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Abstract: Infrared small target detection is widely used for early warning, aircraft monitoring, ship
monitoring, and so on, which requires the small target and its background to be represented and
modeled effectively to achieve their complete separation. Low-rank sparse decomposition based
on the structural features of infrared images has attracted much attention among many algorithms
because of its good interpretability. Based on our study, we found some shortcomings in existing
baseline methods, such as redundancy of constructing tensors and fixed compromising factors. A
self-adaptive low-rank sparse tensor decomposition model for infrared dim small target detection
is proposed in this paper. In this model, the entropy of image block is used for fast matching of
non-local similar blocks to construct a better sparse tensor for small targets. An adaptive strategy of
low-rank sparse tensor decomposition is proposed for different background environments, which
adaptively determines the weight coefficient to achieve effective separation of background and small
targets in different background environments. Tensor robust principal component analysis (TRPCA)
was applied to achieve low-rank sparse tensor decomposition to reconstruct small targets and their
backgrounds separately. Sufficient experiments on the various types data sets show that the proposed
method is competitive.

Keywords: adaptive; small target; non-local tensor model; sparse tensor decomposition; image
block matching

1. Introduction

Due to the advantages of all-weather, long-distance observation, infrared imaging
technology is widely used in military and civilian fields, such as target searching, early
warning and tracking [1–3]. The targeted observation based on infrared imaging has the
characteristics of small size and weak signal intensity (for an image size of 256× 256, the
widely recognized small target should be less than 9 × 9 pixel) [4]. At the same time,
thermal infrared imaging is the sensor’s perception of the thermal radiation of the target, so
the resolution of the image is low. The inherent difficulty of infrared small target detection
and its wide application value make it a hotspot of current research. However, due to the
small target scale and low resolution, the small targets in thermal infrared imaging almost
lack textural features and clear contour features and only show dim and small bright spots
in the image. Effectively extracting small infrared targets in a complex background with
clutters is still full of challenges and many key problems need to be solved.

Infrared dim and small target detection methods are generally divided into detection
based on single-frame images and detection based on multi-frame images. Infrared dim
and small target detection methods based on multiple frames often need the movement
information of targets in sequences, such as 3D matched filtering [5], TLPP [6], IVERS [7],
TCTHR [8], SCTP [9]. However, in practical application scenarios, the following scenarios
may even exist simultaneously: (1) The observed target is moving fast; (2) Clouds and
geothermal noise in the background also move rapidly; (3) The load platform of the sensor
moves at high speed. Therefore, the performance of the infrared dim small target detection
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method based on multi-frames will be greatly affected when the background is not fixed.
Meanwhile, computational efficiency and other factors also limit the application of this
method. Therefore, small dim target detection methods based on a single frame have more
universal application scenarios and need to be further studied. This paper focuses on dim
and small target detection based on one single-frame image.

The target in the infrared image generally has a higher brightness than the surrounding
environment, and is showing a small but bright spot. Based on this intuitive clue, a variety
of representative methods have been proposed, such as Max-Mean and Max-Median
filters [10], the Top-Hat filter and its improvement [11,12]. Based on least mean square
(LMS), Hadhoud and Thomas [13] proposed a two-dimensional LMS (2DLMS) filter and
improved it for the detection of infrared small targets [14,15]. Some morphology-based
methods [16–20] also make use of this idea. However, these methods are often based on
the assumption that the background is viewed as continuous and that the target brightness
is greater than all backgrounds. Therefore, when the image has clutter and noise, the
detection performance of this method decreases significantly.

Based on the mechanism of observing objects in human vision, a variety of object
detection methods based on the human vision system (HVS) have been proposed. These
object detection methods use three HVS mechanisms [21], namely the contrast mechanism,
visual attention, and eye movement to find targets that meet the characteristics of these
mechanisms. Chen et al. [4] designed and proposed a multi-scale infrared small target
detection method (LCM) based on the HVS and DK (derived kernel) model, as well as the
discontinuity between small targets and their neighborhoods. On this basis, researchers
have improved and proposed a variety of novel methods based on local contrast. For
example, Qin and Li [22] proposed a novel local comparison method NLCM; Han et al. [23]
proposed the multi-scale correlation local comparison method MRLCM; Liu et al. [24]
proposed the weight local comparison method WLCM. The three-layer local contrast
method (TLLCM) proposed by Han et al. [25] enhances the target of the image before
local comparison and divides the comparison window into a core layer, reverse layer, and
surrounding layer to calculate the comprehensive contrast. However, discontinuities exist
not only between targets and their backgrounds but also between some brighter clutters
and their backgrounds. Therefore, these kinds of methods cannot distinguish clutter noises
and targets effectively.

Deep learning can be used to learn the features of small targets [26,27]. One kind of
method is to use a deep neural network for small target segmentation based on the idea of
image segmentation [28,29]. Another kind of method based on the idea of image recognition
is to use a deep neural network for target and background recognition [27,30]. Existing
studies have shown that deep learning still difficult to represent and learn the features of
weak and small targets, and the model is easy to overfit and other obstacles. Especially
in the case of fewer target pixels, complex target distribution, and background mode,
the detection performance is degraded due to the huge sample space [31,32]. Moreover,
such methods usually require a large amount of training data, which is difficult to obtain
in practical applications. In addition, the unexplainability of deep neural networks also
hinders their application in the field of high reliability.

