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Abstract: The accurate detection and extraction of roads using remote sensing technology are crucial
to the development of the transportation industry and intelligent perception tasks. Recently, in view of
the advantages of CNNs in feature extraction, its related road extraction methods have been proposed
successively. However, due to the limitation of kernel size, they perform less effectively at capturing
long-range information and global context, which are crucial for road targets distributed over long
distances and highly structured. To deal with this problem, a novel model named RoadFormer with a
Swin Transformer as the backbone is developed in this paper. Firstly, to extract long-range information
effectively, a Swin Transformer multi-scale encoder is adopted in our model. Secondly, to enhance
the feature representation capability of the model, we design an innovative bottleneck module, in
which the spatial and channel separable convolution is employed to obtain fine-grained and globe
features, and then a dilated block is connected after the spatial convolution module to capture more
integrated road structures. Finally, a lightweight decoder consisting of transposed convolution and
skip connection generates the final extraction results. Extensive experimental results confirm the
advantages of RoadFormer on the Deepglobe and Massachusetts datasets. The comparative results
of visualization and quantification demonstrate that our model outperforms comparable methods.

Keywords: road extraction; remote sensing image; Swin Transformer; separable convolution

1. Introduction

The extraction of the road from remote sensing images has long been a hot research
topic owing to its essential role in applications including automatic driving, vehicle naviga-
tion, and road monitoring [1,2]. In the past decades, researchers have achieved good results
with high-contrast images using traditional methods involving mathematical morphology
and texture analysis [3–5]. However, these methods are usually limited by fixed parameters
and have been proven to underperform when applied to low-contrast images [6–8].

From the machine learning perspective, the road extraction work can be regarded as
a classification task with two categories (road and background), which is equivalent to
a binary segmentation task. Considering the excellent performance of deep learning in
recent years for computer vision tasks, researchers nowadays prefer to use deep learning
methods to deal with road extraction tasks. Some recent works have explored CNN-based
road extraction techniques [9–13], which outperform traditional methods by overcoming
the shortcomings mentioned above. However, these works only simplify road extraction to
a semantic segmentation problem and ignore the inherent structure of the road. Extracting
roads is not an exact segmentation problem due to two reasons. First, the resolution of
remote sensing images is usually lower than that of images in general tasks, which means
that road segmentation networks should have a large receptive field. Second, since the road
areas in remote sensing images are often slender and complicated, the network is supposed
to retain the fine-grained feature of the image. CNN-based models are not effective enough
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to solve the problem because the receptive field is usually determined by the convolution
kernel size. The current CNN-based models mainly use a 3× 3 convolution kernel, which
is far from satisfying the demand of road extraction tasks, while further increasing the size
of the convolution kernel will increase the computational cost with little improvement.
Moreover, the pooling will lose image details during image downsampling. Therefore, a
new structure is still needed for solving road extraction tasks.

Fortunately, the Vision Transformer (ViT) [14] shows that transformer architecture
has excellent potential to face the problems mentioned above. The attention mechanism
fuels the transformer to better build long-range dependence so that global information
can be utilized at both deep and shallow layers [15]. An increasing number of transformer
structures have been developed in different computer vision applications, especially Swin
Transformer [16], which has made important achievements in semantic segmentation tasks.
Compared with CNN-based models, the Swin Transformer has stronger contextual semantic
relevance and a wider receptive field, owing to its shifted windowing scheme and hierarchical
architecture. Therefore, the motivation of our model is that introducing the transformer
mechanism into the road extraction task may help to further improve the segmentation.

Based on the above discussion, a new road segmentation network with Swin Trans-
former as the backbone is proposed, named RoadFormer. Considering the distribution and
morphological characteristics of roads, an innovative bottleneck is designed. The bottleneck
generates the spatial and channel features through the separable convolution and a dilated
convolution module in multi-scale is deployed to capture more integrated road structures.
The major contributions of this paper can be described as follows:

(1) The proposed model is the first to apply the Swin Transformer as the backbone
network to road extraction, achieving an effective perception of global and local road features.

(2) A bottleneck merging the spatial and channel separable convolution and dilated
convolution is designed, which makes our model able to capture the local details and global
structures of roads more effectively.

