggregated posterior q(V) to a categorical
distribution p(V).

The generator G of the SSAAE is a branched classification network in the encoder,
which requires the aggregated posterior distribution to fool the discriminator D such that
q(V) is subject to the prior distribution p(V). The discriminator D consists of 3 FCLs with
2B, B, and 1 unit connected with 2 ReLu and a sigmoid function, respectively. The adver-
sarial process can be divided into two stages using an alternating way: (a) training the
discriminator D to distinguish the true samples generated from the categorical distribution
and the fake samples (i.e., the multi-classification vectors) provided by the generator G;
(b) training the generator G to fool the discriminator D.

3.2.3. Object Loss Function

In this study, the following three loss functions should be considered for classifying
the measured hyperspectral data.

(1) Semi-Supervised Classification Loss

In the semi-supervised classification stage, the class vector V of a branch output of the
encoder was first updated by minimizing the categorical cross-entropy cost on the labeled
mini-batches, for which the loss function can be defined as follows:

LS (V̂, V) = −V̂ log V (6)

where V̂ and V represent the estimated and true labels with the one-hot form.

(2) Reconstruction Loss

In the reconstruction stage, SSAAE reconstructed the original input spectra by con-
tinuously updating X̂, which should be considered in a twofold way: the reflectance and
shape similarity, respectively. The reflectance diversity between the reconstructed and
original spectra can be assessed using the mean absolute error (MAE), which has a glaring
deficiency due to its sensitivity to spectral variability and noise. The spectral shape simi-
larity can be evaluated using the spectral angle distance (SAD), which is scale-invariant
and insensitive to noise; whereas it does not consider the magnitude of spectral reflectance.
In this sense, to better reconstruct the hyperspectral spectra, we comprehensively consid-
ered the reflectance and shape similarity when defining the reconstruction error (RE) to
mitigate detrimental effects such as spectral variability and noise. The RE function can be
formulated by

LRE(X, X̂) = LSAD(X, X̂) + LMAE(X, X̂)

LSAD(X, X̂) = cos−1
(

XT X̂
||X||2 ||X̂||2

)
LMAE(X, X̂) =

∣∣∣∣X− X̂
∣∣∣∣

1

(7)

In addition, since each band was updated independently during training, to better
promote the smoothness of the reconstructed spectra, the weight update amplitudes of the
two FCLs were constrained in the decoder using a total variation (TV) regularization [50].
The regularization can be formulated as follows:

R
sm(O(6)) = λ1

3M
∑

i=1

3B−1
∑

j=1

∣∣∣∣∣∣∣∣W(O(6))
i, j+1 −W(O(6))

i, j

∣∣∣∣∣∣∣∣
2

R
sm(O(7)) = λ1

3B
∑

i=1

B−1
∑

j=1

∣∣∣∣∣∣∣∣W(O(7))
i, j+1 −W(O(7))

i, j

∣∣∣∣∣∣∣∣
2

(8)

(3) Adversarial Loss
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In the adversarial regularization process, the discriminator D was first updated by
distinguishing the true samples generated from the categorical distribution and the fake
samples provided from the multi-classification result, a process that can be formulated
as follows:

LD = λ2

N

∑
i = 1

(
}i log D(V+

i ) + (1− }i)log(1− D(V−i )
)

(9)

The generator was then updated by confusing the discriminator D; that is, the discrim-
inator D was fooled into perceiving the generator output as the positive samples (i.e., true
samples), which the formulation can be defined by:

LG = λ2

N

∑
i = 1

}i log D(V−i ) (10)

where V+
i and V−i represent the ith positive sample generated using the categorical dis-

tribution and the negative sample provided from the output of the generator; }i denotes
that the sample is true (i.e., 1) or false (i.e., 0), which is perceived as the label for the
discriminator D.

4. Experimental Results and Analysis

In this section, the comparison experiments on synthetic and measured hyperspec-
tral datasets were performed to certify the validity of the SSAAE in the classification of
alteration zones.