After analyzing the structure of the infrared small target and the image background,
researchers find that the small target in the infrared image is sparse both in the global image
and in a local area with appropriate size. Moreover, the background is considered low-rank
in the infrared image [2]. Therefore, by establishing an appropriate low-rank and sparse
decomposition model, the background part (low-rank component) and the target part
(sparse component) of the infrared image can be effectively separated to detect dim small
targets. The infrared patch-image (IPI) model proposed by Gao et al. [2] constructs the
original data matrix of the local image block by sliding the window on the image according
to the given step and then solves this prototype through the RPCA pair optimization to
realize the detection of sparse targets in it. Inspired by the IPI method, various models
for the decomposition of low-rank sparse matrices have been proposed. Dai et al. [33]
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provides a weighted infrared patch-image (WIPI) model by taking the local structure of the
image as prior information and integrating it into decomposition. Wang et al. [34] proposed
a PILGA model combining local and global information of infrared images. The target-
aware non-local low-rank modeling with saliency filtering proposed by Zhu et al. [35]
regularization takes into account the non-local sparsity of the infrared image and increases
the anti-interference ability of the model by saliency filtering regularization.

However, the real-time performance of PI-based models is often poor, and it is difficult
to extract the 2D local environment information of pixels. A patch-tensor (PT) model
has been proposed, based on the idea of PI and featuring tensor data in much higher
dimensions (usually three dimensions). Among them, the reweighted infrared patch-tensor
(RIPT) proposed by Dai and Wu [36] is a kind of model combining local and non-local prior
information of images. In 2020, Zhang et al. [37] proposed the partial sum of the tensor
nuclear norm (PSTNN) model by analyzing the rank of tensor. In 2021, Kong et al. [38] used
the rank of the tensor to derive the tensor fiber rank, and calculated the tensor fiber rank
approximately by the log operator. Then, a nonconvex tensor fibered rank approximation
(NTFRA) method was proposed for infrared small target detection.

Both PI and PT based methods use a sliding window to traverse the entire image. The
difference is that the PI-based model converts each obtained patch image into a vector and
combines all the vectors to get a large matrix, while the PT model uses each patch image
as a frontal slice and constructs a large tensor. There are some defects in their practical
application as follows: (1) For images with complex backgrounds, the prototype data
(matrix or tensor) constructed by this global mode have weak low-rank sparsity, which
makes decomposition difficult; (2) The compromising factor used to fix low-rank and sparse
parts decreases performance in globally inconsistent backgrounds; (3) The decomposition
of a large original data structure is time-consuming and cannot be parallelized.

A segmented adaptive non-local patch-tensor model for infrared small target detection
is proposed. It constructs a small tensor for each reference block in the image through
non-local block matching and separates the background and target foreground by low-rank
sparse decomposition of the small tensor. The proposed method has the following obvious
advantages: (1) Image local entropy is used to realize the non-local MDB matching of image
blocks, and build a small tensor with better low-rank sparse characteristics. The size of the
tensor is n1 × n2 × (t + 1), where n1 and n2 indicate the size of the image block. However,
t is a very small value, and it is found in the experiment that when its value is set to 2, the
model has a good performance; (2) It can adaptively select a low-rank sparse compromising
factor according to the distribution of different backgrounds of image blocks, so that the
model has a better effect of background target separation; (3) Our method can divide
the image with length W and width H into WH/n1n2 unrelated construction tasks and
optimization tasks in parallel, so it has the advantage of fast computation. The extraction
effect of our method on small and weak target regions is shown in Figure 1.

The main contributions of this paper are as follows:

• An adaptive non-local patch-tensor model for infrared small target detection is pro-
posed. By combining the background consistency and local similarity, the image
local entropy was used to construct a non-local block tensor with good low-rank
sparse characteristics for image blocks. Then, the proposed adaptive compromising
factor and TRPCA were used to achieve the effective separation of background and
small target;

• The mapping relationship between image local entropy and compromising factor
was explored, and a dynamic and adaptive compromising factor is proposed for an
effectively low-rank and sparse decomposition strategy. Our approach has a better
performance when the background is not globally consistent;

• Experiments on various data sets with different characteristics show that the proposed
method is more competitive than the state-of-the-art methods.



Remote Sens. 2023, 15, 1021 4 of 24

(a) Original image (b) w/o non-local match

(c) w/o adaptive compromising
factor

(d) ANLPT match

Figure 1. The detection result of an infrared image. (a) is the original infrared image. (b) is the
result without non-local matching. (c) is the result with non-local matching but without adaptive
compromising factor. (d) is the result of the proposed ANLPT method.

The structure of this paper is as follows: Section 2 states the various notation defi-
nitions used in this article. Section 3 describes the proposed method in detail. Section 4
introduces the comparison experiment and evaluation standard. Section 5 summarizes the
proposed method.

2. Notations and Fundamentals

In this paper, scalars are represented by plain lowercase letters, e.g., a. Vectors are
represented by bold lowercase letters, e.g., v. Matrices are represented by bold uppercase
letters, e.g., M. Tensors are represented by bold Euler capital letters, e.g.,A. A(i, j, :) is the
tube fiber of the ith row and jth column of the tensorA , and the A(i) is the ith frontal slice
of the tensorA(:, :, i).