(3) Plenty of comparative experiments are implemented, and the visualization and
quantitative results show that RoadFormer outperforms the related CNN-based meth-
ods [17–28] and Transformer-based methods [29].

The remaining parts of this paper are structured as follows. In Section 2, the overview
of previous road extraction works is provided, and the differences between our method
and the related methods are also analyzed. In Section 3, the architecture and design of
the proposed model are described in detail. In Section 4, implementation details of the
experiments are presented, and comparative experiments are conducted and analyzed.
Finally, conclusions are given in Section 5.

2. Related Works

In this section, the related road extraction works are reviewed. Then, the structure of
the transformer is introduced and its advantages in the road extraction task are analyzed.

2.1. Road Extraction Methods

Numerous approaches for extracting roads from remote sensing images have been
presented in recent years, and they may be divided into two primary categories: traditional
and deep learning-based methods [30]. Early traditional methods relied heavily on man-
ually designed features or morphological features. Among these methods, the advanced
directional morphological operator was presented to prevent the introduction of form
biases and successfully retrieve the road shape features. [3]. In addition, linear features
that resemble ribbons or ridges are extracted to categorize the road regions, which perform
more robustly than previous methods [31]. However, these traditional methods usually
lack robustness to incomplete structure, illumination, and contrast changes [6,7].
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To solve the difficulties existing in the traditional methods mentioned, deep learning-
based approaches were employed for road extraction. As a representative of CNN-based
methods, a patch-based CNN model was proposed for road extraction from high-resolution
remote sensing data [32]. Later, RoadNet [13] was presented to extract the road surface,
centerlines, and edges in several tasks. In order to preserve more spatial detail information
and enhance road integrity, a superpixel segmentation and graph convolutional network
was recently developed [33]. The CNN-based methods above can accomplish high accuracy,
while their processing speed has to be increased.

In order to address the shortcomings of CNNs, the fully convolutional network (FCN)
substitutes the fully connected layer with deconvolution, which achieves end-to-end pixel-
level classification. In the early works, it was established that the FCN approach was
successful in maintaining the continuity and integrity of roads for road extraction tasks [17].
Later, it was suggested to use UFCN to extract roads from aerial images taken by UAV [34].
Subsequently, FCN-32 was applied for extracting the road in the high-resolution image [35].
To comprehensively utilize multi-scale information from images, U-Net series-equipped
skip connection modules were developed [18,19,36]. SegNet [22] adopted the encoder–
decoder structure, where the edge position can be restored in the decoder by the index
value reserved in the encoder. Recently, to obtain better segmentation results, DeepLab
series methods [21,37,38] employed dilated convolution to capture long-range information
and developed a pyramid-shaped pooling layer to retain the spatial structure.

Although FCN models improve the efficiency of road extraction, they often misclassify
road areas and backgrounds in highly complex scenarios. Meanwhile, FCN-based models
will lose edge position information due to the existence of pooling layers. In addition,
missing long-range information limits the segmentation accuracy of U-Net and SegNet.
Additionally, dilation convolution makes Deeplab perform well in large target extraction
but poorly in small targets. To solve the problems above, we introduce the transformer
structure to our road segmentation task.

2.2. Transformer-Based Approaches

Lately, transformer architecture [39] has become vibrant in the computer vision field in
view of its special attention mechanism. Transformer’s attention mechanism can enable it to
learn long-range features and model global information, in contrast to CNN’s emphasis on
local features. The Vision Transformer (ViT) [14] accomplished satisfactory results in image
classification and showed great potential in computer vision, where the image patches are
considered the token of the transformer module. Although the design is feasible, there
are still many apparent disadvantages [29]. The quadratic computational load imposed by
transformers brings a considerable cost that is intolerable in segmentation tasks for large-
size images. Furthermore, although transformer could capture long-range information and
global context, it is difficult to capture low-level information needed in segmentation [40].

To reduce the memory requirements of transformers, Liu et al. [16] conceived the
Swin Transformer, which adopts a strategy of merging neighboring patches to build a
hierarchical representation structure. With these hierarchical representations, the model
can easily make dense predictions using a feature pyramid network. Meanwhile, the
Swin Transformer computes self-attention in non-overlapping windows with only linear
computational complexity. These advantages make it suitable as a segmentation backbone.
In view of the global feature-capturing capability and lower computational complexity of
the Swin Transformer, we introduce it as an encoder into our network.

