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Abstract: Because clouds and snow block the underlying surface and interfere with the information
extracted from an image, the accurate segmentation of cloud/snow regions is essential for imagery
preprocessing for remote sensing. Nearly all remote sensing images have a high resolution and contain
complex and diverse content, which makes the task of cloud/snow segmentation more difficult. A
multi-branch convolutional attention network (MCANet) is suggested in this study. A double-branch
structure is adopted, and the spatial information and semantic information in the image are extracted.
In this way, the model’s feature extraction ability is improved. Then, a fusion module is suggested to
correctly fuse the feature information gathered from several branches. Finally, to address the issue
of information loss in the upsampling process, a new decoder module is constructed by combining
convolution with a transformer to enhance the recovery ability of image information; meanwhile, the
segmentation boundary is repaired to refine the edge information. This paper conducts experiments
on the high-resolution remote sensing image cloud/snow detection dataset (CSWV), and conducts
generalization experiments on two publicly available datasets (HRC_WHU and L8 SPARCS), and
the self-built cloud and cloud shadow dataset. The MIOU scores on the four datasets are 92.736%,
91.649%, 80.253%, and 94.894%, respectively. The experimental findings demonstrate that whether it
is for cloud/snow detection or more complex multi-category detection tasks, the network proposed
in this paper can completely restore the target details, and it provides a stronger degree of robustness
and superior segmentation capabilities.

Keywords: multi-branch; segmentation; deep learning; remote sensing image

1. Introduction

The rapid development of remote sensing technology is helping humans to better
understand the earth [1,2]. As an important branch of remote sensing research, the use of
optical remote sensing technologies is crucial in many fields such as target detection [3],
vegetation index calculation [4,5], scene classification [6], and change detection [7,8]. Optical
remotely sensed imagery plays an important role in earth science, military, agriculture,
and hydrology [9]. However, the majority of the Earth’s surface is shrouded in clouds or
snow. Clouds cover more than half of the earth’s surface [10]; more than 30% is covered
by seasonal snow, and about 10% by permanent snow [11]. Utilizing remote sensing data
to its full capabilities is difficult due to the occlusion of underlying surfaces by clouds or
snow cover. Typically, the initial step in most remote sensing studies is to identify clouds or
snow [12]; therefore, it is crucial to efficiently and precisely detect cloud and snow regions
in remote sensing photographs.

In remote sensing for visible light, the active remote sensing method is generally
used [13], which uses the reflection characteristics of clouds and snow for imaging, and the
imaging effect is better when the daytime sunshine conditions are good. The working band
of visible light remote sensing sensor is limited to the visible light range (0.38–0.76 µm).
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Since the visible light band is in the range of human perception, the ground staff can directly
interpret and make decisions on image products [14]. Common optical remote sensing
systems include WorldView [15], Pleiades [16], and so on.

Because the diameter of the suspended particles in the cloud is greater than the
wavelength of the electromagnetic spectrum of the solar radiation, there is non-selective
scattering of the solar spectrum through the cloud, which is consistent with the degree of
scattering of the red, blue, and green bands, so the cloud presents as bright white [17]. In the
visible range, the reflectivity of snow is close to 95%, almost completely reflected, and close
to the peak in the blue band of 0.49 µm. The reflectivity of snow decreases rapidly with the
increase in wavelength, especially in the shortwave infrared band, which decreases to close
to 0 at 1.5 µm and 2.0 µm [18]. Both clouds and snow have low-temperature characteristics;
the brightness temperatures of the two are relatively close in the thermal infrared band, so
that the thermal infrared band is not conducive to distinguishing cloud from snow [19].

Traditional methods mostly use a threshold for detection [20,21], or they extract
features manually for identification [22]. Zhang et al. [23] suggested a unified cloud
detection algorithm based on the spectral index, and proposed a quantitative cloud index
(CI). Zhu et al. [24] highlighted the target information by calculating the cloud and shadow
index, and also studied a time series analysis method to identify clouds by employing
optical imagery. Li et al. (2017) [25] explored spectral feature-based threshold segmentation
to produce cloud mask pictures. Qiu et al. [26] used the time series of observations in the
cirrus band (1.36-1.39 µm) to detect cirrus targets. Zhang et al. [27] studied the method of
radiation compensation for visible band images using transformed images for the detection
of cloud spatial distribution. An et al. [28] studied cloud detection by using artificially
stacked different image features. However, most of these methods rely on prior knowledge,
and there are many problems such as its complex operation and being time-consuming,
and prone to false detection and missed detection. Later, machine learning technology was
applied to the task of detecting clouds/snow, such as support vector machine [29], sparse
perception [30], etc., and the detection accuracy was improved.

Deep learning has excelled in a wide range of industries in recent years thanks to its fast
progress, especially in terms of images [31–35]. Deep learning technology has incomparable
advantages over other methods and can automatically capture the feature information
of images during training [36,37]. It has much a higher accuracy than manual extraction.
Earlier, convolutional neural network-based techniques have produced effective picture
categorization outcomes in several cases [38,39], which further created the foundation for
pixel-by-pixel categorization problems in the future. In 2015, Long [40] first proposed a
fully convolutional neural network (FCN) to achieve pixel-by-pixel classification in images.
Replacing the fully connected layer with a pure convolutional structure means that the
model can allow for the entry of images of any size. The results show that this is useful
for pixel-by-pixel classification jobs; however, there are also obvious disadvantages: the
segmentation is not fine enough, and it is not sensitive to the details in the image. Aiming
at the problem of insufficient sample size, Ronneberger et al. [41] developed a technique
for data augmentation to make better use of dataset pictures, and suggested a U-shaped
network (UNet) to obtain the location and context information. Although it solves the
problem of insufficient data, it does not apply to all segmentation tasks. For example, some
data cannot be enhanced, so it cannot exert its advantages. The DeepLab series models [42]
suggested by Chen et al. increase the receptive field by using dilated convolution. Although
the receptive field area increases, this also sacrifices the spatial resolution, resulting in a loss
of spatial information. The Pyramid Scene Parsing Network (PSPNet) [43] proposed by
Zhao et al. gathered context information from several places by using a pyramid pooling
structure with the goal of obtaining global information. However, the operation of the
image pyramid leads to an increase in the calculation of the model and consumes time. In
order to solve the problem that most model parameters are too large to realize real-time
reasoning, in 2016, Paszke et al. [44] suggested a lightweight network (ENet) designed
for tasks that require low latency operations. In 2018, DenseASPP [45] used a densely
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connected structure for the first time to implement a collection between different feature
layers, combining the advantages of the parallel and cascaded use of dilated convolutional
layers, where more scale features are generated in a larger range. Yuan Y et al. [46] proposed
a new way to construct context information in semantic segmentation, namely enhancing
the contribution of pixels from the same object while constructing context information, and
the results show that the context information has a positive impact on the final effect of the
model. For cloud/snow detection, Li et al. [47] studied a cloud detection method based on
weakly supervised learning. Compared with the supervised learning method, it has less
dependence on data, and can reduce the workload caused by annotated data. Guo et al. [48]
suggested a neural network with a codec structure (CDnetV2) to extract cloud regions in
satellite thumbnails. CDnetV2 can fully extract features from the coding layer for cloud
detection, but it is limited to low-resolution satellite thumbnails. H Du et al. [49] studied a
new convolutional neural network (CNN) that uses a multi-scale feature fusion module
to effectively extract the information of feature maps from different levels, and it can
alleviate the adverse effects of cloud and snow detection. Qu et al. [50] proposed a parallel
asymmetric network with dual attention, which has both a high detection accuracy and a
rapid detection speed, and can detect clouds in remote sensing images well, but it has no
advantage in the case of the coexistence of cloud and snow. For the purpose of segmenting
clouds in satellite pictures, Xia et al. [51] devised a global attention fusion residual network
that can handle various complex scenes, but it is susceptible to noise interference and has a
weak ability to segment small-area thin cloud boundaries.

Since the clouds and snow have similar spectral characteristics and color attributes [52],
the difficulty of model detection is greatly increased. Previous semantic segmentation
models all use convolution for feature extraction, which makes the models limited by local
information, unable to establish the connection between global information, and susceptible
to interference from complex underlying surfaces. There are a lot of misjudgments in the
picture, and the processing effect of cloud/snow details is not ideal. To solve the above
problems, we expect the model to be able to efficiently extract local characteristics, as well
as pay attention to the connection between information in the global scope and grasp the
internal correlation between pixels.

In recent years, researchers have found that a transformer can not only handle natural
language processing tasks well, but it can also obtain good results by extending it to image
tasks. For example, Liao et al. [53] combined convolution and a transformer for feature
extraction and used it for image classification tasks. Moreover, the multi-head attention
system of transformers can focus on global information while also keeping a close eye on
important regions, which makes it possible to focus on both key regions and grasp global
information. Shi et al. [54] added an attention mechanism to convolutional networks for
the scene classification of remote sensing images, and found that it can still maintain a
good degree of classification accuracy when the number of parameters is small. However,
the effect on hyperspectral image types is unknown, and it is not suitable for pixel-level
classification tasks. In 2020, Dosovitskiy et al. [55] designed a Vision Transformer (ViT)
to solve the image classification task, and applied the pure transformer module to image
sequences to extract image information and to complete classification. Although ViT can
surpass the traditional convolution algorithm using a large amount of training data, it has
a large number of parameters and relies on huge amounts of training data. Later, more
and more researchers have introduced the transformer into the field of imaging, and many
variants based on the transformer appeared. Wang et al. [56] introduced the pyramid
structure into the transformer and proposed a new transformer-based variant network
(PVT). Compared with ViT, which is specifically designed for image classification, PVT
can perform various downstream intensive predicting operations such as segmentation.
PVT can be used as an alternative to traditional convolutional networks, but it is not
compatible with some modules that are specifically designed for convolutional networks.
At this time, the research on transformer-based models in the visual field is still in its
infancy. Afterwards, Wu et al. [57] also tried to introduce convolution into the transformer,
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and proposed the convolutional vision transformer (CVT). Convolution is added to the
model based on ViT in order to enhance its performance and efficiency. These changes
introduce the ideal characteristics of convolution into ViT architecture while maintaining
the advantages of the transformer. However, these methods have an enormous number of
parameters at the expense of model’s speed, especially in cloud/snow detection, so these
methods do not have an advantage.

Because clouds and snow have similar shallow features and color attributes, which
make them similar in appearance, it is more challenging to deal with the coexistence of
clouds and snow than a single cloud or snow. In order to accurately segment cloud and
snow areas from the image, only extracting shallow information can no longer meet the
needs of the task, and it is necessary to mine the deep features more accurately. The current
single convolution or transformer method cannot meet the needs of feature extraction
in cloud and snow images, so we studied a new backbone (see Section 2.2) for feature
extraction in cloud and snow segmentation tasks. In the process of feature extraction, a
large amount of information will be generated in the feature maps of different levels. The
existing problem is that this information cannot be effectively fused, and the noise and
other factors can easily interfere with the results. Clouds and snow have very complex edge
features. Retaining edge feature information in the process of segmenting cloud and snow
regions has always been a difficult task. To solve the above two problems, we propose a
new fusion module to fully integrate different levels of information (see Section 2.3). The
distribution characteristics of cloud and snow show irregular distribution, the shape is
complex and changeable, and the complex background often interferes with the final result,
which requires the model to grasp the details very accurately in the process of upsampling
to restore the original image. The current method generally performs direct upsampling
on deep features, which leads to the problem of information loss during the upsampling
process, and the recovery of details is not ideal. To solve this problem, we propose a new
decoder module (see Section 2.4).