2.1. Tensor Singular Value Decomposition(t-SVD)

t-SVD [39] plays an important role in the low-rank and sparse decomposition of
tensors. A tensorA ∈ Rn1×n2×n3 can be decomposed into the product of two orthogonal
tensors U ∈ Rn1×n2×n3 , V ∈ Rn1×n2×n3 and f-diagonal tensor S ∈ Rn1×n2×n3 by t-SVD as:

A = U ∗ S ∗V∗. (1)

Algorithm 1 shows the detailed process of t-SVD.
For the t-SVD of a real tensorA with size n1 × n2 × n3, each tube fiber is transformed

by a fast Fourier transform (FFT) to obtain the corresponding tensorD. Then, each of the
frontal slices D(i), U(i), S(i) and V (i) are obtained by the decomposition of the singular
values of the matrix. Next, three tensor Ū , S̄ and V̄ are composed by the index i. Finally,
the tensors U , S and V are obtained by performing an inverse FFT on each tube fiber of
each tensor.
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Algorithm 1: t-SVD.

Input: A ∈ Rn1×n2×n3

for each tube inA do
D(i, j, :) = fft(A(i, j, :));

for i = 1 :
⌊

n3+1
2

⌋
do

[Ū(i), S̄(i), V̄ (i)] = svd(D(i));

for i =
⌊

n3+1
2

⌋
+ 1 : n3 do

Ū(i) = conj(Ū(n3−i+2));
/*conj is conjugate-even vector [40]*/
S̄(i) = conj(S̄(n3−i+2));
V̄ (i) = conj(V̄ (n3−i+2));

for each tube in Ū , S̄ and V̄ do
U (i, j, :) = ifft(Ū (i, j, :));
S(i, j, :) = ifft(S̄(i, j, :));
V(i, j, :) = ifft(V̄(i, j, :));

Output: U , S , V

2.2. The Local Information Entropy of the Image

Information entropy reflects the richness of the information contained in an informa-
tion source. In an image, the information entropy is defined as:

E(I) = −
255

∑
i=0

p(i) log2 p(i), (2)

p(i) = mi/MI , (3)

where I is the input image, mi is the number of pixels of the ith gray value, and MI is the
total number of the patch pixels. If the input is a patch of an image, the image entropy is
the part information entropy of the image—called the local entropy of the image—which
can reflect the complexity of the image in this area. This property can be used to distinguish
local images in infrared images. Figure 2 shows the local entropy feature map (right) of
an infrared image (left) with sea-sky edge information. In the feature map, brighter areas
indicate higher entropy. Moreover, due to the feature of local similarity in the image, blocks
with similar entropy within a certain region tend to have similar structures.

Figure 2. An infrared image (left) and its local entropy feature (right).

3. The Proposed Algorithm
3.1. The Model Used for Low-Rank Sparse Decomposition of Tensors

An infrared image X composed of background B and target T can be defined as:

X = B + T . (4)



Remote Sens. 2023, 15, 1021 6 of 24

We construct a small tensor for each image patch as follows:

X = B+ T , (5)

where X is the three-dimensional tensor corresponding to a block in the infrared image
X, which is built through non-local block matching based on the image’s local entropy. B
and T are three-dimensional tensors made up of the background B and the target T in
each image block, respectively. Figure 3 shows the structure of the tensor X . Suppose that
the original tensor consists of a reference image block and two non-local matching blocks,
represented in the figure as outer squares with different colors. Each image block acts as a
frontal slice of the tensor and may have some information about the targets (red squares in
the figure).

Figure 3. A tensor used for low-rank sparse decomposition.

The background of an image often changes slowly and multiple local images of an
image are always similar, so the background tensor is low rank. Through singular value
decomposition of background image blocks, Figure 4 can be obtained. The first row in
the figure contains three image blocks selected globally in the image, and the second
row contains three image blocks extracted from the image with clear edge information.
Figure 4b–d show the results obtained after singular value decomposition of corresponding
color blocks in the image respectively. It can be seen that the singular value of the image
block, whether global or local, will rapidly decrease to 0. Therefore, each image block has
low rank, and the singular values between similar-matched image blocks are more similar.

The rank of the frontal slice of each background tensor is defined as:

rank(B(i)) ≤ ri, (6)

where Bi is the ith frontal slice of the background tensor, ri is a scalar representing the
complexity of the corresponding frontal slice. The more complex or informative an image
block is, the larger the value of ri.

It is known that the information of small infrared targets in sufficiently large image blocks
is always sparse. Using the 0 norm of the tensor, the sparsity of the target is defined as:

‖T ‖0 ≤ k, (7)

where k is a sufficiently small integer that satisfies the definition of a sparse tensor. There-
fore, the decomposition model of low-rank sparse tensor of infrared small target image
under ideal conditions can be defined as:

min
B,T

rank(B) + λ‖T ‖0, s.t.B+ T = X . (8)
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(a) (b) (c) (d)

Figure 4. The SVD of the image blocks. (a) contains two images with colored boxes. (b–d) are the
SVD results of corresponding colored box, respectively.