2.3. Feature Separation

For the road extraction task, an obvious challenge is that the distribution of roads
requires the model to have strong long-range information acquisition ability, while the
slender and complex road characteristics require the model to have enough detail process-
ing ability. Having both of these capabilities for general convolution operations would be
contradictory. According to Tao et al. [41], the spatial and channel features of roads exist
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apparent differences, and thus processing the features of different dimensions separately
can improve the accuracy of segmentation. From the perspective of information representa-
tion, the channel features can reflect the image’s local details, and spatial features can help
the network capture long-range information. Therefore, for road extraction, it is necessary
to distinguish spatial and channel properties.

In previous works, depth-wise (DW) separable convolution was intended to divide
the conventional convolution into depth-wise and point-wise, effectively reducing the
computational complexity [42]. Compared with traditional convolution, DW separable
convolution has fewer numbers of parameters and a lower cost of operation but still
achieves almost the same results. Zhou et al. [28] use DW separable convolution combined
with a graph convolution network (GCN) to achieve feature separation. Motivated by the
previous work above, we replaced the original DW separable convolution series structure
with a parallel structure to obtain the channel and spatial features.

3. Method

This section provides a detailed description of the proposed model’s architecture. In
Section 3.1, the overall design of RoadFormer is introduced. Then, the workflow of the
encoder is described in Section 3.2, and the design of the bottleneck for road feature refining
is presented in Section 3.3. Lastly, Section 3.4 provides the decoder and loss function.

3.1. RoadFormer Overall Design

We provide a road extraction model called RoadFormer to overcome the receptive field
constraints and capture detailed information in remote sensing images. The architecture of
RoadFormer is divided into three sections, as displayed in Figure 1:
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Figure 1. RoadFormer architecture consists of an encoder, bottleneck, and decoder. Multi-scale
feature representation can be produced by the encoder. The high-dimension feature maps can be
obtained by the separable convolution and dilated block in the bottleneck. The final results are given
by the decoder.



Remote Sens. 2023, 15, 1049 5 of 18

(1) Swin Transformer-based encoder: the encoder downsamples and encodes the input
RGB image into multi-scale high-dimensional feature maps, which are necessary inputs for
the decoder and bottleneck.

(2) Feature separation bottleneck: the bottleneck separates the high dimensional input
feature maps into channel and spatial features. Meanwhile, a dilated block consisting of four
dilated convolution layers is applied to the spatial feature to expand the receptive field.

(3) Lightweight decoder: bottleneck-generated feature maps are alternately upsampled
and merged with encoder-generated feature maps to the top decoder block. Then, the
segmentation result is obtained from the top decoder by using transposed convolution and
a sigmoid.

In the subsequent sections, each network component will be described in detail.

3.2. Encoder

Without loss of generality, the distribution of roads should be continuous and through-
out the whole image, and the model is supposed to have a great capacity to collect long-
range information. We adopted the Swin Transformer as the encoder for the suggested
model because of its prowess in modeling long-range information relationships. Different
from the transformer, the Swin Transformer replaces the multi-head self-attention module
(MSA) with a block that can be made up of shifted window-based MSA, MLP, LayerNorm,
and a residual connection. Continually and alternately, the W-MSA and SW-MSA (MSA
with regular and shifted windowing configurations) are applied in a block. The structure
of the Swin Transformer blocks is presented in Figure 2.
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Figure 2. The architecture of Swin Transformer blocks.