In this article, we combine convolution with a transformer to suggest a multi-branch
convolutional attention network (MCANet). To reduce the weight of the model and to make
it easy to train while ensuring accuracy, we use a new module in a transformer-based variant
network (EdgViT) [58] to form a branch of the backbone network. The transformer has such
advantages as dynamic attention, global context, and better generalization ability, which are
not available for convolution [59]. On another branch, we construct a convolution module
of the residual structure to grasp the local features in the picture. To make the two branches
complement each other and to better extract image features, we construct a new fusion
module to fuse the information between different branches and feature layers. Finally,
in order to preserve the extracted deep information, a new decoder module is proposed.
The new decoder module obtained by combining convolution with a transformer can
retain important information to the greatest extent and filter noise. In the experimental
part, we compare the proposed method with the current advanced methods on different
datasets to prove the effectiveness of the proposed method. The following are the primary
accomplishments of this paper:

A multi-branch convolutional attention network is proposed for cloud/snow detection.
It combines convolution and a transformer, and focuses on the image’s local and global
information. When the content in the image is too complex and there are many interference
factors, this method is very effective.

A new fusion module is established to fuse the information among different feature
layers of two branches, and strip convolution is added to enhance the ability of the model
to recover edge details.

Considering that most networks lose information in the process of responding to the
feature map, this paper establishes a new decoder module, which combines convolution
and a transformer to focus on the important information during the upsampling process,
filter out useless information, avoid the interference of useless information, and enhance
the model’s capacity for interference rejection.
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2. Methodology

To be able to accurately extract the cloud/snow region in the image, we propose a
multi-branch convolutional attention network (MCANet). The network can efficiently
extract both local and global information from images and correctly fuse them. It solves the
problem that the current algorithm cannot accurately extract the effective information in
the image, which leads to the inaccurate segmentation result [60,61].

The network proposed in this article can not only precisely identify the cloud and
snow area in the image, but also effectively restore the edge details of cloud and snow.
It has a certain resistance to the interference of complex background, and can accurately
identify the cloud/snow area under the interference of different backgrounds. This section
introduces the whole architecture of the model, the design method of the backbone, and
different sub-modules.

2.1. Network Architecture

Aiming at the issue that the current algorithm cannot effectively extract the relevant
features of cloud/snow in remotely sensed data, we propose a multi-branch feature ex-
traction structure composed of convolution and transformer, which can effectively extract
the cloud/snow features, accurately identify the cloud/snow area, and optimize the edge
details to make the segmentation results more refined. Figure 1 shows the whole archi-
tecture of the multi-branch convolutional attention network. Furthermore, Algorithm 1
shows the pseudocode of the data transmission process of the multi-branch convolutional
attention network. The entire network uses an encoder–decoder design. We believe that
the final segmentation accuracy is directly impacted by the precision of feature informa-
tion extraction [62,63]. Previous studies have proven that convolution is excellent for the
extraction of local information, but it lacks accuracy for the grasp of global information.
The characteristics of the transformer can make up for this shortcoming. Therefore, a
multi-branch mode is adopted in the encoder. The local characteristics of the images are
extracted by using a convolution layer, and the transformer layer is used to grasp the global
characteristics. After that, the feature data obtained from the two branches are effectively
fused. The current fusion strategy just applies a straightforward linear splicing operation
on the generated feature map, which is unable to retrieve the useful information. At the
same time, the simple splicing operation can easily produce information redundancy, which
is extremely unfavorable for the subsequent decoding operation. The integration module is
introduced here, which can effectively combine the local and global information extracted
from the two branches and filter it, only retaining the meaningful part of it, and it can
improve the model efficiency.

In the decoding phase, the majority of modern networks directly upsample to return
the original picture size. This can easily cause information loss during upsampling. Some
networks use only a single convolution to decode the feature map, and some important
feature information is preserved, but the convolution only focuses on local features and
cannot establish long-distance connections in the feature map, so the recovery of large-
scale cloud/snow areas is not ideal. This paper proposes a new decoder. Combining
convolution with atransformer, the effective information in the deep feature is restored
gradually. Because the high-level semantic information and spatial information in the
upsampling process usually cause the final segmentation boundary to be rough, at the
decoder, we again fuse the high-level feature map with the various levels of fusion feature
data that the encoder has obtained, so that the important detail information can be retained
to achieve an accurate segmentation of clouds/snow.

To increase the accuracy of the final segmentation result, the classifier module is
added to the network, which is mainly composed of upsampling and convolution modules.
Different levels of output characteristic graphs are drawn at the decoding end to calculate
the auxiliary loss, which is used to accelerates the network’s convergence and increase
prediction accuracy. The addition of the output strip convolution makes the final output
prediction map more refined.
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Figure 1. A structure of a multi-branch convolutional attention network. A convolution branch and
transformer branch are used to extract image features separately, effectively fusing global and local
features. The Conv Layer represents the convolutional layer, and the Edgevit Layer represents the
transformer layer.

Algorithm 1 The data-transmission process of MCANet

Input: Training data: D = {(x1, y1), (x2, y2), ..., (xm, ym)}; Attribute set: A
Output: The final segmentation picture: Out1 = classifier(F(D1, X1)) and Outi =

classi f ier(Di), i = 2, 3, 4
1: The backbone network extracts features, and the backbone network routing convolution

branch and attention branch are constituted
2: The convolution branch extracts features and outputs feature maps of different levels:

X = {X1, X2, X3, X4, X5}
3: The transformer branch extracts features and outputs feature maps of different levels:

Y = {Y2, Y3, Y4, Y5}
4: The features of different branches are fused, Qi = F(Xi, Yi), i = 2, 3, 4, 5, and the output

is obtained: Q = {Q2, Q3, Q4, Q5}
5: The high-level features are upsampled and passed through the decoder module:

D5 = DE(Q5)
6: for i = 5,4,3,2 do
7: Fusion of shallow features and deep features: Fi = F(Qi−1, Di)
8: Through the decoder module: Di = DE(Fi)
9: if i! = 5 then

10: The output is obtained: Outi = classi f ier(Di)
11: end if
12: end for
13: return Out1 = classifier(F(D1, X1)) and Outi = classi f ier(Di), i = 2, 3, 4

2.2. Backbone

Because clouds and snow have similar spectral characteristics and color attributes [52],
they are easily disturbed by complex underlying surfaces. A single convolution or trans-
former structure does not meet the need for feature extraction in cloud/snow images. We
use the multi-branch structure of convolution and transformer as the backbone of the model
to abstract the characteristic information of the image. Convolution extracts features by
sharing convolution kernels to reduce network parameters and to improve model efficiency,
and its translation invariance makes feature detection for images more sensitive, but its
limited receptive field makes it less capable of extracting global information. However, the
emergence of transformers enables the global information in the image to be captured, and
transformers have shown phenomena beyond those of CNN in many visual tasks. In this
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study, we combine the benefits of transformer and convolution to extract different levels
of characteristic information, which perfectly inherits the advantages of convolution and
transformer, so as to enhance the model’s capacity for feature extraction. Table 1 shows the
specific structural parameters of the model.

Table 1. The architecture of the network.

Levels Convolution Branch Guidance Module Transformer Branch Decoder Size

L1 7 /times 7, 64, stride = 2 −→ 1 /times 1, 48, stride = 1 Classifier 1/2

L2
[

3× 3, 64, stride = 1
3× 3, 64, stride = 1

]
× 3 −→ fusion←− EdgeViT_block (dim = 96, heads = 1) × 1 DE1 1/4

L3
[

3× 3, 128, stride = 1
3× 3, 128, stride = 1

]
× 4 −→ fusion←− EdgeViT_block (dim = 240, heads = 2) × 2 DE2 1/8

L4
[

3× 3, 256, stride = 1
3× 3, 256, stride = 1

]
× 6 −→ fusion←− EdgeViT_block (dim = 384, heads = 4) × 3 DE3 1/16

L5
[

3× 3, 512, stride = 1
3× 3, 512, stride = 1

]
× 3 −→ fusion←− EdgeViT_block (dim = 384, heads = 8) × 2 DE4 1/32

As we can see in Figure 2a, we use two layers of 3 × 3 convolutions as the block of
our convolution branch. Algorithm 2 shows the pseudocode of the data transmission
process of the convolution branch block. The addition of the residual structure makes the
model lessen the rate of information loss, and it can protect the integrity of information
when extracting features. The convolution branch’s computation procedure can be stated
as follows:

C = σ(BN(Conv3×3( fi)), (1)

fi+1 = σ(BN(Conv3×3(C)), (2)

where fi and fi+1 represent the i-th layer input and output of the convolution branch,
respectively; BN (.) represents batch normalization, σ (.) is a representation of the nonlinear
activation function ReLU; and Con3×3 (.) is a representation of the 3 × 3 convolution
operation.

Algorithm 2 Data transmission process of the convolution branch block

Input: The output feature map of the previous layer: fi
Output: fi+1

1: C = σ(BN(Conv3×3( fi))
2: fi+1 = σ(BN(Conv3×3(C))
3: return fi+1

For the transformer branch, considering the number of parameters and the computa-
tional complexity of the model, we use the block in EdgViTs [58] as the component part
of our transformer branch. EdgViTs is a new lightweight ViT family, and it is achieved by
introducing a high-cost local–global–local (LGL) information exchange bottleneck based
on the optimal integration of self-attention and convolution. The particular structure is
displayed in Figure 2b, and Algorithm 3 shows the pseudocode of the data transmission
process of the transformer branch block. It mainly includes three operations: (1) local
aggregation, utilizing effective depthwise convolutions, local information aggregation
from neighbor tokens (each corresponding to a distinct patch); (2) global sparse attention,
generating a sparse collection of regularly spaced delegate tokens for distant information
exchange via self-attention; and (3) local propagation, using transposed convolutions to
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spread updated information from delegate tokens to non-delegate tokens in nearby areas.
The main calculation process can be expressed as follows:

X = LocalAgg(Norm(Xin)) + Xin, (3)

Y = FFN(Norm(X)) + X, (4)

Z = Local Pr op(GlobalSparseAttn(Norm(Y))) + Y, (5)

Xout = FFM(Norm(Z)) + Z, (6)

where Xin ε RH×W×C denotes the input tensor, Norm (.) denotes Layer Normalization,
LocalAgg (.) denotes the local aggregation operator, FFN (.) denotes the perceptron with
two layers, GlobalSparseAttn (.) denotes global sparse self-attention, and LocalProp (.)
denotes global sparse self-attention.
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Figure 2. The structure of the convolution branch module and the transformer branch module.
(a) Structure of the convolution branch module. (b) Structure of the transformer branch module.
Conv denotes the convolutional layer, BN denotes the batch normalization layer, GELU denotes the
activation function GELU, and ⊕ represents the addition of different feature graphs.