3.2. Image Block Matching Based on Local Entropy

To construct a patch tensor with better low-rank sparse characteristics, this paper
proposes a non-local image block matching method based on image local entropy. For
the low-rank sparse decomposition model (Figure 3), the ideal patch tensor construction
method needs to consider two requirements: (1) Whether the method of composing data
can meet the requirements of low-rank sparsity; (2) Whether the method of composing
data can reasonably retain the small target information in the image. For requirement (1), a
direct idea is to implement the block matching strategy by setting reference blocks in the
infrared image to find similar non-local matching blocks and form original data structure.
The purpose of the non-local block matching method is to find the most similar image
blocks with reference blocks in one or more images for image denoising, restoration, or
target tracking [41–43]. By setting a proper minimum block distortion (MBD), a similar
background block can be found in an infrared image to form the original data structure
with low-rank property. To achieve the desired result, the corresponding MBD in the
common block matching strategy is usually pixel oriented. An infrared small target makes
it difficult for these matching strategies to obtain similar background regions. Moreover,
the ideal matching mechanism should ignore the influence of existing targets. The image
block matching method based on local entropy in this paper can effectively solve this
problem. Because the local entropy is an overall statistic of the image block, it is not
sensitive to the small dim target region, which occupies a relatively small proportion of
the whole image. Moreover, in MBD matching, the local similarity of the image and the
continuous consistency of the background are utilized to match image blocks with similar
background structures.

Figure 5 shows the results of a block-matching method based on local entropy in
an infrared image with rich edge information. In Figure 5a, the block numbered 1 is the
reference block. Block matching based on different reference blocks is marked with different
colors, and the matching results of blocks numbered 2 and 3 are obtained, respectively.
Figure 5b–d show the pixel value-based 3D model of the matching results for the red
reference block in Figure 5a; Figure 5e–g show the pixel value-based 3D model of the
matching results for the green reference block. It can be seen that the block matching
algorithm which takes the local entropy of the image as the MBD retains the structural
features of the reference image block itself. Moreover, it can be seen from Figure 5b–g
that the image local information entropy matching makes the target and edge position
in the matched block independent, which further ensures the constructed tensor more
low-rank sparse.
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123

1 2 3

1 2 3 1 2 3

(a) An infrared image and its
matching results with different color

reference blocks.

(b) Red reference
block1

(c) Red match
block 2

(d) Red match
block 3

(e) Green
reference block 1

(f) Green match
block 2

(g) Green match
block 3

Figure 5. Block matching based on image local entropy. (a) is an infrared image which 6 colored
boxes. Boxes numbered 1 are reference blocks, 2 and 3 are match blocks. (b–g) are 3D modeles of red
boxes 1, 2, 3 and green boxes 1, 2, 3 respectively.

3.3. Adaptive Dynamic Compromising Factor λ

When baseline methods [2,36,38,44] use low-rank sparse decomposition, the compro-
mising factor on low-rank and sparse parts in Equation (8) is always set to a fixed value:

λ =
1√

max(n1, n2)× n3
. (9)

Based on these works, we find that the size of λ directly affects the performance
and time consumption of low-rank sparse decomposition. The universal conclusion is: (1)
Larger λ makes more iterations and time consuming; (2) When λ is large, fewer components
are retained in the sparse part, and the false alarm is lower when used for dim small target
detection. Based on this, an intuitive idea is that, for images with complex backgrounds, a
larger compromising factor value can better suppress the interference of background noise.
On the contrary, for images with a relatively simple background, a smaller compromising
factor can prevent the loss of dim targets and reduce the time consumption of the algorithm.
The adaptive dynamic balance factor algorithm is proposed in this paper, which can
quantify the complexity of the image background based on the image’s local information
entropy and dynamically select the compromising factor λ adaptively.

We performed experimental statistical analysis on a large data set. The following laws
were found: (1) The range of information entropy of image block applicable to dim small
target detection is e ∈ [0, 8]; (2) For the tensor decomposition of different backgrounds,
the value range of the compromising factor is between [0, 3]; (3) The compromising factor
increases with the increase of the local entropy of the image. Meanwhile, the relationship
between the compromising factor and the entropy of the image block with low information
is close to linear. In the image block with a complex background, the compromising factor
increases more slowly than the entropy value. A modified sigmoid function namely an
adaptive compromising factor is proposed to fit the mapping between the compromising
factor and entropy, which can be calculated by the following:

λ = S(ß) =
α(sigmoid(M(ß)/ε)− δ)√

max(n1, n2)× n3
(10)

M(ß) =
1
n

n

∑
i=0

E(ß(i)), (11)
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where M(ß) is the average value of entropy calculated by the Equation (2) for each frontal
slice in the tensor ß and ε, δ are the scaling and shifting of the sigmoid() function to the
independent variable ē, respectively; α is the scaling of the function on the dependent
variable to match its desired range of values. In this paper, ε, δ, and α are valued as 2.5, 0.4,
and 5, respectively.

3.4. Adaptive Low-Rank and Sparse Tensor Decomposition Model

The original tensor data shown in Figure 6 can be obtained from Figure 5 using the
method described in the previous section, where Figure 6a shows the data with the target,
Figure 6b shows the data without the target. For data with target information, a further
approximation is needed to obtain the tensor model defined by the Equation (5).

n3

n2

n1

n3

n2

n1

(a) Tensor data with targets

n3

n2

n1

n3

n2

n1

(b) Tensor data without targets

Figure 6. Data obtained by image local entropy matching.