The encoder of the proposed model is composed of four stacked Swin Transformer
modules. The original image (H ×W × 3) is transported to the patch partition in the
first layer and divided into patches ( H

4 ×
W
4 × 48). Then, these patches are converted into

tokens by linear embedding layer mapping. After that, the tokens are fed successively
alternately into Swin Transformer blocks and patch merging layers to create a hierarchical
representation. To be specific, Swin Transformer blocks produce feature maps at the current
layer scale while patch merging layers downsample these maps. Notably, the output of
patch merging layers is simultaneously supplied by skip connection to the relevant layer of
the decoder and handled as the input of the next Swin Transformer block.
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3.3. Bottleneck

To obtain the spatial and channel features effectively, a parallel structure combined
with DW and PW convolution is developed in RoadFormer. The process of the separable
convolution module is shown in Figure 3. Specifically, parallel connections between
spatial convolution and channel convolution are made after the encoder. In the channel
convolution part, a 1D convolution kernel is used to convolute the feature map along the
channel direction. In the spatial convolution part, each feature map is convoluted by a
k× 1× 1 kernel and concatenated as spatial feature maps. The refined feature maps by
spatial convolution and channel convolution have a size of H×W×N, which is consistent
with the input.
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3.4. Decoder and Loss Function

To recover the segmentation details, a decoder is employed in RoadFormer. Symmet-
rically with an encoder, four decoder blocks and a final convolution layer are adopted
to upsample the feature maps. Figure 5 depicts the decoder block’s structural layout.
Specifically, in each decoder block, the features are filtered by a 3× 3 convolution layer first
and are upsampled by a transposed convolution layer subsequently. Then, the features are
filtered by a 3× 3 convolution layer again. After the convolution, the upsampled features
are added with the results of the encoder in the corresponding scale. After going through
four decoder blocks, one transposed convolution layer and two convolution layers with
3× 3 kernels will process the feature maps to be the same size as the source image. Lastly,
a sigmoid classifier is applied to extract road areas by mapping the output to a range of 0
to 1, where the threshold is set to 0.5 to classify the road areas and background.
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Binary cross entropy (BCE) loss and dice coefficient loss make up RoadFormer’s loss
function. The BCE loss, which is most frequently employed in the binary segmentation
task, is defined as follows:

LBCE = − 1
N ∑i (ti · log(oi) + (1− ti) · log(1− oi)) (1)

where o indicates the predicted results after sigmoid, t indicates the true label, and N
indicates the batch size.

Road segmentation is a particular scenario where the foreground and background are
severely imbalanced. Therefore, the loss function should have adaptability for unbalanced
data distribution. Dice loss is more focused on the mining of foreground regions during
training, whose supervised contribution to the network does not vary with the size of the
image. Therefore, it is suitable for solving the situation where the foreground accounts for
a relatively small amount. The formulation of the dice loss is:

LDice = 1− 2∑i oi · ti

∑i oi + ∑i ti
(2)

To prevent a zero in the denominator, we added a smooth parameter s. The optimized
LDice can be described as follows:

LDice = 1− 2∑i oi · ti + s
∑i oi + ∑i ti + s

(3)

The smooth parameter avoids the zero division problem and prevents the overfitting
of the model. The total loss can be computed as:

Ltotal = αLBCE + βLDice (4)

where α and β denote the weights that could balance the two loss functions.
The loss function designed above makes the model extract roads accurately and

retain road connectivity. Through the loss function design, the feature information is
most effectively conveyed to the segmentation result, which could ensure road extraction
accuracy and retain road connectivity simultaneously.

4. Experimental Results and Analysis

In this section, the dataset and model training details are introduced first. Subsequently,
the evaluation metrics commonly used in road extraction tasks are presented. Next, the
ablation experimental results are analyzed, which confirms the validity of our model design.
Finally, visualization and quantitative results of our approach in comparison to other SOTA
methods are then shown.

4.1. Datasets and Experiment Implementation

Datasets: In this paper, the Deepglobe dataset and the Massachusetts road dataset are
used for the experiment, as shown in Figure 6. The following is a detailed description of
the two datasets:

1. Deepglobe Dataset: Deepglobe is the dataset prepared for the 2018 Deepglobe road
extraction challenge. This dataset includes 6226 images with a resolution of 0.5 m and
a size of 1024× 1024 pixels. These RGB images in JPG format cover Thailand, India,
and Indonesia, and include roads of cement, asphalt, and mountain. Each annotation
image is a three channel binary image in PNG format, which uses (255, 255, 255)
and (0, 0, 0) to present roads and backgrounds, respectively. In the experiment of
our model, the dataset was split into the training set (4987 images) and the test set
(1246 images).
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2. Massachusetts dataset: The Massachusetts road dataset consists of 1108 images
for training, 14 images for validation, and 49 images for testing, all of which are
1500× 1500 in size. According to [44], the resolution of Massachusetts can be inferred
to be about 1.5 m. The source image in TIF format is three channel color image and its
label in TIFF format is a binary image that uses white and black to distinguish roads
and backgrounds. The roads of cement and asphalt are the main types in this dataset.
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Data augmentation: In order to demonstrate that our model works effectively on
large-size remote sensing images, we directly use uncropped images with 1024× 1024 size
as the input of the network. To comprehensively utilize the limited training set, we
employ geometric transformation and photometric distortion to augment the data. The
geometric transformation method includes random clipping and horizontal and vertical
flip transformation. In the photometric distortion part, random luminance transformation
and random contrast transformations are used. Saturation and hue transformation are
applied after the RBG image is converted to HSV space. In addition, test time augmentation,
including horizontal flip and vertical flip, is adopted in the testing phase. In this phase, the
predicted results are restored to match the origin direction, and the final predicted results
are given according to the average of augmentation outputs.

Implementation detail: All the experiments are implemented on an NVIDIA GeForce
RTX 3090 GPU using Pytorch in a Linux environment. To make the model have better
results, the learning rate schedule strategy is employed. Specifically, we adopt a poly strat-
egy to modify the learning rate dynamically to make the model have a better convergence
speed. An adaptive moment estimation (Adam) optimizer is applied in the training phase
of our model. Meanwhile, multiple sets of learning rate parameters are set, and according
to the convergence of the model, 2e-4 was selected as the start learning rate. In the ablation
experiments, different pretrained Swin Transformers are employed to test the performance
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of road extraction. We train RoadFormers with Swin-T, Swin-S, and Swin-B as the backbone
using 4, 4, and 2 as the the batch size, respectively.

4.2. Evaluation Metrics

Road extraction can be approached as a segmentation problem with two classes of
roads and backgrounds [30]. Therefore, the effectiveness of the road extraction models is
assessed using the evaluation metrics of binary segmentation. Precision (Pr), recall (Rc),
F1-score, and intersection over union (IoU) are the four performance evaluation measures
that are most frequently utilized. Precision reflects the percentage of road extraction results
that are correctly classified, which can be formulated as:

Pr =
TPre

TPre + FPre
(5)

where true positive and false positive of road extraction (TPre and FPre) represent the
numbers of pixels correctly and incorrectly classified as road areas, respectively. Different
from precision, recall represents the percentage of properly recognized pixels in the whole
road label, which can be formulated as:

Rc =
TPre

TPre + FNre
(6)

where the false negative of road extraction (FNre) denotes the number of road pixels extracted
as other areas. In addition, the F1-score, which offers a more thorough evaluation of the
model’s performance, is the harmonic mean of Pr and Rc. It can be calculated as follows:

F1-Score =
2TPre

2TPre + FPre + FNre
(7)

Without loss of generality, IoU is the intersection of ground truth and road extraction
findings divided by their union, which can be calculated as follows:

IoU =
TPre

TPre + FNre + FPre
(8)

The four evaluation metrics mentioned above are adopted in our quantitative experiments.

4.3. Ablation Experiments

In this part, the ablation experiment is carried out to evaluate the performance of
encoder modules with different backbones. We use ResNet-50 and the Swin Transformer
series as the encoder of the network. According to different configurations, the Swin
Transformer can be formed as Swin-T (tiny size), Swin-S (small size), and Swin-B (base
size). As shown in Table 1, Swin-T achieved better results under the condition that the
number of parameters of ResNet-50 is comparable. Among them, Swin-B achieved the
best performance with four times the number of parameters of ResNet-50. To trade off
the performance and cost of the model, Swin-S was selected for subsequent ablation
experiments. In the comparison experiments, we mainly use the results of Swin-B for
comparison because of its better performance. In practices with computational efficiency
needs, Swin-T is a good choice because of its small size and fast speed.

Table 1. Quantitative comparison of different backbones for RoadFormer using the Deepglobe dataset.