4.1. Experimental Setup

To evaluate the performance of the SSAAE, we compared it with unsupervised, su-
pervised, and semi-supervised classification methods, which are listed in Table 2. In the
case of SVM, the kernel function was set to radial basis function (RBF) and the optimal
hyperplane parameter that controls the amount of data involved in the hyperplane and
its margins computation was determined to be 10. For SSAAE, Adam [51] was employed
as the optimizer. Furthermore, to better ensure the fairness of the comparative experi-
ments, the training tolerances for K-Means, GMM, and SVM were set to 1 × 10−3, and all
training epochs (i.e., maximum iterations) were determined to 200 and repeated five times
independently to avoid the errors posed by the random initialization process.

Table 2. The classification methods for the comparison experiment.

Method Description Unsupervised Supervised Semi-Supervised

K-Means [21] Calculating the distance between pending spectra
and cluster centroids • # #

GMM [23] Computing the likelihood of pending spectra in
each certain Gaussian distribution • # #

SAM [10] Calculating the spectral angle distance between
the pending and reference spectra # • #

SVM [26] Finding the margin-maximizing hyperplane in
the feature space # • #

SXGBoost [27] Self-trained eXtreme Gradient Boosting Trees # # •

AcPCKMeans [52] Active Semi-Supervision for Pairwise
Constrained K-Means # # •

• Yes # No.

In the comparison experiment, the confusion matrices, overall accuracy (OA), average
accuracy (AA), and Kappa [53] were used to quantitatively evaluate the classification
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accuracy. For the measured hyperspectral dataset of the drill cores from the Pulang copper
deposit, we also assessed the classification results from a geological view qualitatively.

4.2. Experiment with Synthetic Dataset
4.2.1. Dataset Description

The synthetic dataset was employed to simulate the spatial distribution of the litholo-
gies or altered rocks in the drill cores. To ensure that the synthetic drill cores are more rea-
sonable, five mineral spectra (i.e., montmorillonite, chlorite, epidote, muscovite, and quartz)
relevant with alterations were selected from USGS spectral library as the endmembers,
depicted in Figure 5a, and their corresponding abundance maps were yielded using the
Gaussian field method [54]. The synthetic dataset was generated using the linear mixing
model [55], which is perceived as 100 drill cores (in rows) with a depth of 100 m (in the
column); that is, each pixel is isolated with a sampling interval of 1 m. For visualization
purposes, we presented the mixed hyperspectral dataset as shown in Figure 5b. In addition,
in the experiment, 20 labeled data for each class were selected to assess the effectiveness of
the network with few labeled data.
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4.2.2. Hyperparameter Settings

In this section, we explored the optimal hyperparameters of the SSAAE by ablation
studies on the synthetic dataset. The classification results, consisting of OA, AA, and Kappa,
were obtained with the network trained 200 times and repeated five times independently.

Impact of Cardinality (C) and grouped bottlenecks (L): Figure 6 illustrates the effect
of different numbers of cardinalities and bottlenecks on classification accuracy. For cardi-
nality, the result shows that with the increase of cardinality, the classification accuracy also
increased to a certain extent, indicating that the convolution kernels with diverse perceptual
fields can better capture multiscale spectral features, thereby improving the classification
accuracy. When the cardinality exceeded four, the results were not affected dramatically;
therefore, we set the optimal cardinality as four on the premise of fewer training parameters.
For bottlenecks, the results indicate multiple bottlenecks were conducive to extracting the
multilevel features, thereby enhancing the performance of the network. When the number
of bottlenecks exceeded two, the network was slightly degraded. Therefore, we set the
optimal value for the number of bottlenecks as two.

Impact of the adversarial process (lradv): The effect of different learning rates for
adversarial training (lradv) is depicted in Figure 7a, in which the results illustrate that
imposing the categorical distribution on the class vectors is beneficial to enhancing the
interpretability of class representations and improving the accuracy of classification. When
the lradv was set to 5 × 10−5, the network yielded better performance, indicating that the
classification result can be fine-tuned with an appropriate prior distribution.
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In addition, the impact of the percentage of training samples (Ptrain) is also exhibited
in Figure 7b, in which the results prove that when the percentage of the training set was
more than 30% (i.e., 30–60%), the performance of the classification result was insensitive to
the proportions of the training set, indicating that the SSAAE has better robustness with
fewer training samples.