3.4.1. Sparse Approximated Represented of Target by l1-Norm

The l0-norm used to calculate the number of non-zero elements in the tensor is a direct
representation of the sparsity of the tensor. However, the optimization of l0-norm is an
NP-hard problem. In practice, l1-norm (‖·‖1 = ∑ij |Xij|) is often used to approximate the
sparsity of a pair of tensors. The approximation of l0-norm by l1-norm can ensure the
solution of the model, and also ensure the convex property of the model.

3.4.2. Low-Rank Background Represented by Tensor Nuclear Norm

The nuclear norm is often used as an approximation of the rank of a matrix in low-rank
factorization. Extending this knowledge to tensors, a low-rank background was presented
in [44] by defining the nuclear norm of the tensor. Before describing the nuclear norm of
tensors, there are a few more definitions of tensors that need to be clarified.

Definition 1 (Tensor tubal rank [45]). For a tensorA ∈ Rn1×n2×n3 , the rank of its tube fibers is
the number of non-0 tube fibers in the singular value tensor S inA = U ∗ S ∗V∗ decomposed by
t-SVD, that is,

rankt(A) = #{i,S(i, i, :) 6= 0}. (12)

Definition 2 (Tensor average rank). For a tensorA ∈ Rn1×n2×n3 , its average rank is the ratio
of the rank of its cyclic block matrix to the number of plane slices, i.e.,

ranka(A) =
1
n3

rank(circ(unfold(A))). (13)



Remote Sens. 2023, 15, 1021 10 of 24

There is a certain relationship between the rank of the tube fiber and the average rank
of the tensor. This relation is that if the block diagonal matrix of the tensorA is Ā, then the
rank of the tensor’s tube fiber and its average rank are as follows:

ranka(A) =
1
n3

rank(Ā)

≤ max
i=n1,...,n3

rank(Ā(i)) (14)

= rankt(A).

This is also the reason why the nuclear norm of the tensor is defined as a convex hull
of the average rank of the tensor. After the definition of the tensor tubal rank and the
average rank of the tensor, the nuclear norm of the tensor can be defined.

Definition 3 (Tensor nuclear norm [44]). Let A = U ∗ S ∗ V∗ be t-SVD of tensor
A ∈ Rn1×n2×n3 , then its nuclearnorm ‖·‖∗ is defined as:

‖A‖∗ := 〈S ,I〉 =
r

∑
i=1
S(i, i, 1), (15)

where rrepresents the tubular fiber rank rankt(A) of the tensor.

The nuclear norm of the tensorA is actually the matrix nuclear norm of its t-SVD slice
A(1) on its first side. In t-SVD, the singular value tensor can be obtained by the FFT, so:

‖A‖∗ =
1
n3
‖circ(unfold(A))‖∗ =

1
n3
‖Ā‖∗. (16)

From the above equations and the relation in Equation (14), it is clear that the nuclear
norm of the tensor defined in Definition 3 is indeed a convex hull of the mean rank of
the tensor. Therefore, according to the low-rank sparse decomposition model shown in
the Equation (5), the low-rank sparse decomposition model proposed in this paper can be
solved as follows:

min
B,T
‖B‖∗ + λ‖T ‖1, s.t.B+ T = X

λ = S(ß).
(17)

3.5. Alternating Direction Method of Multiplier (ADMM)

The low-rank sparse decomposition model of tensors based on t-SVD can be optimized
by ADMM to solve [44]. Based on the low-rank sparse model mentioned in the previous
section, an augmented Lagrangian function based on (17) is constructed, which is:

L(B,T ,Y , µ) =‖B‖∗ + λ‖T ‖1 + 〈Y ,B+ T −X 〉

+
µ

2
‖B+ T −X ‖2

F, (18)

where the tensor Y ∈ Rn1×n2×n3 is a Lagrangian operator.
Optimization iterations are used to solve the above keys, and for the low-rank tensor

B we have:

Bk+1 = argmin
B
‖B‖∗+

µk
2

∥∥∥∥Bk + T k −X k +
Y k
µk

∥∥∥∥2

F
.

(19)
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During the optimization iteration for the tensorB, a tensor singular value thresholding
(t-SVT) similar to the soft threshold is also required. The t-SVT operator is defined as:

Dτ(B) = U ∗ Sτ ∗V∗, (20)

where Sτ = ifft(max(S̄(i, j, :)− τ, 0)). The specific steps of t-SVT are given by Algorithm 2.

Algorithm 2: t-SVT.

Input: B ∈ Rn1×n2×n3

for each tube in B do
B̄(i, j, :) = fft(B(i, j, :));

for i = 1 : 2, . . . ,
⌊

n3+1
2

⌋
do

[Ū(i), S̄(i), V̄ (i)] = svd(B̄(i)) ;
B̄(i) = Ū(i) ∗max(S̄(i) − τ, 0) ∗ V̄∗(i);

for i = 2, . . . ,
⌊

n3+1
2

⌋
: n3 do

B̄(i) = B̄(n3−i+2);
for each tube in B do
Bτ(i, j, :) = ifft(B̄(i, j, :));

Output: Dτ(B) = Bτ

Before the calculation of l1-norm in T , the equilibrium coefficient λ needs to be updated.

λk+1 = S(X k −Bk+1 −Y k), (21)

the calculated λ value is then used to update the sparse tensor T .