Backbone Params Precision Recall IoU F1-Score

ResNet-50 21.66 M 84.91 78.61 68.14 81.64
Swin-T 28.30 M 84.05 81.34 69.91 82.67
Swin-S 49.59 M 85.29 82.51 72.18 83.88
Swin-B 88.07 M 85.76 83.17 73.11 84.50
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We conduct another ablation experiment to demonstrate that the bottleneck part is
valid. The quantitative results of different module configurations are shown in Table 2.
As is seen from the results, the spatial and channel separable convolution significantly
enhances the model’s overall performance. We set dilated blocks after spatial convolution
and channel convolution, respectively. Obviously, it makes sense to treat global and
detailed features separately. The model with feature separation performs significantly
better with recall, F1-score, and IoU than the model without such structure. Meanwhile,
dilated block after spatial convolution improves IoU and F1-score. In contrast, although
the addition of dilated block after channel convolution increases the precision, the other
performance metrics are reduced. This is due to the fact that the effect of the dilated block
is to expand the receptive fields, which are compatible with the spatial features being
separated out. However, the channel features separated by a 1 × 1 convolution focus on
the information of the pixel itself, and it is meaningless to expand its receptive fields. The
above results confirm that spatial convolution followed by dilated convolution improves
the performance, while that becomes worse after channel convolution.

Table 2. Quantitative comparison of different configurations of the bottleneck.

Methods Feature
Separation Dilated Block Precision Recall IoU F1-Score

RoadFormer × × 83.71 80.70 69.66 82.18
RoadFormer

√
× 82.83 83.68 71.28 83.26

RoadFormer
√

channel 86.79 79.45 70.86 82.95
RoadFormer

√
spatial 85.29 82.51 0.7218 83.88

RoadFormer
√

channel + spatial 86.47 80.80 71.77 83.54

The results of the ablation experiment with different configurations are presented
in Figure 7. Among different configured models, the road extraction results with feature
separation and dilated block have better continuity and detail. In summary, the feature
separation module effectively enhances the comprehensive performance of the model.
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4.4. Comparative Experiments

We conduct the experiments via a comparison with SOTA approaches on the Deep-
globe dataset and Massachusetts road dataset in terms of accuracy, recall, IoU, and F1-score
to completely evaluate the effectiveness of the proposed approaches. Visualization results
of the proposed model with five representative models are presented, and quantitative
analysis and results are given in this section.

4.4.1. Experiments on the Deepglobe Dataset

On the Deepglobe dataset, RoadFormer was compared with FCN, U-Net, PSPNet [20],
DeeplabV3, Seg-Net [22], LinkNet [23], D-LinkNet [24], HourGlass [26], Batra et al. [27],
and SwinUnet [29]. Among the methods above, FCN and U-Net are representatives of
the classic segmentation models. PSPNet employed a pyramid pooling structure to gather
information about the context. DeeplabV3 developed dilated convolution to enlarge the
receptive field and aggregate the multi-scale features by using an ASSP module. SwinUnet
is a novel transformer-based model originally used for medical image segmentation. We
show the visualization results obtained by RoadFormer and these five presentative methods
above. For the other methods, we quoted the quantitative results from their source, so
visualization results are missing as they were not available.

For an intuitive evaluation of road extraction performance, eight representative images
with different scenes were chosen from the test set. Figure 8 shows the road extraction
results of these images by using six different methods, respectively. The extracted roads
of eight images are listed in eight rows and eight columns. The input images, ground
truth images, and results of FCN, U-Net, PSPNet, DeeplabV3, SwinUnet, and RoadFormer
are displayed in the left-to-right columns. For the image of the town scene (first to third
rows), the results obtained by U-Net and DeeplabV3 miss much road information, while
other methods work well. In obscured scenes (fourth to sixth rows), the discontinuous
road structures all appeared in the results of other methods, and RoadFormer’s extraction
results remain complete. For low-contrast scenes (the seventh and eighth rows), none of the
five methods can extract the road structure completely, while RoadFormer is able to extract
road areas precisely. It is worth noting that the roads extracted by SwinUnet perform
better than other CNN-based models in terms of continuity, which is due to the long-range
dependence established by the transformer. However, SwinUnet is missing some of the
slender roads, while RoadFormer still performs well in this case due to its bottleneck design.
The visualization results above show that the performance of RoadFormer outperforms
the other methods. The integrity and continuity of the road are well preserved due to the
long-range information-capturing ability and feature separation strategy of RoadFormer.