4.2.3. Performance Comparison

The classification results of all comparison methods are listed in Table 3, where we can
observe that K-Means and SVM, as the classic spectral classification algorithms, achieved
better results than GMM. AcPCKMeans, a variant of K-Means, embedded the idea of active
learning and pairwise constrained clustering into K-Means to achieve semi-supervised
clustering. Compared with K-Means, the classification accuracy of AcPCKMeans on this
dataset was slightly enhanced. SAM was difficult to distinguish the local features of the
mixed spectra with high similarity. Regarding the high similarity and complexity of the
mixed hyperspectral data, SXGBoost did not obtain good classification results on training
sets with limited labels.

Conversely, SSAAE outperformed other methods in terms of classification accuracy
with limited labels. For illustrative purposes, Figure 8a,b show the distribution of original
spectra and latent vectors, in which the result proves that SSAAE benefiting from the multi-
scale feature extraction module, can better separate feature space. In addition, considering
that the convergence process of the reconstruction error on the training and testing sets
can well reflect the performance of the optimization, the results in Figure 8c illustrate the
convergence speed of the network was fast while the training and testing processes were
consistent, indicating that the network was not over-fitting and was well optimized.
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Table 3. Comparison of classification results using different methods on the synthetic dataset.

Class
Unsupervised Supervised Semi-Supervised

Reference
K-Means GMM SAM SVM SXGBoost AcPCKMeans SSAAE

Montmorillonite 2019 2019 1859 2019 1782 2019 2019 2034
Chlorite 2490 2490 2468 2496 2422 2490 2477 2520
Epidote 1319 1341 1051 1341 1092 1325 1412 1479

Muscovite 1538 1320 1540 1540 1368 1540 1540 1574
Quartz 2349 2349 2354 2344 2130 2349 2341 2393

OA(%) 97.15 95.19 92.72 97.40 87.94 97.23 97.89 100.00
AA(%) 96.56 94.13 91.23 96.89 86.64 96.67 97.68 100.00

Kappa(%) 96.39 93.90 90.76 96.71 84.66 96.49 97.33 100.00

where the best result is indicated in bold.
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Where the dimensionalities were reduced using PCA [56] and the different colors in (a,b) represent
different categories. 1—Montmorillonite; 2—Chlorite; 3—Epidote; 4—Muscovite; 5—Quartz.

In addition, we also established the relationship between latent features and spectral
absorption features to indirectly illustrate the interpretability of latent features. Figure 9a
shows the spectral absorption features of an epidotization alteration at the wavelength
range of 2100–2430 nm, including absorption position, absorption depth, absorption area,
and absorption symmetry, which the calculation steps can refer to [57]. Figure 9b–d
illustrate that the latent feature representations of 15 epidotization alterations have a strong
correlation with the spectral absorption index (i.e., absorption depth and the 6th latent
feature, absorption area and the 10th latent feature, and absorption symmetry and the 8th
latent feature), which indicates there is good correspondence between them, indirectly
verifying the interpretability of the latent features from the spectral level.