Algorithm 3 Data transmission process of the transformer branch block

Input: The output feature map of the previous layer: Xin
Output: Xout

1: X = LocalAgg(Norm(Xin)) + Xin
2: Y = FFN(Norm(X)) + X
3: Z = Local Pr op(GlobalSparseAttn(Norm(Y))) + Y
4: Xout = FFM(Norm(Z)) + Z
5: return Xout

Because of the restriction of the receptive field, the perception of the objective in the
picture is always limited. To enlarge the receptive field, dilated convolution can be applied
to the current method, but considering the complexity of remote sensing image content,
a single use of the convolution operation makes large-scale targets, and the small-scale
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cloud/snow area is always impossible to take into account, so the transformer branch joins
the perfect solution to this problem. The two branches complement each other, taking
into account the extraction of small targets and the effective identification of large-scale
clouds/snow, and self-attention enables the effective learning of global information and
long-distance dependencies. This is useful for avoiding the interference of similar color
attributes of cloud and snow, so that the model can effectively distinguish cloud and snow.

2.3. Fusion Module

Clouds and snow have complex edge shapes relative to other targets. Accurately
restoring the edge features of clouds and snow has always been a difficult task. In addition,
the feature maps produced by different layers of the model will provide an enormous
amount of useless information. Filtering this information is particularly important. If the
information contained in the feature map cannot be fully integrated, the noise and other
factors contained in it will have a huge influence on the final categorization outcomes.

To solve the problems described above, we suggest a fusion module to fuse the infor-
mation from different layers. In the backbone, the different levels of features abstracted
by the convolution branch and the transformer branch need to establish a complementary
relationship in order for the model to perfectly inherit the benefits of convolution and the
transformer. At the decoder level, the category information with rich high-level characteris-
tics can direct the classification of low-level characteristics , while the location information
retained by the low-level features can supplement the spatial location information of the
high-level characteristics. Figure 3 demonstrates the general layout of the fusion module
that is proposed in this study, and Algorithm 4 shows the pseudocode of the data trans-
mission process of Fusion Module. In this module, we use DO-Conv [64] to replace the
traditional convolution. DO-Conv is a depthwise over-parameterized convolutional layer
that adds learnable parameters, which has positive significance for many visual tasks.

Algorithm 4 Data transmission process of the Fusion Module

Input: Feature maps of different levels in our network: Xin1 and Xin2
Output: Yout

1: X1 = G(BN(DOConv3×1(DOConv1×3(Xin1))))
2: X2 = G(BN(DOConv3×1(DOConv1×3(Up(Xin2)))))
3: W = Concat(X1, X2)
4: Yout = G(BN(DOConv3×1(DOConv1×3(W))))
5: return Yout

The use of stripe convolution enables the model to more effectively extract the edge
features of clouds and snow. As far as we can see in the figure, there are two parallel
branches that make up the fusion module. Firstly, the deep-level features are amplified to
the same level as the low-level features of another branch, and then the strip convolution
is used to filter the information in the deep-level features and the low-level features,
and enhance the feature extraction ability . The strip convolution architecture is mainly
composed of two convolution kernels with sizes of 1 × 3 and 3 × 1, a batch normalization
layer, and an activation function GELU [65]. Then, the information abstracted by two
branches is combined and finally sent to the next level of the network after the action of
two layers of the strip convolution layer. The calculation process is as follows:

X1 = G(BN(DOConv3×1(DOConv1×3(Xin1)))), (7)

X2 = G(BN(DOConv3×1(DOConv1×3(Up(Xin2))))), (8)

W = Concat(X1, X2), (9)
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Yout = G(BN(DOConv3×1(DOConv1×3(W)))), (10)

Xin1 and Xin2 represent the two inputs of the fusion module, Yout represents the output,
DOConvn×m (.) represents the convolution procedure using an n ×m convolution kernel,
Up (.) represents the bilinear interpolation upsampling operation, Concat (.) represents the
splicing operation based on the channel dimension, and BN (.) and G (.) represent batch
normalization and the nonlinear activation function GELU. The use of the GELU activation
function to replace the traditional ReLU is due to the idea of random regularization added
to GELU, which improves the network accuracy.

1×3 DOConv

3×1 DOConv

1×3 DOConv

3×1 DOConv

1×3 DOConv

3×1 DOConv

1×3 DOConv

3×1 DOConv

1×3 DOConv

3×1 DOConv

1×3 DOConv

3×1 DOConv

1×3 DOConv

3×1 DOConv

1×3 DOConv

3×1 DOConv

1×3 DOConv

3×1 DOConv
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BN + GELU
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BN + GELU BN + GELU
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Upsample

Figure 3. The structure of fusion module. DOConv represents the depthwise over-parameterized
convolutional Layer, BN represents the batch normalization, and GELU represents the activation
function GELU. © represents splicing in the channel dimension.

2.4. Decoder Module

The distribution characteristics of cloud and snow are not uniform in distribution, and
the shape is complex and changeable. Similar color attributes also make it more difficult to
distinguish them. The interference of a complex background often causes the phenomenon
of misjudgment or omission. During the upsampling procedure, the current methods
often directly decode the high-level feature map or use a single convolution to decode
the feature map and restore the original image features. This will make the model lose
information due to the wrong attention to feature information throughout the upsampling
phase, which makes it challenging to recover the details. As a result, the model cannot
correctly differentiate between clouds and snow, and it is susceptible to misjudgment due
to interference from complex backgrounds.

We provide a new decoder module as a solution to the aforementioned issues. Inspired
by Xia X et al. [66], who previously proposed that a complementary convolution and
transformer can make up for the deficiency of single use, the scheme of combining the CNN
and transformer is adopted to construct a hybrid module that is composed of convolution
and a transformer, to significantly increase the efficiency of information flow. As we can see
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in Figure 4, we first used a 1× 1 convolution layer to modify the quantity of input channels,
and then a transformer module is involved to establish a long-distance dependency in the
feature map. A channel splitting layer is introduced into the module, and the ratio r is
used to adjust the proportion of the convolution module in the hybrid module to further
improve the efficiency. We suppose that the amount of the input channel is Cin, that the
amount of the output channel after the transformer module is Cout × r, and that the amount
of the output channel after the convolution module is Cout × (1− r). Finally, the results
of the transformer module and convolution module are concatenated to obtain the final
output. The calculation process is as follows:

W = Conv1×1(X), (11)

T = Trans(W), (12)

C = Conv(T), (13)

Y = Concat(T, C), (14)

where Conv11 (.) represents the convolution procedure using a 1 × 1 convolution kernel,
Trans (.) and Conv (.) represent the passing transformer module and convolution module,
respectively, and Concat (.) represents the splicing operation based on the channel dimension.
Algorithm 5 shows the pseudocode of the data transmission process of the Decoder Module.

Algorithm 5 Data transmission process of the transformer Decoder Module

Input: The output feature map of the previous layer: Xin
Output: Yout

1: W = Conv1×1(Xin)
2: T = Trans(W)
3: C = Conv(T)
4: Y = Concat(T, C)
5: return Yout

CC

Conv Layers

EdgeViT Layers

1×1 Conv

inC

outC

outC r

(1 )outC r −

C

Conv Layers

EdgeViT Layers

1×1 Conv

inC

outC

outC r

(1 )outC r −

Figure 4. The structure of the decoder module. The Conv Layer represents the convolution module, and
the EdgeViT Layer represents the transformer module. © represents splicing in the channel dimension.
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2.5. Experiment Details

The PyTorch framework was used for all our expriments. The version number was
1.10.0, and the Python version was 3.8.12. The experimental equipment includes the
NVIDIA series graphics card, the graphics card model is NVIDIA GeForce RTX 3060, the
graphics memory is 12 G, the CPU is i5-11400, and its computing memory is 16 G.

Due to restrictions on GPU memory, we defined the batch size for each iteration to 4
when using the CSWV Dataset for training, and the training batch size of the other two
datasets was set to 8, while the training period was 300 epochs. When training the dataset,
we used the equal interval adjustment learning rate (StepLR) strategy. As the number
of training epochs increased, the learning rate was reduced accordingly to achieve better
training results. In the initial stage of training, the learning rate was set to 0.00015, the
attenuation coefficient was 0.98, and the learning rate was updated every three epochs. The
learning rate for each epoch is calculated as follows:

lrN = lr0 · βN/s, (15)

where lrN is the learning rate of the Nth training, lr0 is the initial learning rate, β is the
attenuation coefficient, and s is the update interval.

We chose the cross-entropy loss function as the loss function of model training, and
the calculation formula of the loss function is as follows :

Loss(x, class) = − log(
ex[clas]

∑i ex[i]
) = −x[class] + log(∑i ex[i]), (16)

where x is the output tensor of the model, and class is the real label.
As the traditional adaptive learning-rate optimizer (including Adam, RMSProp, etc.)

faces the risk of falling into bad local optimization, we used the RAdam optimizer [67]
as our optimizer. RAdam provides a dynamic heuristic to provide automatic variance
attenuation, and it is more robust to changes in learning rate than other optimizers. It can
provide a better training accuracy and generalization ability in various datasets, and brings
better training performance to the model.

To improve the model’s capacity for generalization, and to prevent overfitting during
training, we also performed data augmentation on the dataset. Because clouds and snow
have similar color properties, in addition to randomly rotating and flipping the image, the
contrast, sharpening, brightness, and color saturation of the image were randomly adjusted
with a probability of 0.2 during training.

For the purpose of assessing the model’s real performance, this paper introduces
the evaluation indexes of pixel accuracy (PA), mean pixel accuracy (MPA), F1, frequency
weighted intersection over union (FWIOU), and mean intersection over union (MIOU) to
evaluate the performance of the model in practical applications. Their calculation formulas
are as follows:

P =
pii

pii + pij
, (17)

R =
pii

pii + pji
, (18)

F1 = 2 · P · R
P + R

, (19)

PA =
k

∑
i=0

Pii
k
∑

j=0
Pij

, (20)

MPA =
1

k + 1

k

∑
i=0

pii
k
∑

j=0
pij

, (21)
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FWIOU =
1

k
∑

i=0

k
∑

j=0
pij

k

∑
i=0

k
∑

j=0
pij pii

k
∑

j=0
pij +

k
∑

j=0
pji − pii

, (22)

MIOU =
1

k + 1

k

∑
i=0

pii
k
∑

j=0
pij +

k
∑

j=0
pji − pii

, (23)

where P is Precision, which represents the probability that the pixels in the prediction result
are predicted correctly; R is the recall rate Recall, which represents the probability that the
pixels in the true value are predicted correctly; k stands for the number of classes (excluding
the background scene); pii identifies the number of pixels in category i and predicted as
category i; pij is the number of pixels in category i that are predicted to be in category j;
and pji is the number of pixels in category j that are predicted to be in category i.