For making a more thorough evaluation of the proposed method, we quantified and
compared RoadFormer with SOTA methods, including FCN, U-Net, PSPNet, DeeplabV3,
Seg-Net, LinkNet, D-LinkNet, HourGlass, Batra et al., and SwinUnet. Table 3 displays the
quantitative performance results of these methods on the Deepglobe dataset. RoadFormer
(with a Swin-B backbone) obtains the best results for precision (85.8%), IoU (73.1%), and
F1-score (84.5%), and the second-best result for recall (83.2%), which is only less than Batra
et al. It is worth pointing out that the method of Batra et al. employed a strategy of multi-
task learning considering road direction information. The method enhances the correlation
between the extracted segments but also leads to an increase in cost. The lightweight
RoadFormers (using Swin-T and Swin-S as the backbone) still outperform most SOTA
methods in terms of performance metrics. This result substantiates the reliability of the
model structure we suggested.
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Table 3. Results of the Deepglobe dataset’s quantitative performance.

Methods Precision Recall IoU F1-Score Param FLOPs

FCN 83.1 75.5 64.8 79.1 47.1 M 197.7 G
U-Net 82.6 64.0 55.3 72.1 29.1 M 202.5 G

PSPNet 84.7 70.1 60.1 76.7 49.0 M 178.4 G
DeeplabV3 78.9 58.3 50.0 67.0 65.7 M 270.0 G

Seg-Net 69.5 73.0 55.3 71.2 - -
LinkNet 78.3 78.8 64.7 78.6 - -

D-LinkNet 84.9 78.6 68.1 81.6 - -
HourGlass 79.4 80.1 66.3 79.8 - -
Batra et al. 83.8 84.1 72.4 84.0 - -
SwinUnet 82.1 73.3 62.9 77.7 27.1 M 254.8 G

RoadFormer (Swin-T) 84.1 81.3 69.9 82.7 28.3 M 176.5 G
RoadFormer (Swin-S) 85.3 82.5 72.2 83.9 49.6 M 269.4 G
RoadFormer (Swin-B) 85.8 83.2 73.1 84.5 89.0 M 447.7 G

4.4.2. Experiments on the Massachusetts Dataset

On the Massachusetts dataset, RoadFormer was compared to FCN, U-Net, U-Net++ [19],
PSPNet, DeepLabV3, Seg-Net, CADUNet [25], Batra et al., SGCN, and SwinUnet. Com-
pared to the Deepglobe dataset, the Massachusetts dataset is more challenging due to
(1) the image resolution of the Massachusetts road dataset having a lower resolution
(1.5 m) than Deepglobe (0.5 m), which means that the road shape in the image will be
slenderer and (2) the images in the training set are fewer, which makes difficulties for the
model to converge. Moreover, to fully validate RoadFormer’s ability to process large-size
images, we directly feed the uncropped images to the network. Consistent with the experi-
ments on the Deepglobe dataset, we visualize the extracted roads of FCN, U-Net, PSPNet,
DeeplabV3, SwinUnet, and RoadFormer, and the quantitative results of the other five above
approaches are quoted directly from the source.

Six images with different representative scenes were chosen from the test set for
visualization comparison. Figure 9 shows the road results extracted by FCN, U-Net, PSPNet,
DeeplabV3, and RoadFormer in six rows. Among the extraction results, RoadFormer has
stronger adaptability for complex scenes. For example, roads are obscured and have low
contrast with the surrounding environment in the mountain road scene (first row). In
this case, the extraction results of CNN-based methods lose part of the road information,
while Swin-Unet and RoadFormer could extract valid road structures. Suffering from
the interference of dense roads in town scenes (second to fourth row), the other five
methods cannot extract road features effectively, whereas our method can still extract
clear road structures owing to the introduction of the Swin Transformer. For slender
road scenes (the seventh and eighth rows), none of the other methods could extract road
structures completely, while RoadFormer is able to extract these fine roads accurately.
The visualization results in Figure 9 further demonstrate that RoadFormer has better
adaptability than the other methods in complex scenes.