4.2.4. Robustness to Noise

In this section, SNRs of 10, 20, 30, and 40 dB were added to the synthetic dataset to
evaluate the robustness of all methods to diverse noises. According to the hyperparam-
eter sensitivity experiments described above, we set C, L, and lradv as 4, 2, and 5 × 10−5,
respectively. F, K, S, lrauto, batchsize, λ1, λ2, were set to 32, 15, 9, 1 × 10−3, 256, 1 × 10−3,
and 1 × 10−1. The comparison results shown in Figure 10 indicate that supervised clas-
sification methods were more susceptible to noises than unsupervised methods; that is,
K-Means and GMM were more robust than SAM and SVM under diverse SNRs. Further-
more, we can observe that SVM, SXGBoost, and AcPCKMeans were more sensitive to
diverse noises under the premise of limited labeled data. In contrast, SSAAE, as a semi-
supervised classification method, outperformed other methods in terms of classification
accuracy with diverse SNRs, which could be conducive to the l2 regularization used in
the network. For illustration purposes, Figure 11 intuitively presents the classification
results of all methods under the synthetic dataset with an SNR of 20 dB. The result shows
that SSAAE was superior to other methods in terms of classification accuracy, which is
consistent with the results illustrated in Figure 10.
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4.3. Experiment with Drilling Core Hyperspectral Dataset

In porphyry copper deposits, since the alteration types are mainly related to miner-
alization, we focused on the classification of all alteration zones and the major lithology,
including silicified, potassic, phyllic, propylic (i.e., epidotization and chloritization), horn-
felsic, and quartz monzonite porphyry. Other unidentified spectra were also added to
the classification categories. In addition, to further collect the prior knowledge about the
spectral features of the alteration minerals, we also collected the referred spectra from the
positions where various alteration types were intensively developed (Figure 12). Moreover,
each alteration zone was accompanied by limited labeled data measured from the drill core
region of interest, with their quantities shown in Table 4.
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Figure 12. Sample spectra of alteration minerals measured from drill cores of the Pulang copper
deposit. (a) Silification and potassification; (b) sericitization and propylitization. These sample
spectra were only selected as representative of the alteration, and many drill core spectra have some
subtle differences.

Table 4. The number of labeled samples on the measured hyperspectral dataset.

Class No. Class Training Samples Testing Samples

1 Quartz monzonite porphyry 54 36
2 Silification 64 46
3 Potassification 44 34
4 Sericitization 89 57
5 Epidotization 53 39
6 Chloritization 79 51
7 Hornfels 61 40
8 Others 48 31

Total 492 334

Given the high correlation between the measured hyperspectral data, we set the
number of grouped bottlenecks L and classifications M to 3 and 8, respectively. Other
hyperparameters were the same as in the previous experiment. Moreover, we performed
quantitative and qualitative assessments of the classification results using the labeled
samples, geological logs, and Cu grades of the drill cores.

4.3.1. Quantitative Evaluation

Table 5 lists the comparative results classified using seven methods. The results
indicate that the supervised methods were greater than that of unsupervised methods,
where K-Means yielded a better result than GMM in the measured hyperspectral dataset.
SAM, SVM, and SXGBoost achieved limited classification accuracy on this dataset with
the limited labeled data, which could be related to their difficulty in capturing subtle
features from the highly correlated hyperspectral data. The classification accuracy of
AcPCKMeans was similar to that of K-Means (even slightly lower than K-Means) on a
more complicated hyperspectral dataset. Benefiting from the multiscale feature extractor,
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the SSAAE can capture more subtle single-band and correlation with its contextual bands
from the measured hyperspectral data; therefore, its classification accuracy was superior to
other representative methods, which can be reflected from the comparison results of OA,
AA, and Kappa in Table 5.

Table 5. Comparison of alteration type classification results using different methods on the measured
hyperspectral dataset.

Class
Unsupervised Supervised Semi-Supervised

Reference
K-Means GMM SAM SVM SXGBoost AcPCKMeans SSAAE

Quartz monzonite
porphyry 20 15 17 19 7 11 18 36

Silification 33 29 28 30 26 35 46 46
Potassification 25 16 15 18 8 21 21 34
Sericitization 43 45 44 45 44 46 52 57
Epidotization 27 22 17 20 10 26 38 39
Chloritization 37 30 31 34 31 39 35 51

Hornfels 34 31 31 34 31 30 40 40
Others 18 17 12 14 12 26 25 31

OA(%) 70.96 61.38 58.38 64.07 50.60 70.06 82.34 100.00
AA(%) 69.38 59.79 56.25 61.53 47.42 68.89 81.21 100.00

Kappa(%) 66.41 55.41 51.92 58.40 42.69 65.44 79.65 100.00

where the best result is indicated in bold.