3. Experiment
3.1. Datasets
3.1.1. CSWV Dataset

Due to the small number of high-resolution cloud and snow datasets, we used a
WorldView2-based cloud/snow dataset (CSWV) constructed by Zhang [52], and used it
as our main dataset. This is the first free high-resolution remote sensing image dataset for
cloud and snow detection. Data sources are available from [52]. Its spatial resolution is
mainly 0.5–10 m, including 27 high-resolution images of clouds and snow from remote
sensing. The shooting location was mainly in the Cordillera Mountains in North America,
and the time distribution was from June 2014 to July 2016. The background in the picture is
complex and diverse, including forest, grassland, lake area, and bare land. The types of
clouds include cirrus, altocumulus, cumulus, and stratus. Snow mainly includes permanent
snow, stable snow, and discontinuous snow. The diversity of cloud and snow types makes
the dataset more generalized and representative.

We believe that larger pictures are beneficial to the training of the model. Considering
the limitation of the device, the original picture of the large scene is cut to 512 × 512 size.
In order to make the training data more reasonable, we filter the clipped images, delete
the pictures with full cloud and full snow, or no cloud and no snow, and finally obtain
3000 pictures. Then, all the pictures are randomly divided into training set and verification
set according to the ratio of 8:2. Some of the training set images are shown in Figure 5. The
top line contains the original color image, with the background from left to right being
forest, lake, grass, town, bare land, and mountains. The second row is the corresponding
label, where the cloud is represented by pink, the snow is represented by white, and the
background is represented by black.

3.1.2. HRC_WHU Dataset

In order to test the generalization performance of our method, we used the high-
resolution cloud cover dataset HRC_WHU [68] for verification. Data sources are available
from [68]. The dataset was created by theSENDIMAGE laboratory at Wuhan University. It
contains 150 high-resolution remote sensing images of large scenes. Each image contains
three-channel RGB information, distributed in various regions of the world, including
vegetation, snow, desert, urban, and water. There are five different backgrounds. The
image resolution is mainly between 0.5 meters and 15 meters. The original size of image
was 1280 × 720. Because of the memory constraints of the GPU, we cut the original images
into small 256 × 256 images for training. Finally, 3000 images were obtained, and then all
images were randomly divided into training set and verification set according to the ratio
of 8:2. Some of the pictures in the training set and their labels are shown in Figure 6. From
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left to right, the background is desert, snow, urban area, vegetation, and water area. The
top row is the original picture, and the second row is the corresponding label. The cloud is
represented by white, and the background is represented by black.

Cloud Snow BackgroundCloud Snow BackgroundCloud Snow Background

Figure 5. Here, we show some data of the CSWV Dataset. The first line is the original picture, and
the second line shows their corresponding labels. The background includes lake area, grassland,
farmland, bare land, and forest area.

Cloud BackgroundCloud BackgroundCloud Background

Figure 6. Here, we show some data of the HRC_WHU Dataset. The first line is the original image,
and the second line shows their corresponding labels. From left to right, the background is desert,
snow, urban area, vegetation, and water area.

3.1.3. Cloud and Cloud Shadow Dataset

This dataset mainly includes images taken from Landsat8 satellite and high-resolution
remote sensing image data selected from Google Earth (GE). The Landsat8 satellite carries
a total of 11 bands of land imagers and thermal infrared sensors, of which band 2, band 3,
and band 4 are used. GE contains high-definition satellite images from all over the world,
mainly from the QuickBird satellite and the WorldView series satellite, with three bands of
channel information and a spatial resolution of 30 meters. Because the size of the image
obtained directly was too large, the size of the image taken by the Landsat8 satellite was
10,000 × 10,000, and the size of the image obtained on GE was 4800 × 2742. Limited by
GPU memory, the original image was uniformly cut to 224 × 224 for training. After cutting,
we obtained a total of 10,000 pictures. Then, we randomly divided all the pictures into
training set and verification set according to the ratio of 8:2.

To guarantee that the dataset is genuine and representative, the images we selected
contain multiple different angles, heights, and backgrounds. The image background mainly
includes different scenes such as woodland, desert, urban areas, farmland, etc., as shown
in Figure 7. Some images were selected to display. From left to right, the background
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is the urban area, woodland, desert, water area, farmland, and mountain; the first row
is the original picture; and the second row are their corresponding labels. The cloud is
symbolized by red, the cloud shadow is symbolized by green, and the background is
symbolized by black.

Cloud Cloudshadow BackgroundCloud Cloudshadow BackgroundCloud Cloudshadow Background

Figure 7. Here, we show some data of the Cloud and Cloud Shadow Dataset. The first line is the
original image, and the second line shows their corresponding labels. The background from left to
right is urban area, woodland, desert, water area, farmland, and mountains.

3.1.4. Landsat8 SPARCS (L8 SPARCS)

This is a cloud and snow dataset created by M. Joseph Hughes of Oregon State Univer-
sity [69,70]. The images were captured by the Landsat8 satellite, which is equipped with
two types of sensors: land imager (OLI) and thermal infrared sensor (TIRS). The dataset
mainly includes 80 remote sensing image data points of different scenes of 1000 × 1000 size,
which are classified into five categories: cloud, cloud shadow, snow/ice, water, and back-
ground. We cut the original image into 256 × 256 small pictures for training. Then, all
images are randomly divided into the training set and validation set, according to the ratio
of 8:2. Figure 8 shows some data in the training set. The first line is the original image, and
the second line is its corresponding label. The white area represents the cloud, the black
area represents the cloud shadow, the sky blue area represents the snow/ice, the dark blue
area represents the water area, and the gray area represents the background.

Cloud Cloudshadow BackgroundSnow/ice WaterCloud Cloudshadow BackgroundSnow/ice WaterCloud Cloudshadow BackgroundSnow/ice Water

Figure 8. Here, we show some data of the L8 SPARCS Dataset. The first line is the original image,
and the second line shows their corresponding labels.

3.2. Ablation Study

On the CSWV Dataset, we conducted ablation tests to confirm the actual effect of each
module in the network. Firstly, the convolution branch was directly used as the reference
backbone, each layer was directly upsampled, and the feature maps that resulted from each
layer were then spliced and output. As shown in Table 2, we used MIOU as an evaluation
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index to evaluate the performance of the model. At this time, the MIOU values of the
model were only 91.974%.

Table 2. Ablation experiments of different modular combinations.

Methods MIOU(%)

Convolution Branch 91.974
Convolution Branch + Transformer Branch 92.420 (0.446 ↑)

Convolution Branch + Transformer Branch + Fusion Module 92.520 (0.1 ↑)
Convolution Branch + Transformer Branch + Fusion Module + DE 92.736 (0.216 ↑)

Then, each module was ordinally added to the network to test its feasibility and
that of the whole model. Table 2 shows the index changes of the whole network after
different modules were added in turn. The details in the table show that when all modules
are added, the network we proposed has the highest accuracy and achieves the optimal
results. To clearly demonstrate the real influence of each module on the entire network,
two pictures were extracted from the dataset for visualization experiments. As shown in
Figure 9, a picture containing a large-scale cloud layer was selected to show the heat map
of the whole network of the cloud after adding different modules. The detection of thin
clouds has always been a difficult problem. To demonstrate the effect of each module in this
network for detecting thin clouds, a picture with both thin clouds and snow was selected,
as shown in Figure 10. Different module combinations were used to generate heat maps for
clouds and snow, in which black boxes are used to mark the target areas with significant
differences in attention.

(a) (b) (c) (d) (e)(a) (b) (c) (d) (e)

Figure 9. The heat maps of cloud generated using different modular combinations. (a) Image, (b) Con-
volution Branch, (c) Convolution Branch + Transformer Branch, (d) Convolution Branch + Transformer
Branch + Fusion Module, (e) Convolution Branch + Transformer Branch + Fusion Module + DE.

(a) (b) (c) (d) (e)(a) (b) (c) (d) (e)

Figure 10. The heat maps of cloud and snow generated using different modular combinations.
(a) Image, (b) Convolution Branch, (c) Convolution Branch + Transformer Branch, (d) Convo-
lution Branch + Transformer Branch + Fusion Module, (e) Convolution Branch + Transformer
Branch + Fusion Module + DE.
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The multi-branch ablation experiment: In order to meet the requirements of complex
feature extraction, a single convolution or transformer cannot fully extract the features of
clouds and snow. The multi-branch structure proposed in this paper combines convolution
with a transformer. The convolution branch is used to extract local feature information,
as well as small-scale cloud and scattered snow information. The transformer branch
can establish the dependence relationship between long-distance information in the im-
age, which is beneficial for the large-scale extraction of cloud/snow information. At the
same time, global attention greatly reduces the interference of the extraction of complex
background-to-feature information. Additionally, the attention mechanism causes the
model to focus more on the objective. As we can see in Figure 9b,c, after the transformer
branch is added, the model pays more attention to the cloud. As shown in Figure 10b,c this
also demonstrates that the network of the multi-branch structure and the single convolution
branch has obvious differences in the attention of cloud and snow. After the transformer
branch is added, more attention is paid to the target. Table 2 demonstrates that the MIOU
value of the network reaches 92.420% after the multi-branch structure is used, which is
0.446% higher than when only the convolution branch is used.

The ablation experiment of the fusion module: Our purpose in constructing this
module is to fuse the information between different feature maps of the convolution branch
and the transformer branch. In the decoding process, the information between each of
the high-level features and low-level features is guided through the fusion module, and
the meaningful information between different feature maps is filtered out, which helps
to increase the recognition effectiveness and increase the model’s capacity for recogni-
tion. The use of strip convolution makes the model more precise in image segmentation.
Figures 9 and 10c,d show that the image segmentation is more refined, while the target
attention is improved, after the fusion module is added. Table 2 shows that the MIOU value
of the whole model reaches 92.520% after this fusion module is added, which is 0.1% higher
than that before it is added.

The ablation experiment for the decoder module: In the decoding part of the model,
a decoder module was reconstructed. Mixing the convolution with transformer is more
effective than a single convolution or transformer alone, and doing so keeps more of the
image’s original characteristics. Meanwhile, due to the addition of the transformer, the
model does not reduce the attention to the targets during the decoding process. On the
contrary, the discrimination between the target and the background is more obvious. The
discrimination between cloud and background shown in Figure 9e is more obvious than
that without this module. Figure 10e shows the heat maps of cloud and snow in the same
image after this decoder module is added. To the left of the picture, there is a thin cloud,
and it has similar characteristics with the underlying surface, which are easy to confuse.
After this decoder module was added, the network suggested in this article was capable
of accurately identifying thin clouds from the underlying surface, and the discrimination
between target and background was more obvious.