T k+1 = argmin
T

λk+1‖T ‖1

+
µk
2

∥∥∥∥Bk+1 + T k −X k +
Y k
µk

∥∥∥∥2

F
. (22)

Then, for the Lagrangian operator Y ,

Y k+1 = Y k + µk(Bk+1 + T k+1 −X ), (23)

the iterative steps for the optimization of Equation (17) by ADMM are shown in Algorithm 3,
The overall block diagram of the proposed method is shown in Figure 7.
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Figure 7. Overall block diagram of the proposed ANLPT.

Algorithm 3: ADMM for solving (17).
Input: Patch-tensor X
Init: ρ = 1.1, µ0 = 1e–3, µmax = 1e10, ε = 1e–8
while ‖Bk+1 −Bk‖∞ ≥ ε, or ‖T k+1 − T k‖∞ ≥ ε, or ‖Bk+1 + T k+1 −X ‖∞ ≥ ε do

1. Update Bk+1

Bk+1 = argmin
B
‖B‖∗ +

µk
2

∥∥∥∥B+ T k −X +
Y k
µk

∥∥∥∥2

F

2. Update λk+1
λk+1 = S(Bk+1 +X −Y k)

3. Update T k+1

T k+1 = argmin
T

λk+1‖T ‖1 +
µk
2

∥∥∥∥Bk+1 + T −X +
Y k
µk

∥∥∥∥2

F

4. Update Y k+1
Y k+1 = Y k + µk(Bk+1 + T k+1 −X )

5. Update µk+1
µk+1 = min(ρµk, µmax)

Output: Background-tensor B, Target-tensor T

4. Experiments
4.1. Experimental Data

The data set used in the experiment in this paper includes a common single-frame
infrared image data set (SIRST [36]) a̧nd three image sequences with 30, 30, and 40 images,
respectively. The single frame infrared image data set was divided into four groups with
about 100 images in each group after being arranged according to the local average entropy
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of each image. The local average entropy of an image is the average of all elements in its
local entropy map (shown in Figure 2):

ē =

hs

∑
i=1

ws

∑
j=1

E(I(i : i + s, j : j + s))

hs × ws
, (24)

where I is the given image with size h× w, s is the side length of patch size, E(∗) is the
function of image local entropy mentioned in (3). Therefore, hs and ws equal h− s + 1 and
w− s + 1, respectively. Figure 8 shows 12 example images from four groups of three, with
the same group number in the given dataset. The targets in each image are framed in green
and magnified. It can be observed that the images grouped based on the local average
entropy have some characteristics as follows: First, images with smaller local average
entropy tend to have simpler backgrounds, as shown in Figure 8a–c. The visual and pixel
distribution of all images in Group.1, which contains these three images, is consistent with
this feature. Secondly, for an image with a simple background, the larger its local average
entropy value is, the lower its signal-to-noise ratio is, as shown in Figure 8h. Therefore,
images with simple backgrounds but low SNR will be distributed in Groups 2, 3, and 4.
Finally, for images with a high SNR, the span of background pixel values tends to be larger
with the increase of the local average entropy of the image, and the different pixel values
in each image block are more evenly distributed. That is, there may be richer textures in
the image, such as Figure 8j for an image with rich clutter, Figure 8k for an image with
multiple edges, and Figure 8l for an image with complex clouds. Based on the above
characteristics, it can be inferred that images located in high group order will have more
complex structures. Then, the low-rank sparse decomposition of the image group with
high group order is more difficult, and the detection performance of dim and small targets
is poor.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(l)

Figure 8. Twelve single frame images with different scenes. The images are taken from the corre-
sponding serial number of the image group in column order. (a–c) are taken from Group.1. (d–f) are
taken from Group.2. (g–i) are taken from Group.3. (j–l) are taken from Group.4. The target is marked
with a green rectangle, and a close-up of the target is given in the lower right or lower left corner of
the target image.
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Some images contained in the three IR image sequences are shown in Figure 9. Se-
quence.1 and Sequence.2 are images with simple backgrounds with one target or two
targets, respectively, and Sequence.3 contains images whose background is complex with
more interference.

Figure 9. Some images from Sequence.1 (first line), Sequence.2 (second line), and Sequence.3 (third
line). The target is marked with a green rectangle.

4.2. Evaluation Metrics
4.2.1. Signal-to-Clutter Ratio Gain (SCRG)

The SCRG index reflects the enhancement degree of the detected target in its neighbor-
hood within a certain region, and the equation is as follows:

SCRG =
SCRdetection

SCRorigin
, (25)

where SCRdetectionand SCRorigin represent the signal-to-clutter ratio (SCR) between the
target and its neighborhood in the original image and the detected image, respectively. The
SCR can intuitively reflect the difference between the signal (or target) and its neighborhood,
and is calculated as follows:

SCR =
|µ̄b − µ̄t|

σb
, (26)

where µ̄b and µ̄t are the average gray value of the target and the average gray value of its
neighborhood, respectively. σb is the grayscale standard deviation in its neighborhood. The
neighborhood of the target is a rectangle according to the size of the target. Take Figure 8i as
an example; the rectangular field of the target in the image is shown in Figure 10, where the
four sides are at a distance c from the four sides corresponding to the minimum bounding
rectangle a× b of the target. Thus, the region of the neighborhood can be expressed as
(a + 2c)× (b + 2c).
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Figure 10. Target and its neighborhood region. The red box is the minimum bounding rectangle with
size a× b of the target, and c is the distance from the target to the boundary.