In addition, we selected two drill cores (i.e., ZK0113, and ZK0307) with well-developed
alteration types, detailed geological logs, and available Cu grades to qualitatively discuss
the classification effects of all methods.

4.3.2. Qualitative Evaluation with ZK0113 and ZK0307

ZK0113 was drilled from the surface with a total of 224.65 m, in which the upper 40 m
were Quaternary residual and alluvial deposits. This drill core mainly developed light gray
and light gray-brown quartz monzonitic porphyry with porphyry texture and massive
structure. In this section, we focused on the alteration types zoned using seven methods
in the depth range of 40–220 m, and qualitatively assessed the results using geological
logs and the trend of Cu grade, in which the mineralization of Cu is mainly related to the
potassic zone and followed by the sericite zone [39].

Affected by multi-stage magmatism, porphyry copper deposits could occur in multi-
ple superpositions of different alteration zones; therefore, the alteration types, including
silicification, potassification, sericitization, and propylitization (i.e., chloritization and epi-
dotization), were developed in the depth ranges. We can observe from the geological log in
Figure 13a that the alteration was dominated by the phyllic zone. Except for SAM, other
methods were generally sensible from a geological point of view. However, in the local
vertical ranges, the distributions of the alteration were slightly different. According to the
geological log and the trend of Cu grades, the chloritization was locally developed in the
depth range of 30.0–48.9 m ( 1©) and 167.2–187.3 m ( 7©), especially in the depth range of
107.7–126.0 m ( 4©), which the chloritization was intensively developed, corresponding to a
lower Cu grade (< 0.2%). Compared with other methods, SSAAE can better capture the
local chloritization while consistent with the trend of Cu grade in these ranges. In addition,
the potassic zone corresponding to higher Cu grades (>0.3%) develops well in the depth
ranges of 91.8–107.7 m ( 3©) and 126.0–142.8 m ( 5©), in which SAM and SSAAE successfully
capture the alteration, but SAM achieved a poor classification result in other local ranges.
In general, SSAAE outperformed other methods in the classification results of alteration
types from global to local in this drill core. Moreover, SSAAE yielded a more detailed
classification result than manual geological logs while more consistent with the trend of
Cu grades.
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ZK0307 was cored from the surface to 225.22 m, in which the lithology in the range
of 0–30 m were Quaternary residual and alluvial deposits. The lithology of this borehole
was mainly light gray quartz monzonite porphyry with porphyry texture and a massive
structure. The main alteration types of this drill core were silicification, propylitization,
and potassification. In this section, we selected the depth range of 30–210 m as the region
of interest.

The geological log in Figure 13b shows that this drill core in the depth range of
30.0–90.5 m ( 1©– 4©) was dominated by quartz monzonite porphyry. Moreover, according
to the trend of Cu grades, the rocks in this range may develop weak alteration, which
could be difficult to observe by a manual geological log. In the depth range of 90.5–120.0 m
( 5©), comprehensively considering the geological log and trend of Cu grades (close to
0.3%), the development of epidotization may be relatively weak. In the depth range of
120.0–210.0 m ( 6©– 8©), the alteration type was dominated by potassification, corresponding
to relatively higher Cu grades (>0.4%). According to Figure 13b, SAM, SVM, and AcPCK-
Means failed to capture the weak alteration types. On the contrary, K-Means, GMM,
and SSAAE were generally consistent with the geological log, but SSAAE could better
capture the locally weak epidotization in the depth range of 43.0–51.5 m ( 2©), 90.5–120.0 m
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( 5©), and 196.2–210.0 m ( 8©), the sericitization in the depth range of 79.6–90.5 m ( 4©) and
178.7–196.2 m ( 7©); meanwhile, the alteration zones were in agreement with the trend of
Cu grades.