3.3. Comparison Test of the CSWV Dataset

In this part, to test the actual performance of our model, it is contrasted with other
excellent models from the past five years, namely DFANet [71], CVT [57], DABNet [72], and
HRNet [73]. To be able to highlight the advantages of our model in cloud/snow detection
tasks, we also used excellent models dedicated to cloud/snow detection in recent years
as controls for comparative experiments. The contrast network used in this paper has its
own characteristics. For example, FCN8s uses a fully convolutional structure to achieve
pixel-level classification. In DFANet, a semantic segmentation coding module with multiple
connection structures is embedded. DenseASPP [45] uses a densely connected structure.
PVT introduces the pyramid structure into transformer in order to gradually lower the
feature map and to make it acceptable for challenging prediction tasks. PAN [74] added
a bottom-up pyramid, enabling low-level positioning features to be passed over so that
the model can gather semantic and location information from the picture. For immediate
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semantic segmentation, BiseNetV2 [75] uses a two-branch structure to collect spatial and
semantic information. For the cloud/snow detection task, PADANet [50] used a parallel
approach where two branches were involved in the calculation to enhance the precision
and speed of the model. MSPFANet [76] proposed a multi-scale banded pooling module
to enhance the edge-segmentation capability. In CSDNet [52], multi-scale feature fusion
was used to increase the detection percision and detection efficiency of cloud/snow. In
SP_CSANet [77], the strip pooling residual structure and attention module are used to
avoid background interference.

Table 3 displays the score indicators of different networks on the CSWV Dataset.
Here, we used PA, MPA, F1, MIOU, and FWIOU as evaluation indicators to assess the
effectiveness of each model. It is visible from the table that for cloud/snow detection,
the model suggested in this paper has the highest detection precision and is superior to
other networks for all indicators. The scores on the five indicators are PA, 97.650%; MPA,
96.354%; F1, 94.350%; MIOU, 92.736%; and FWIOU, 95.483%. In other models, CDUNet [78]
introduces multi-scale convolution and high-frequency feature extractors to improve cloud
borders and to forecast debris clouds. A dual attention mechanism also makes it better for
cloud/snow detection, so that the detection accuracy is second only to the model proposed
in this paper. Other models use a pure convolution structure or add an attention mechanism
to convolution, but the final results are all not ideal. Although PVT uses a combination of
convolution and a transformer, its MIOU value on cloud/detection tasks is only 89.82%,
which is far less than our model.

Table 3. Comparison of evaluation indexes of different models on the CSWV Dataset (the network
dedicated to cloud/snow detection is marked in italics, and the best results are displayed in bold).

Method PA (%) MPA (%) F1 (%) MIOU (%) FWIOU (%)

DFANet [71] 95.239 91.057 88.926 85.368 91.206
DenseASPP (MobilenetV2) [45] 96.129 94.067 90.295 87.875 92.655

SegNet [79] 96.381 94.335 90.512 88.173 93.143
BiseNetV2 [75] 96.476 93.611 91.414 88.724 93.337
PADANet [50] 96.787 94.158 92.070 89.596 93.912
OCRNet [46] 96.791 94.643 91.947 89.678 93.912

PVT [56] 96.836 94.514 92.162 89.82 94.017
ESPNetV2 [80] 96.814 94.234 92.417 89.955 93.970
DABNet [72] 96.827 95.087 92.118 90.030 93.943

ACFNet (resnet50) [81] 96.778 95.536 91.924 90.040 93.823
GAFFRNet (resnet18) [51] 96.974 94.893 92.535 90.350 94.240
PSPNet (resnet50) [43] 97.024 94.619 92.834 90.504 94.316

ENet [44] 97.026 95.237 92.591 90.555 94.305
CCNet (resnet50) [82] 97.093 94.957 92.744 90.572 94.431

MSPFANet (resnet18) [76] 97.079 95.059 93.024 90.891 94.448
FCN8s (vgg16) [40] 97.186 95.643 93.002 91.129 94.608

CSDNet [52] 97.166 96.033 92.964 91.265 94.563
UNet [41] 97.261 94.697 93.732 91.402 94.801

HRNet [73] 97.254 95.612 93.354 91.447 94.748
PAN (resnet50) [74] 97.314 95.485 93.477 91.491 94.854

SP_CSANet [77] 97.307 95.582 93.504 91.581 94.853
CDUNet (resnet50) [78] 97.330 95.838 93.455 91.642 94.892

MCANet 97.650 96.354 94.350 92.736 95.483

To exhibit our model’s benefits for cloud and snow detection tasks, we selected several
images with different information for prediction. As shown in Figure 11, besides the model
given in this article, the prediction results of other models are also used for comparison,
in which we mark the missed and false detection areas in the figure with red boxes. The
images we selected contained different backgrounds, including bare land, vegetation, water
area, and desert. Many kinds of clouds include both thick and thin clouds. The fragmented
distribution of snow also makes the detection much more challenging. We can see in the
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figure that the segmentation result of PSPNet and BiseNetV2 is the roughest. Seeing as
the color characteristics of clouds and snow are similar, discerning them is significantly
harder to than with other tasks. BiseNetV2 cannot accurately differentiate clouds and
snow, and there are a lot of false detections. Due to the addition of the pyramid pooling
structure, PSPNet has a certain degree of improvement in the detection of targets of different
scales in theory, but it is susceptible to complex background interference for cloud/snow
tasks. As shown in the fifth set of images, PSPNet is completely unable to detect snow
on wasteland. Although the detection effect of HRNet and SP_CSANet is improved to
a certain extent, and it can accurately distinguish between clouds and snow, there are
still some missed detections in some areas with thin clouds, and the ability to recover the
edge details of clouds needs to be improved. Our model uses a convolution branch and a
transformer branch to extract local and global features in the image and combine them to
complement each other. The multi-branch structure enables us to completely extract the
hidden information in the image, avoiding the interference of similar color attributes of
clouds and snow, and accurately locate the clouds and snow. The addition of a new fusion
module can accurately combine information in feature maps of different scales. As the
figure illustrates, our model can not only accurately locate the cloud/snow location, but
small-scale thin clouds can also be effectively detected. In addition, the ability to recover the
edge of the cloud is much stronger than the model used for comparison, and the boundary
of the target can be accurately segmented. The final prediction result is the most realistic.

(a) (b) (c) (d) (e) (f) (g)(a) (b) (c) (d) (e) (f) (g)

Figure 11. Comparison of prediction results of some images on CSWV using different methods.
Among them, we marked the missed and false detection areas in the figure with red boxes. (a) Images,
(b) Labels, (c) MCANet, (d) SP_CSANet, (e) HRNet, (f) PSPNet, (g) BiseNetV2.
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Figure 12 demonstrates the segmentation impact of several models on the cloud’s
edge. We use green lines to outline the edge of the cloud segmented using different models.
The graph shows that our model creates a new fusion module to combine various levels of
information, and adds strip convolutions inside, so that the detail recovery of the cloud
edge is the closest to the actual situation and it can perfectly fit the edge of the cloud. Other
models such as BiseNetV2 and SP_CSANet not only recognize non-cloud backgrounds as
clouds, but they also handle cloud boundaries roughly. In general, our method can restore
the real situation of the cloud boundary as much as possible, and the segmentation results
are more suitable for the cloud boundary than with other models.

(a) (b) (c) (d) (e) (f) (g)(a) (b) (c) (d) (e) (f) (g)

Figure 12. Comparison of the effect of cloud edge segmentation by different models. We used green
lines to outline the edges of clouds segmented by different models. (a) Image, (b) Label, (c) MCANet,
(d) SP_CSANet, (e) HRNet, (f) PSPNet, (g) BiseNetV2.

Since the locations of the images collected are different, and the interference infor-
mation contained in the background varies, the segmentation effect of each model on the
cloud/snow under a relatively complex background is shown in Figure 13 to further test
the performance of our model under complex background interference. The first group
and the second group of pictures in the picture are collected in the rock gravel area, and the
distributed cloud layer are also thin clouds that are difficult to detect. The third group of
pictures are collected on the bare wasteland, and the bare ground has similar characteristics
to the thin snow covered, which can easily interfere with the snow detection of the model.
The road in the fourth group of images is easily misjudged as snow. The distribution of
clouds and snow in the fifth group of images is extremely fragmented, coupled with a large
amount of noise, which greatly increases the difficulty of model detection.

From Figure 13, it is clear that in the first set of pictures, HRNet misjudged the white
rock and soil as snow. In the second group of images, because the cloud layer is too thin,
the color discrimination between it and the underlying surface is not obvious, so that other
models cannot accurately locate the cloud position, and more or less misjudgment will
occur. For the fourth group of images, HRNet and BiseNetV2 misjudged parts of roads as
snow, while PSPNet did not detect snow. In the last set of images, due to the very complex
distribution structure of clouds and snow, and the large amount of noise interference,
neither PSPNet nor BiseNetV2 could accurately segment the shape of clouds/snow, and
the segmentation effect was very rough. Although SP_CSANet and HRNet were improved
to some extent, they still had false detection due to the interference of background, which
led to error-detection and missing-detection phenomena. The method proposed in this
paper can avoid the interference of the complex background to a large extent, and it can
completely separate the cloud and snow regions from the image. Additionally, the figure
illustrates that our model can still generate the best segmentation results in the case of a
large amount of interference factors.

3.4. Comparison Test of the HRC_WHU Dataset

To further prove the ability of our model to detect clouds, we conducted comparative
experiments on the HRC_WHU Dataset. Table 4 displays the outcomes of the experiment.
Here, we used PA, MPA, F1, MIOU, and FWIOU to test the actual performance of each
model. It is visible from the table that our model has the highest scores on all five indicators,
of which the MIOU index is at least 1.207% higher than other models.
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(a) (b) (c) (d) (e) (f) (g)(a) (b) (c) (d) (e) (f) (g)

Figure 13. Segmentation results of cloud/snow under complex background using different methods.
The areas with obvious segmentation errors are marked with red solid lines. (a) Image, (b) Label,
(c) MCANet, (d) SP_CSANet, (e) HRNet, (f) PSPNet, (g) BiseNetV2.

Table 4. Comparison of evaluation indexes of different models on the HRC_WHU Dataset (the best
results are displayed in bold).

Method PA (%) MPA (%) F1 (%) MIOU (%) FWIOU (%)

DenseASPP (MobilenetV2) 92.931 92.755 89.422 86.419 86.815
BiseNetV2 93.407 93.372 90.088 87.299 87.630

FCN8s (vgg16) 93.760 93.753 90.596 87.941 88.251
CVT 93.797 93.560 90.690 87.959 88.343

ESPNetV2 93.944 93.675 90.913 88.220 88.608
SegNet 94.107 93.828 91.155 88.516 88.900
UNet 94.322 94.253 91.424 88.950 89.259
ENet 94.354 94.241 91.479 89.000 89.320

PAN (resnet50) 94.544 94.483 91.747 89.358 89.656
PVT 94.584 94.530 91.804 89.433 89.728

OCRNet 94.701 94.823 91.945 89.679 89.922
DeepLabV3Plus (resnet101) 94.736 94.527 92.065 89.686 90.018

DABNet 94.844 94.978 92.153 89.945 90.181
CCNet (resnet5) 94.874 94.948 92.206 89.989 90.239

PSPNet (resnet50) 95.091 95.188 92.520 90.395 90.631
HRNet 95.137 94.999 92.639 90.442 90.736

MCANet 95.773 95.728 93.560 91.649 91.891

Figure 14 displays the segmentation results of the model for clouds in different scenar-
ios. The environments of the images from top to bottom are desert, snow, town, vegetation,
and water area. The types of clouds in the picture include thick clouds, thin clouds, and
fragmented small clouds. The segmentation result of thin clouds can be seen in the first se-
ries of images in the figure. The second group and the third group of images are the results
of segmenting thick clouds. The fourth group of images is a mixture of thick clouds and
thin clouds. The detection of thin clouds here is highly susceptible to complex background
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interference. Clouds on the snow easily confuse the judgment of the interference model
with snow, and the boundary recovery of fragmented clouds is a huge challenge.