4.2.2. Background Suppression Factor (BSF)

The BSF is also a metric calculated based on the object and its neighborhood. It can
reflect the ability of the algorithm to extract the target, which is defined as:

BSF =
σorigin

σdetection
, (27)

where σorigin and σdetection are the grayscale standard deviation of the target neighborhood
in the original image and the target image obtained after detection, respectively. A larger
BSF value indicates a better ability of the algorithm for object extraction.

4.2.3. Receiver Operating Characteristic Curve (ROC)

ROC reflects the comprehensive performance of the algorithm intuitively. The detec-
tion algorithm with an excellent performance will be shown as having a large area under
the curve (AUC) in the ROC graph. In the field of infrared small target detection, the
horizontal and vertical axes of the ROC curve represent the false-alarm rate (Fa) and the
probability of detection (Pd) of detection results, respectively. Fa and Pd are, respectively,
defined as:

Fa =
N f

Nimage
, (28)

Pd =
Nc

Na
, (29)

where Na is the number of objects present in the image set, Nc is the number of correct
targets in the corresponding detection result, N f is the number of false targets in the
detection result, Nimage is the number of images in the image set. To classify a detected
object as a correct target, two conditions are required [2]: Firstly, the measured result and
the real target should have overlapping pixels; Secondly, the center coordinate between the
measured result and the real result should not be greater than a certain distance (generally,
four pixels).

4.3. Analysis of Parameters

The classical detection method of infrared small targets based on low-rank sparse
decomposition, whether based on the IPI model or IPT model, includes the key param-
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eters of image patch size, stride (e.g., sliding step), and compromising factor λ. Our
method constructs tensor data by matching nonlocal similar blocks. Therefore, this paper
also introduces two new parameters, namely the matching region and the number of
tensor channels.

To investigate the influence of the above parameters on the proposed method, we
conducted corresponding experiments for them, respectively. The ROCs of the above four
parameters of the proposed method in each image group are shown in Figures 11–14. These
figures all contain seven ROCs, which are the results of the proposed model running on
four sets of single-frame data sets Group.1, Group.2, Group.3 and Group.4, and three sets
of image sequences Sequence.1, Sequence.2, and Sequence.3, respectively, from left to right.
According to the curve change trend of the experimental results from Group.1 to Group.4,
it can be seen that, when the background is simple, the performance of the model is less
affected by the parameters, and the detection accuracy is higher. With the increase of the
complexity of the background, the performance of the model is more easily affected by the
parameters, and the detection accuracy also decreases.
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(c) Group.3
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(e) Sequence.1

0.0 0.4 0.8 1.2 1.6 2.0
False-alarm Rate

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y 
of

 D
et

ec
tio

n

patch size=30
patch size=40
patch size=45
patch size=50
patch size=55
patch size=60
patch size=70

(f) Sequence.2

0.0 0.4 0.8 1.2 1.6 2.0
False-alarm Rate

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y 
of

 D
et

ec
tio

n

patch size=30
patch size=40
patch size=45
patch size=50
patch size=55
patch size=60
patch size=70

(g) Sequence.3

Figure 11. Analysis curve for the parameter of the image block size.
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(c) Group.3
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(f) Sequence.2
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Figure 12. Analysis curve for the parameter of the interval distance of reference blocks.
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(c) Group.3
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(f) Sequence.2
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Figure 13. Analysis curve for the parameter of the matching region.
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Figure 14. Analysis curve for the parameter of the channel number of the model.

Each ROC contains the different results of experiments for a certain parameter. The
legend located at the bottom right of figure indicates the parameters for the experiment
and their corresponding values. The value reflecting the best performance is represented
by the solid line in the legend.

4.3.1. Patch Size

Patch size is one of the most important parameters of the infrared small target method
based on the low-rank and sparse decomposition model. Figure 11 shows the experimental
results of the proposed model with image patch sizes ranging from 30× 30 to 70× 70. It
can be observed that, if a small image patch is selected, the sparsity of a slightly larger
object will be insufficient and it will be misrecognized as the background, thus reducing the
accuracy of the method. This is confirmed by the results for image patches of size 30× 30
and 40× 40 in the figure, which tend to have a lower accuracy than models with larger
image patches. If a large image block is selected, the clutter and noise that may exist in
the image with certain sparsity will often be misrecognized as the target, increasing the
false detection rate of the proposed method. It can also be observed from Figure 11 that the
image patch with the center size of (50× 50) obtains better results in the experiment.

4.3.2. The Stride between Reference Blocks

The stride between reference blocks is the distance between the same side of two
closest reference blocks. In the experiment, this parameter was set based on the size of the
reference blocks. As shown in the label of Figure 12, when the stride is set to 1, the distance
between two reference blocks equals the length of the block side; in other words, two
reference blocks are adjacent. A smaller stride brings more overlap area, which has resulted
in the accumulation of redundant information to some degree. As shown in Figure 12a–g,
at the same level of detection probability, the results based on a small stride have more
false alarms than the results based on stride 1. Additionally, all ROC figures in Figure 11
show that the models based on a stride bigger than 1 performed poorly in the probability
of detection. Furthermore, this parameter is also related to the costs of system. Hence, the
optimal stride setting should be 1.