To further evaluate the model performance, quantitative comparison results between
RoadFormer and the other nine methods are given in Table 4. We can observe from the table
that the other methods achieve a recall rate lower than 75%, except for PSPNet, CADUNet,
and RoadFormer. More importantly, other methods achieve IoU rates lower than 65% and
F1-scores lower than 78%, except SGCN and RoadFormer. Obviously, recall, IoU, and
F1-score performance are all best on RoadFormer. Among these SOTA methods, SGCN also
uses the technique of feature separation. RoadFormer achieves better results owing to its
ability to capture long-range information and a larger receptive field. Notably, our model
uses the entire image as the input, while the other models use the cropped patches as the
input. Thus, it is evident that RoadFormer is more capable of handling high-resolution
images. In comparison to other approaches, RoadFormer consistently outperforms them in
criteria such as recall, IoU, and F1-score, proving that it is extremely superior.
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Table 4. Results of the Massachusetts road dataset’s quantitative performance.

Methods Precision Recall IoU F1-Score Param FLOPs

FCN 82.8 68.1 59.7 74.7 47.1 M 197.7 G
U-Net 82.3 70.37 61.1 75.9 29.1 M 202.5 G

U-Net++ 80.9 72.4 61.8 76.4 - -
PSPNet 77.9 76.3 62.7 77.1 49.0 M 178.4 G

DeepLabV3 78.3 74.0 61.4 76.1 65.7 M 270.0 G
Seg-Net 82.5 72.1 62.5 76.9 - -

CADUNet 79.5 76.6 64.1 77.9 - -
Batra et al. 81.9 69.3 60.1 75.1 - -

SGCN 84.8 73.9 65.3 79.0 - -
SwinUnet 78.5 75.8 62.8 77.1 27.1 M 254.8 G

RoadFormer (Swin-B) 80.7 77.6 65.5 79.2 89.0 M 447.7 G

The visualization and quantitative comparison results above confirm that the proposed
method has a higher capacity to extract roads. The visualization results intuitively show that
RoadFormer is more adaptable to complex road and fine road scenarios. In Tables 3 and 4,
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we can see that the RoadFormer with a tiny size has lower computational complexity and a
smaller number of parameters, but still has good performance. Although RoadFormer with
base size has higher complexity, it has the best performance. For 1024 × 1024 image input,
the inference time of the base model on RTX3090 is less than 0.3 s per frame, which can meet
the practical application requirements. The following three factors are mainly accountable
for RoadFormer’s superiority. (1) Swin Transformer modules help the model establish
long-range dependence. (2) By feature separation module, a refined feature map allows the
model to perceive different features separately. (3) The model’s receptive field is further
expanded by the dilated block that results from spatial convolution. Furthermore, according
to the quantitative results, our model has the highest IoU and F1-score on the Deepglobe
and Massachusetts datasets, further demonstrating the superiority of our approach.

5. Conclusions

For road extraction tasks, we present a novel model called RoadFormer that uses
a Swin Transformer as its backbone. The spatial and channel separable convolution are
combined in the design of RoadFormer to improve the feature representation of the model.
In addition, a dilated block is adopted after the spatial convolution, which effectively helps
the model capture better global contextual information and obtain larger receptive fields.
Ablation experiments demonstrate the validity of our module design. The Deepglobe and
Massachusetts datasets were used in experiments that were thoroughly assessed. The
proposed method outperforms previous SOTA methods, as shown by the comparison of
visualization and quantitative results, which supports the proposed model’s superiority
and effectiveness.

The proposed model was trained on RGB remote sensing image datasets (Deepglobe
and Massachusetts). In practice, the accuracy of road extraction could be further improved
by the fusion of multimodal data. Specifically, DEM information and geological background
are very important, which makes it easier to extract road features in special scenarios.
In addition, the multiple channels of information in satellite remote sensing and radar
imagery can offer different information on the road. Moreover, the architecture of the
Swin Transformer block could be further optimized and tweaked, and the different loss
functions could be investigated for improving the model performance. In the future, we
will collect multimodal remote sensing datasets mentioned above and further improve the
model performance by optimizing the architecture and loss function.
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