(a) (b) (c) (d) (e) (f) (g)(a) (b) (c) (d) (e) (f) (g)(a) (b) (c) (d) (e) (f) (g)

Figure 14. Comparison of prediction results of some images on CSWV using different methods. The
false detection and missed detection in the prediction image are marked with red boxes. (a) Images,
(b) Labels, (c) MCANet, (d) PSPNet, (e) CCNet, (f) PVT, (g) BiseNetV2.

We mark the areas of false and missed detection in the prediction picture with red
boxes. From the figure, we can observe that the prediction effect of BiseNetV2 is the
roughest, and it cannot completely restore the shape of the cloud. This is because of
the insufficient extraction of semantic features. Although CCNet and PVT have a better
segmentation effect on thick clouds, they are easily affected by the background, missing the
detection of thin clouds and fragmented clouds. PSPNet presents a certain improvement
in its capacity to detect thin clouds; however, the final segmentation result is still poorer
than our model, and the recovery of the cloud boundary is not perfect. In the detection
of clouds, our model achieves the best results. Regarding our model, the multi-branch
structure accounts for various information in the image, so as to achieve a better detection
and location of clouds. At the same time, the decoder fully utilizes the characteristic
information extracted by these two branches to make the boundary of the cloud more fine,
and greatly reduce the interference of clutter scenes.

3.5. Comparison Test of the Cloud and Cloud Shadow Dataset

In this part, we use a self-built cloud and cloud shadow dataset to prove the gener-
alization ability of our model. Table 5 shows the test results of different models on this
dataset. Here, PA, MPA, F1, MIOU, and FWIOU are used as score indicators to evaluate
the performance of each model. For the task of identifying clouds and cloud shadows, our
model has the highest score on all indicators compared to other methods. The MIOU score
reaches 94.894%, which is at least 1.258% higher than those of other models. According to
the outcomes shown in the table, our model not only has excellent segmentation ability for
clouds, but it also has good generalization ability on cloud and cloud shadow datasets.
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Table 5. Comparison of evaluation indexes of different models on the Cloud and Snow Dataset (the
best results are displayed in bold).

Method PA (% ) MPA (%) F1 (%) MIOU (%) FWIOU (%)

CVT 94.623 93.409 90.448 87.697 89.861
SegNet 94.882 93.148 90.986 88.091 90.361

DenseASPP(MobilenetV2) 95.362 94.281 91.770 89.314 91.185
ESPNetV2 95.561 94.598 92.074 89.746 91.543

UNet 95.886 94.735 92.667 90.368 92.150
BiSeNetV2 95.918 94.680 92.781 90.453 92.211

DeepLabV3Plus(resnet101) 96.136 95.401 92.945 90.933 92.591
FCN8s 96.146 95.477 93.023 91.038 92.604

PSPNet(resnet50) 96.283 95.719 93.219 91.335 92.855
HRNet 96.511 95.650 93.787 91.846 93.289

DABNet 96.527 95.953 93.689 91.891 93.308
ENet 96.549 95.763 93.803 91.915 93.357
pvt_s 96.571 95.906 93.817 91.993 93.394

OCRNet 96.683 95.950 94.017 92.205 93.605
PAN(resnet50) 97.254 96.822 94.995 93.547 94.667

CCNet(resnet50) 97.270 96.632 95.177 93.636 94.704
MCANet 97.839 97.351 96.127 94.894 95.782

Figure 15 demonstrates the segmentation results of each model on clouds and cloud
shadows in different scenarios. We selected images in different regions. Images of the first
and second sets were captured in desert areas, images of the third sets were clouds and
shadows over farmland, the fourth and fifth picture sets were captured over towns, and
the sixth and seventh picture sets were captured over vegetation. In the displayed pictures,
vegetation and cloud shadow have similar characteristics, which can interfere with the
detection of cloud shadows. The fourth group of pictures contains a lot of noise, which also
makes the detection much more challenging. Owing to a series of problems such as the
insufficient extraction of image information and the loss of information in the upsampling
process, other models are easily affected by interference factors, resulting in different
degrees of missing detection and erroneous detection. We used the yellow box in the figure
to mark where the error was detected. The first and second group of images shows that
CVT and BiseNetV2 have many missed detections due to the scattered distribution of cloud
shadows. In the fourth set of images, PSPNet misjudged a large number of backgrounds as
clouds due to noise interference, and other models were significantly less detailed than the
methods proposed in this paper for small edge clouds. The sixth and seventh groups were
affected by vegetation. Most models have a rough description of the cloud shadow edge,
and CVT did not detect the small cloud in the seventh group of images. In summary, in the
final prediction results, the method we suggest can accurately locate the position of clouds
and cloud shadows and restore their complete shapes. It can also avoid the interference of
similar backgrounds to detect small-scale thin clouds. The anti-interference ability of noise
is also significantly better than those of other networks. The overall performance on this
dataset is also better than the most advanced network.

3.6. Comparison Test of the L8 SPARCS Dataset

In order to verify the performance of the proposed model in more complex scenarios,
the L8 SPARCS Dataset is used for comparative experiments to verify the performance
of our proposed method in multi-classification scenarios. Here, we also use PA, MPA, F1,
MIOU, and FWIOU as our evaluation indicators to evaluate the performance of the model.
Table 6 shows the evaluation results of different models for this dataset. It can be seen from
the table that after other categories are added, our method can still maintain the highest
accuracy, and the detection ability of clouds and snow is far more than with other methods.
The score on MIOU is 80.253%, which is at least 1.285% higher than other methods.
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(a) (b) (c) (d) (e) (f) (g)(a) (b) (c) (d) (e) (f) (g)(a) (b) (c) (d) (e) (f) (g)

Figure 15. Comparison of prediction results of some images on the Cloud and Cloud Shadow Dataset
using different methods. We use a yellow box in the figure to mark the detection error. (a) Images,
(b) Labels, (c) MCANet, (d) PVT, (e) PSPNet, (f) BiseNetV2, (g) CVT.

Figure 16 shows the prediction of different methods on this dataset, in which we mark
the obvious error part of the prediction result with a red solid line. The images used for
testing contain a wealth of categories, including scattered small clouds, small rivers, large
thick clouds, and perennial ice and snow. Due to the complex background, the detection of
small targets is a huge challenge. For example, in the first and third images, most other
methods have missed the detection of the narrow river in the middle. In the detection of
clouds, cloud shadows, and snow, it has been difficult to recover its edges. ESPNetV2, PAN,
and other networks have a rough segmentation of edges and cannot restore the details.
Although the effect of SegNet has improved, there is a lot of noise in the final prediction
map. The network proposed in this paper can detect small rivers, and the ability to segment
boundaries is more in line with the actual situation. The detection effect of small clusters
of clouds in the second image and in the four-drop image is also far better than those of
other methods.
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Table 6. Comparison of evaluation indexes of different models on the L8 SPARCS Dataset (the best
results are displayed in bold).

Methods PA (%) MPA (%) F1 (%) MIOU (%) FWIOU (%)

DenseASPP(MobilenetV2) 85.403 74.929 72.250 65.421 76.496
ENet 86.759 79.685 73.983 68.384 77.649
CVT 87.414 79.125 74.341 68.689 79.117

BiSeNetV2 87.474 79.749 75.613 69.914 79.058
ESPNetV2 88.332 81.228 77.098 71.631 80.173

SegNet 89.324 82.584 78.652 73.306 81.519
DABNet 89.680 84.288 78.288 73.618 81.988

CCNet(resnet50) 89.961 82.704 79.130 73.719 82.583
PSPNet(resnet50) 89.713 81.923 79.673 73.869 82.320

DeepLabV3Plus(resnet101) 89.711 83.992 79.834 74.706 82.351
pvt_s 90.301 85.685 79.535 75.300 82.961

OCRNet 90.441 85.199 80.944 76.113 83.141
PAN(resnet50) 90.925 84.171 81.670 76.281 84.023

HRNet 90.774 85.567 81.904 77.103 83.611
FCN8s 91.481 84.187 82.591 77.264 85.154
UNet 91.758 86.519 83.650 78.968 85.304

MCANet 92.599 87.088 84.902 80.253 86.726

(a) (b) (c) (d) (e) (f) (g)(a) (b) (c) (d) (e) (f) (g)(a) (b) (c) (d) (e) (f) (g)

Figure 16. Comparison of prediction results of some images on L8 SPARCS Dataset using different
methods. We use a red solid line to mark the serious errors. (a) Images, (b) Labels, (c) MCANet,
(d) HRNet, (e) PAN, (f) SegNet, (g) ESPNetV2.

4. Discussion
4.1. Advantages of the Method

The method proposed in this paper has far better performance than other methods in
both cloud/snow datasets and generalization experiments, and can effectively segment
cloud and snow regions. The experimental results on four datasets prove the advantages of
our method. Compared with other methods, the proposed method has higher detection
accuracy. We used the multi-branch structure to combine convolution and a transformer to
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extract the feature information in the image and then combine it. This can not only make
up for the limitations of convolution but also improve the efficiency of feature extraction.

The decoder part is different from most methods that directly recover the original
image size or use a single convolution for upsampling. We constructed a new decoder
module, which combines convolution and a transformer for the first time to enhance
the model’s attention to useful information in the process of image restoration. In the
upsampling process, it can avoid the loss of effective information and the interference of
invalid information. It can maximize the retention of useful information in the feature map
and filter useless information. In practical applications, it can deal with various complex
scene conditions, and the anti-interference ability of the model is significantly enhanced.
The processing ability for complex scenes is much better than the current method, which
can accurately detect the cloud/snow area under the interference of complex background.
It greatly reduces the problem of error detection and the missed detection of cloud/snow,
and it has strong anti-interference ability. In addition to the fusion effect, the fusion module
is also beneficial for the extraction of edge feature information.

4.2. Limitations and Future Research Directions

Although our method has the highest detection accuracy, there is still much room for
optimization in the parameters of our model. Due to the multi-branch structure, although
the characteristic information in the picture can be effectively extracted, the parameters of
the model are also increased. In the future, our studies will aim to reduce the parameters of
the model, while ensuring accuracy and minimizing the weight of the model. This paper
proves that our method is effective for cloud and snow segmentation for optical remote
sensing images. In the future, we hope to extend this method to other remote sensing data,
such as SAR remote sensing, to improve the universality of different types of data.

5. Conclusions

This paper proposes a multi-branch convolutional attention network to achieve end-
to-end cloud/snow segmentation tasks in optical remote sensing images. The method was
tested and verified on different datasets. The tests proved that the detection of cloud/snow
is effective, and that the model can accurately segment the cloud/snow area in images. The
multi-branch network we designed combines convolution and a transformer. Compared
with existing methods, the ability to extract features is greatly enhanced. Experiments on
four datasets show that our method has not only the highest accuracy, but also a strong
generalization performance. Specifically, the MIOU score on the CSWV Dataset is 92.736%,
and the MIOU scores on the generalized datasets, the HRC_WHU Dataset, Cloud and
Cloud Shadow Dataset, and L8 SPARCS Dataset, reach 91.649%, 94.894%, and 80.253%,
respectively, far exceeding other models.