As described above, the alteration zones classified using the unsupervised methods
K-Means and GMM and the semi-supervised method SSAAE were generally consistent
with the geological logs, while SSAAE can better capture subtle differences between di-
verse alteration minerals; therefore, the alteration zoning was more accurate, which may
benefit from the multiscale feature extractor. In general, SSAAE was superior to other
representative methods regarding the classification of alteration zones on the synthetic and
measured hyperspectral datasets. In addition, it can also be seen that the classification of
alteration zones using hyperspectral data can capture the superposition information of
local alteration more objectively and in more detail, which could be difficult to observe
with manual geological logging.

4.3.3. Qualitative Evaluation with No. 00 Exploration Cross-Section

To further demonstrate the rationality and accuracy of the SSAAE, we also compared
the alteration zones with the Cu grades using six drill cores on the No. 00 exploration cross-
section. As described below, the Cu grades of the main ore body (i.e., KT1) are continuous
and high and gradually decrease to the surrounding area with branching occurring [58].
Figure 14 exhibits the corresponding relationship between the alteration zones delineated
using the SSAAE and the Cu grades on the cross-section.
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As can be seen from Figure 14, we can observe that the alteration types of the
ZK0002 and ZK0003 were dominated by potassification and silicification corresponding to
the potassium-silicification zone, in which the Cu grade is more than 0.4%, corresponding
to the core part of KT1 (i.e., G4 area). The Cu grades on both sides gradually decreased as
branching occurred. Among them, from ZK0013 in the depth of 50–62 m ( 1©) and 76–106 m
( 2©), 130–148 m ( 4©) and 172–185 m ( 6©), ZK0011 in the depth of 90–210 m ( 8©), ZK0007 in
the depth of 250–278 m (
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sericitization generally developed or alternated with the propylitization in the local area,
the Cu grade corresponds to 0.2–0.3% (i.e., G2 area) while the propylitization was strongly
developed, the Cu grade is lower than 0.2% (i.e., G1 area). The superposition of phyllic and
prophylitic zones increases the difficulty of zoning. Considering that the Cu grade can also
be acceptable (>0.2%) when the phyllic and prophylitic zone were superimposed, these
zones were classified as phyllic zones.

In summary, the potassic zone corresponds to strong mineralization of Cu, followed
by the phyllic zone, while the prophylitic zone corresponds to poorer Cu mineralization.
Furthermore, the alteration zones were symmetrically distributed, centered on the KT1;
that is, the potassic and silicified zones were located in the center, and the phyllic zone
was distributed in the periphery of the potassic zone. The analysis results were consistent
with the existing geological data [39], which also qualitatively demonstrate the rational-
ity and accuracy of the SSAAE for the classification of alteration zones using measured
hyperspectral data of drill cores.

5. Conclusions

In this study, the SSAAE was proposed to classify the alteration zones using the
measured hyperspectral data. Regarding the high spectral similarity between altered
rocks, in the encoder, a CNN-based multiscale feature extractor was used to fully exploit
and mine the multiscale and multilevel continuous latent features of the hyperspectral
data and further transform them into discrete classes to better distinguish the alteration
types. The decoder used the continuous latent feature and the discrete class vector to
reconstruct the original inputs, while the discrete class vectors represented in the one-hot
form were matched to a category distribution using an adversarial regularization process.
In addition, to fully use the limited labeled samples, a supervised classification process
was incorporated into the SSAAE to better guide the training of the network. We also
used the TV to smooth the reconstruction data and l2 regularization to mitigate the effects
of white noise in the network. The SSAAE and six other representative methods were
compared and discussed on the synthetic dataset and the measured hyperspectral dataset
of the Pulang copper deposit in quantitative and qualitative ways. The results indicate that
SSAAE outperformed six other methods in the rationality and accuracy of alteration zones.
Moreover, the classification results in the cross-section further demonstrate that SSAAE
had good applicability to classifying the alteration zones. Overall, the proposed method
can provide a rapid, objective, and accurate interpretation for the classification of alteration
zones using the drill core hyperspectral data in the Pulang copper deposit.
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