Author Contributions: Conceptualization, K.H. and M.X.; Methodology, M.X.; Software, E.Z.; Vali-
dation, E.Z.; Formal analysis, E.Z.; Investigation, K.H.; Writing—original draft, E.Z.; Writing—review
& editing, L.W. and H.L.; Visualization, L.W.; Supervision, M.X. All authors have read and agreed to
the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (Grant
No. 42075130).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Marghany, M. Nonlinear Ocean Fynamics: Synthetic Aperture Radar; Elsevier: Amsterdam, The Netherlands, 2021.
2. Marghany, M. Advanced Algorithms for Mineral and Hydrocarbon Exploration Using Synthetic Aperture Radar; Elsevier: Amsterdam,

The Netherlands, 2021.
3. Manolakis, D.; Marden, D.; Shaw, G.A. Hyperspectral image processing for automatic target detection applications. Linc. Lab. J.

2003, 14, 79–116.



Remote Sens. 2023, 15, 1055 27 of 29

4. Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance
of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [CrossRef]

5. Hunt, E.R., Jr.; Daughtry, C.; Eitel, J.U.; Long, D.S. Remote sensing leaf chlorophyll content using a visible band index. Agron. J.
2011, 103, 1090–1099. [CrossRef]

6. Gao, J.; Weng, L.; Xia, M.; Lin, H. MLNet: Multichannel feature fusion lozenge network for land segmentation. J. Appl. Remote
Sens. 2022, 16, 016513. [CrossRef]

7. Song, L.; Xia, M.; Jin, J.; Qian, M.; Zhang, Y. SUACDNet: Attentional change detection network based on siamese U-shaped
structure. Int. J. Appl. Earth Obs. Geoinf. 2021, 105, 102597. [CrossRef]

8. Yin, H.; Weng, L.; Li, Y.; Xia, M.; Hu, K.; Lin, H.; Qian, M. Attention-guided siamese networks for change detection in high
resolution remote sensing images. Int. J. Appl. Earth Obs. Geoinf. 2023, 117, 103206. [CrossRef]

9. Long, J.; Shi, Z.; Tang, W.; Zhang, C. Single remote sensing image dehazing. IEEE Geosci. Remote Sens. Lett. 2013, 11, 59–63. [CrossRef]
10. Paltridge, G.W.; CMR, P. Radiative Processes in Meteorology and Climatology; Elsevier: Amsterdam, The Netherlands, 1976.
11. Dozier, J. Spectral signature of alpine snow cover from the Landsat Thematic Mapper. Remote Sens. Environ. 1989, 28, 9–22. [CrossRef]
12. Zhu, Z.; Woodcock, C.E. Automated cloud, cloud shadow, and snow detection in multitemporal Landsat data: An algorithm

designed specifically for monitoring land cover change. Remote Sens. Environ. 2014, 152, 217–234. [CrossRef]
13. Bigdeli, B.; Amini Amirkolaee, H.; Pahlavani, P. Deep feature learning versus shallow feature learning systems for joint use of

airborne thermal hyperspectral and visible remote sensing data. Int. J. Remote Sens. 2019, 40, 7048–7070. [CrossRef]
14. Price, J.C. Spectral band selection for visible-near infrared remote sensing: Spectral-spatial resolution tradeoffs. IEEE Trans.

Geosci. Remote Sens. 1997, 35, 1277–1285. [CrossRef]
15. Maglione, P.; Parente, C.; Vallario, A. Coastline extraction using high resolution WorldView-2 satellite imagery. Eur. J. Remote

Sens. 2014, 47, 685–699. [CrossRef]
16. Gleyzes, M.A.; Perret, L.; Kubik, P. Pleiades system architecture and main performances. Int. Arch. Photogramm. Remote Sens.

Spat. Inf. Sci. 2012, 39, 537–542. [CrossRef]
17. Sun, L.; Mi, X.; Wei, J.; Wang, J.; Tian, X.; Yu, H.; Gan, P. A cloud detection algorithm-generating method for remote sensing data

at visible to short-wave infrared wavelengths. ISPRS J. Photogramm. Remote Sens. 2017, 124, 70–88. [CrossRef]
18. Warren, S.G. Optical properties of snow. Rev. Geophys. 1982, 20, 67–89. [CrossRef]
19. Allen, R.C., Jr.; Durkee, P.A.; Wash, C.H. Snow/cloud discrimination with multispectral satellite measurements. J. Appl. Meteorol.

Climatol. 1990, 29, 994–1004. [CrossRef]
20. Moses, W.J.; Philpot, W.D. Evaluation of atmospheric correction using bi-temporal hyperspectral images. Isr. J. Plant Sci. 2012,

60, 253–263. [CrossRef]
21. Liu, X.; Xu, J.M.; Du, B. A bi-channel dynamic thershold algorithm used in automatically identifying clouds on gms-5 imagery.

J. Appl. Meteorlog. Sci. 2005, 16, 134–444.
22. Tapakis, R.; Charalambides, A. Equipment and methodologies for cloud detection and classification: A review. Sol. Energy 2013,

95, 392–430. [CrossRef]
23. Zhai, H.; Zhang, H.; Zhang, L.; Li, P. Cloud/shadow detection based on spectral indices for multi/hyperspectral optical remote

sensing imagery. ISPRS J. Photogramm. Remote Sens. 2018, 144, 235–253. [CrossRef]
24. Zhu, X.; Helmer, E.H. An automatic method for screening clouds and cloud shadows in optical satellite image time series in

cloudy regions. Remote Sens. Environ. 2018, 214, 135–153. [CrossRef]
25. Li, Z.; Shen, H.; Li, H.; Xia, G.S.; Gamba, P.; Zhang, L. Multi-feature combined cloud and cloud shadow detection in GaoFen-1

wide field of view imagery. Remote Sens. Environ. 2017, 191, 342–358. [CrossRef]
26. Qiu, S.; Zhu, Z.; Woodcock, C.E. Cirrus clouds that adversely affect Landsat 8 images: What are they and how to detect them?

Remote Sens. Environ. 2020, 246, 111884. [CrossRef]
27. Zhang, Y.; Guindon, B.; Cihlar, J. An image transform to characterize and compensate for spatial variations in thin cloud

contamination of Landsat images. Remote Sens. Environ. 2002, 82, 173–187. [CrossRef]
28. An, Z.; Shi, Z. Scene Learning for Cloud Detection on Remote-Sensing Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.

2015, 8, 4206–4222. [CrossRef]
29. Dumitru, C.O.; Datcu, M. Information content of very high resolution SAR images: Study of feature extraction and imaging

parameters. IEEE Trans. Geosci. Remote Sens. 2013, 51, 4591–4610. [CrossRef]
30. Liu, M.; Wu, Y.; Zhao, W.; Zhang, Q.; Li, M.; Liao, G. Dempster–Shafer fusion of multiple sparse representation and statistical

property for SAR target configuration recognition. IEEE Geosci. Remote Sens. Lett. 2013, 11, 1106–1110. [CrossRef]
31. Hu, K.; Weng, C.; Zhang, Y.; Jin, J.; Xia, Q. An overview of underwater vision enhancement: from traditional methods to recent

deep learning. J. Mar. Sci. Eng. 2022, 10, 241. [CrossRef]
32. Hu, K.; Ding, Y.; Jin, J.; Weng, L.; Xia, M. Skeleton motion recognition based on multi-scale deep spatio-temporal features. Appl.

Sci. 2022, 12, 1028. [CrossRef]
33. Zhang, E.; Hu, K.; Xia, M.; Weng, L.; Lin, H. Multilevel feature context semantic fusion network for cloud and cloud shadow

segmentation. J. Appl. Remote Sens. 2022, 16, 046503. [CrossRef]
34. Shen, X.; Weng, L.; Xia, M.; Lin, H. Multi-Scale Feature Aggregation Network for Semantic Segmentation of Land Cover. Remote

Sens. 2022, 14, 6156. [CrossRef]

http://doi.org/10.1016/S0034-4257(02)00096-2
http://dx.doi.org/10.2134/agronj2010.0395
http://dx.doi.org/10.1117/1.JRS.16.016513
http://dx.doi.org/10.1016/j.jag.2021.102597
http://dx.doi.org/10.1016/j.jag.2023.103206
http://dx.doi.org/10.1109/LGRS.2013.2245857
http://dx.doi.org/10.1016/0034-4257(89)90101-6
http://dx.doi.org/10.1016/j.rse.2014.06.012
http://dx.doi.org/10.1080/01431161.2019.1597310
http://dx.doi.org/10.1109/36.628794
http://dx.doi.org/10.5721/EuJRS20144739
http://dx.doi.org/10.5194/isprsarchives-XXXIX-B1-537-2012
http://dx.doi.org/10.1016/j.isprsjprs.2016.12.005
http://dx.doi.org/10.1029/RG020i001p00067
http://dx.doi.org/10.1175/1520-0450(1990)029<0994:SDWMSM>2.0.CO;2
http://dx.doi.org/10.1560/IJPS.60.1-2.253
http://dx.doi.org/10.1016/j.solener.2012.11.015
http://dx.doi.org/10.1016/j.isprsjprs.2018.07.006
http://dx.doi.org/10.1016/j.rse.2018.05.024
http://dx.doi.org/10.1016/j.rse.2017.01.026
http://dx.doi.org/10.1016/j.rse.2020.111884
http://dx.doi.org/10.1016/S0034-4257(02)00034-2
http://dx.doi.org/10.1109/JSTARS.2015.2438015
http://dx.doi.org/10.1109/TGRS.2013.2265413
http://dx.doi.org/10.1109/LGRS.2013.2287295
http://dx.doi.org/10.3390/jmse10020241
http://dx.doi.org/10.3390/app12031028
http://dx.doi.org/10.1117/1.JRS.16.046503
http://dx.doi.org/10.3390/rs14236156


Remote Sens. 2023, 15, 1055 28 of 29

35. Hu, K.; Li, M.; Xia, M.; Lin, H. Multi-Scale Feature Aggregation Network for Water Area Segmentation. Remote Sens. 2022,
14, 206. [CrossRef]

36. Chen, B.; Xia, M.; Qian, M.; Huang, J. MANet: A multi-level aggregation network for semantic segmentation of high-resolution
remote sensing images. Int. J. Remote Sens. 2022, 43, 5874–5894. [CrossRef]

37. Wang, Z.; Xia, M.; Lu, M.; Pan, L.; Liu, J. Parameter Identification in Power Transmission Systems Based on Graph Convolution
Network. IEEE Trans. Power Deliv. 2022, 37, 3155–3163. [CrossRef]

38. Ma, Z.; Xia, M.; Weng, L.; Lin, H. Local Feature Search Network for Building and Water Segmentation of Remote Sensing Image.
Sustainability 2023, 15, 3034. [CrossRef]

39. Miao, S.; Xia, M.; Qian, M.; Zhang, Y.; Liu, J.; Lin, H. Cloud/shadow segmentation based on multi-level feature enhanced network
for remote sensing imagery. Int. J. Remote Sens. 2022, 43, 5940–5960. [CrossRef]

40. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE conference
on computer vision and pattern recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440.

41. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the
International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October
2015; pp. 234–241.

42. Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image
segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018;
pp. 801–818.

43. Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid scene parsing network. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2881–2890.

44. Paszke, A.; Chaurasia, A.; Kim, S.; Culurciello, E. Enet: A deep neural network architecture for real-time semantic segmentation.
arXiv 2016, arXiv:1606.02147.

45. Yang, M.; Yu, K.; Zhang, C.; Li, Z.; Yang, K. Denseaspp for semantic segmentation in street scenes. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 3684–3692.

46. Yuan, Y.; Chen, X.; Chen, X.; Wang, J. Segmentation transformer: Object-contextual representations for semantic segmentation.
arXiv 2019, arXiv:1909.11065.

47. Li, Y.; Chen, W.; Zhang, Y.; Tao, C.; Xiao, R.; Tan, Y. Accurate cloud detection in high-resolution remote sensing imagery by
weakly supervised deep learning. Remote Sens. Environ. 2020, 250, 112045. [CrossRef]

48. Guo, J.; Yang, J.; Yue, H.; Tan, H.; Hou, C.; Li, K. CDnetV2: CNN-Based Cloud Detection for Remote Sensing Imagery With
Cloud-Snow Coexistence. IEEE Trans. Geosci. Remote Sens. 2021, 59, 700–713. [CrossRef]

49. Hongcai, D.; Li, K.; Guo, J.; Zhang, J.; Yang, J. Cloud and snow detection from remote sensing imagery based on convolutional
neural network. Optoelectron. Imaging Multimed. Technol. VI 2019, 11187, 260–266.

50. Xia, M.; Qu, Y.; Lin, H. PANDA: Parallel asymmetric network with double attention for cloud and its shadow detection. J. Appl.
Remote Sens. 2021, 15, 046512. [CrossRef]

51. Xia, M.; Wang, T.; Zhang, Y.; Liu, J.; Xu, Y. Cloud/shadow segmentation based on global attention feature fusion residual network
for remote sensing imagery. Int. J. Remote Sens. 2021, 42, 2022–2045. [CrossRef]

52. Zhang, G.; Gao, X.; Yang, Y.; Wang, M.; Ran, S. Controllably Deep Supervision and Multi-Scale Feature Fusion Network for Cloud
and Snow Detection Based on Medium-and High-Resolution Imagery Dataset. Remote Sens. 2021, 13, 4805. [CrossRef]

53. Liao, D.; Shi, C.; Wang, L. A complementary integrated Transformer network for hyperspectral image classification. CAAI Trans.
Intell. Technol. 2023. [CrossRef]

54. Shi, C.; Zhao, X.; Wang, L. A multi-branch feature fusion strategy based on an attention mechanism for remote sensing image
scene classification. Remote Sens. 2021, 13, 1950. [CrossRef]

55. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;
Gelly, S.; et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929.

56. Wang, W.; Xie, E.; Li, X.; Fan, D.P.; Song, K.; Liang, D.; Lu, T.; Luo, P.; Shao, L. Pyramid vision transformer: A versatile backbone
for dense prediction without convolutions. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
Montreal, BC, Canadam, 11–17 October 2021; pp. 568–578.

57. Wu, H.; Xiao, B.; Codella, N.; Liu, M.; Dai, X.; Yuan, L.; Zhang, L. Cvt: Introducing convolutions to vision transformers. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021, pp. 22–31.

58. Pan, J.; Bulat, A.; Tan, F.; Zhu, X.; Dudziak, L.; Li, H.; Tzimiropoulos, G.; Martinez, B. Edgevits: Competing light-weight cnns on
mobile devices with vision transformers. In Proceedings of the European Conference on Computer Vision, Tel Aviv, Israel, 23–27
October 2022; pp. 294–311.

59. Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Semantic image segmentation with deep convolutional nets
and fully connected crfs. arXiv 2014, arXiv:1412.7062.

60. Xia, M.; Li, Y.; Zhang, Y.; Weng, L.; Liu, J. Cloud/snow recognition of satellite cloud images based on multiscale fusion attention
network. J. Appl. Remote Sens. 2020, 14, 032609. [CrossRef]

61. Song, L.; Xia, M.; Weng, L.; Lin, H.; Qian, M.; Chen, B. Axial Cross Attention Meets CNN: Bibranch Fusion Network for Change
Detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 32–43. [CrossRef]

http://dx.doi.org/10.3390/rs14010206
http://dx.doi.org/10.1080/01431161.2022.2073795
http://dx.doi.org/10.1109/TPWRD.2021.3124528
http://dx.doi.org/10.3390/su15043034
http://dx.doi.org/10.1080/01431161.2021.2014077
http://dx.doi.org/10.1016/j.rse.2020.112045
http://dx.doi.org/10.1109/TGRS.2020.2991398
http://dx.doi.org/10.1117/1.JRS.15.046512
http://dx.doi.org/10.1080/01431161.2020.1849852
http://dx.doi.org/10.3390/rs13234805
http://dx.doi.org/10.1049/cit2.12150
http://dx.doi.org/10.3390/rs13101950
http://dx.doi.org/10.1117/1.JRS.14.032609
http://dx.doi.org/10.1109/JSTARS.2022.3224081


Remote Sens. 2023, 15, 1055 29 of 29

62. Xia, M.; Liu, W.; Shi, B.; Weng, L.; Liu, J. Cloud/snow recognition for multispectral satellite imagery based on a multidimensional
deep residual network. Int. J. Remote Sens. 2019, 40, 156–170. [CrossRef]

63. Xia, M.; Zhang, X.; Weng, L.; Xu, Y. Multi-stage feature constraints learning for age estimation. IEEE Trans. Inf. Forensics Secur.
2020, 15, 2417–2428. [CrossRef]

64. Cao, J.; Li, Y.; Sun, M.; Chen, Y.; Lischinski, D.; Cohen-Or, D.; Chen, B.; Tu, C. Do-conv: Depthwise over-parameterized
convolutional layer. IEEE Trans. Image Process. 2022. [CrossRef] [PubMed]

65. Hendrycks, D.; Gimpel, K. Gaussian error linear units (gelus). arXiv 2016, arXiv:1606.08415.
66. Xia, X.; Li, J.; Wu, J.; Wang, X.; Wang, M.; Xiao, X.; Zheng, M.; Wang, R. TRT-ViT: TensorRT-oriented Vision Transformer. arXiv

2022, arXiv:2205.09579.
67. Liu, L.; Jiang, H.; He, P.; Chen, W.; Liu, X.; Gao, J.; Han, J. On the variance of the adaptive learning rate and beyond. arXiv 2019,

arXiv:1908.03265.
68. Li, Z.; Shen, H.; Cheng, Q.; Liu, Y.; You, S.; He, Z. Deep learning based cloud detection for remote sensing images by the fusion of

multi-scale convolutional features. arXiv 2018, arXiv:1810.05801.
69. Hughes, M.J.; Hayes, D.J. Automated detection of cloud and cloud shadow in single-date Landsat imagery using neural networks

and spatial post-processing. Remote Sens. 2014, 6, 4907–4926. [CrossRef]
70. Hughes, M. L8 SPARCS Cloud Validation Masks; US Geological Survey: Sioux Falls, SD, USA, 2016.
71. Li, H.; Xiong, P.; Fan, H.; Sun, J. Dfanet: Deep feature aggregation for real-time semantic segmentation. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 9522–9531.
72. Li, G.; Yun, I.; Kim, J.; Kim, J. Dabnet: Depth-wise asymmetric bottleneck for real-time semantic segmentation. arXiv 2019,

arXiv:1907.11357.
73. Sun, K.; Xiao, B.; Liu, D.; Wang, J. Deep high-resolution representation learning for human pose estimation. In Proceedings of the

IEEE/CVF conference on computer vision and pattern recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 5693–5703.
74. Li, H.; Xiong, P.; An, J.; Wang, L. Pyramid attention network for semantic segmentation. arXiv 2018, arXiv:1805.10180.
75. Yu, C.; Gao, C.; Wang, J.; Yu, G.; Shen, C.; Sang, N. Bisenet v2: Bilateral network with guided aggregation for real-time semantic

segmentation. Int. J. Comput. Vis. 2021, 129, 3051–3068. [CrossRef]
76. Lu, C.; Xia, M.; Lin, H. Multi-scale strip pooling feature aggregation network for cloud and cloud shadow segmentation. Neural

Comput. Appl. 2022, 34, 6149–6162. [CrossRef]
77. Qu, Y.; Xia, M.; Zhang, Y. Strip pooling channel spatial attention network for the segmentation of cloud and cloud shadow.

Comput. Geosci. 2021, 157, 104940. [CrossRef]
78. Hu, K.; Zhang, D.; Xia, M. Cdunet: Cloud detection unet for remote sensing imagery. Remote Sens. 2021, 13, 4533. [CrossRef]
79. Badrinarayanan, V.; Handa, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for robust semantic

pixel-wise labelling. arXiv 2015, arXiv:1505.07293.
80. Mehta, S.; Rastegari, M.; Shapiro, L.; Hajishirzi, H. Espnetv2: A light-weight, power efficient, and general purpose convolutional

neural network. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA,
USA, 15–20 June 2019; pp. 9190–9200.

81. Zhang, F.; Chen, Y.; Li, Z.; Hong, Z.; Liu, J.; Ma, F.; Han, J.; Ding, E. Acfnet: Attentional class feature network for semantic
segmentation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27 October–2
November 2019; pp. 6798–6807.

82. Huang, Z.; Wang, X.; Huang, L.; Huang, C.; Wei, Y.; Liu, W. Ccnet: Criss-cross attention for semantic segmentation. In Proceedings
of the IEEE/CVF international Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 603–612.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1080/01431161.2018.1508917
http://dx.doi.org/10.1109/TIFS.2020.2969552
http://dx.doi.org/10.1109/TIP.2022.3175432
http://www.ncbi.nlm.nih.gov/pubmed/35594231
http://dx.doi.org/10.3390/rs6064907
http://dx.doi.org/10.1007/s11263-021-01515-2
http://dx.doi.org/10.1007/s00521-021-06802-0
http://dx.doi.org/10.1016/j.cageo.2021.104940
http://dx.doi.org/10.3390/rs13224533

	Introduction
	Methodology
	Network Architecture
	Backbone
	Fusion Module
	Decoder Module
	Experiment Details

	Experiment
	Datasets
	CSWV Dataset
	HRC_WHU Dataset
	Cloud and Cloud Shadow Dataset
	Landsat8 SPARCS (L8 SPARCS)

	Ablation Study
	Comparison Test of the CSWV Dataset
	Comparison Test of the HRC_WHU Dataset
	Comparison Test of the Cloud and Cloud Shadow Dataset
	Comparison Test of the L8 SPARCS Dataset

	Discussion
	Advantages of the Method
	Limitations and Future Research Directions

	Conclusions
	References