4.3.3. Matching Region

The matching region determines the distance between the matching block and the
reference block for each matching. We selected four different matching regions for our
experiments, which were 5, 10, 15, and 20. From Figure 14, we can see that the matching
region is one of the most influential metrics. A small matching region may lead to overlap-
ping targets in the matched image patches, which is reflected in the tensor model, and a
certain sparsity of the targets is missing. However, a larger matching region will make the
span of image blocks larger, the difference between matching blocks increases, the low-rank
decreases, and there are more false detections. The experimental results show that the
proposed method performs best when the matching region is 10 pixels.
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4.3.4. The Number of Channels in the Model

Figure 13 is an experimental result based on changing the number of tensor channels
in the model. In other words, it changes the number of matching times to construct a tensor
structure. For example, a three-channel tensor structure requires two matches against
reference blocks. As Figure 13a–d show, a small number of channels perform better in the
low-complexity-background infrared images. However, with the increase of background
complexity, a large number of channels will gradually appear to have the advantages of
richer background information, as the results of Group.4 and Sequence.3 show. However,
other groups indicate that the three-channel tensor already has enough performance of
detection. Moreover, the number of channels is closely related to the time costs of matching
and decomposition. In summary, the number of channels was set to three in this method.

4.4. Experiments and Analysis
4.4.1. Experimental Results

To verify the robustness of the proposed method for different datasets in different
scenes, the proposed algorithm was applied to the datasets shown in Figures 8 and 9.
Figure 15 shows the background suppression result of the images in Figure 8. Figure 16
presents a 3D surface map of corresponding detection results. The detection results of data
sets in Figure 9 are shown in Figure 17. It can be seen that the data shown in Figure 8 have a
good background suppression performance, and only a slight interference can be found in
the case of a particularly complex background, as seen in Figure 15i–l. However, the third
row images in Figure 9 are extremely difficult to apply low-rank and sparse decomposition
to, and even human visual observations find that there is a lot of noise, similar to that of
dim targets, which is also a big challenge for our method.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(l)

Figure 15. The detection results of 12 single-frame images. The target is marked with a green
rectangle, and a close-up of the target is given in the lower right or lower left corner of the target
image. The (a–l) corresponds to those in Figure 8.
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(l)

Figure 16. The 3D surface maps of the results from the proposed methods. The (a–l) corresponds to
those in Figure 8.

Figure 17. The detection results of some data in the three infrared image sequences. The target is
marked with a green rectangle.

4.4.2. Comparative Experiments and Analysis

To verify the effectiveness of the proposed method, it was compared with the other
six excellent unsupervised infrared small target methods. They are TLLCM [25] based
on local contrast, ADMD [46] based on filtering, IPI [2] based on low-rank sparse matrix
factorization, and RIPT [36], PSTNN [37], and NTFRA [38], which are based on low-rank
sparse tensor decomposition, respectively. In addition, a deep-learning based method,
ALCnet [47], was compared with our method. Since ALCnet is a supervised method, it
requires training. When testing on one group, the remaining data in the dataset were used
to train ALCnet.

Figure 18 shows the results of each method on four images from different groups in
Figure 8. In the figure, the odd row contains the original image and the detection results
of each method, and the even row shows the 3D model of the corresponding image. The
first column is the original image (the four original images are from different groups), and
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the remaining columns show the results of each method on the same image. Figure 19
shows the ROCof each method and Table 1 shows the AUC of each method, running on the
whole data set and the four groups, respectively. SCRG and BSF values are calculated to
quantitatively evaluate the target enhancement ability and background suppression ability
of all the methods, as shown in Table 2.

In the single-frame infrared image set, the ADMD and TLLCM methods perform
well on images with simple backgrounds but show a sharp increase in false detections on
images with more noise and clutter. Algorithms based on low-rank sparse decomposition
perform well on images with simple backgrounds. However, the experimental results show
that IPI often cannot effectively suppress the dark target-like objects in the image and the
background of the target image is often gray. RIPT has a certain ability to suppress the
edge information existing in the image, but it cannot effectively solve the hard edge. It
tends to increase the false alarms because it retains part of the information of hard edges.
PSTNN has a good effect on image background and clutter suppression but, in the case of
poor target sparsity, the target will be incorrectly eliminated, which leads to the reduction
of the probability of detection. NTFRA is not robust and has more false detections for
images with small SNR or with more and harder clutter. Moreover, NTFRA also has
strict requirements on the sparsity of the target. ALCnet also performs well on the four
groups. However, methods based on deep learning often need a large training data set.
The experimental results (seen in Figure 18) show that, compared with the above methods,
the proposed method has an excellent ability to suppress edges, noise, and clutter in the
images. Moreover, the ROC corresponding to Group.1∼4 in Figure 19 also shows that the
proposed method has an excellent performance on images with different characteristics,
with a low false alarm rate and a high probability of detection performance.

On the three image sequences, the method based on low-rank and sparse decomposi-
tion shows more advantages in terms of accuracy and the false alarm rate. It is noted that
ADMD and TLLCM in Sequence.1 and Sequence.2 of Figure 9, where the image background
is smooth and simple, also have a certain degree of false alarm due to texture and clutter in
the image. Moreover, ADMD and TLLCM lose their detection ability in Sequence.3, which
is more complex and has a rich clutter background. The ROC corresponding to Sequence.3
in Figure 19 shows that PSTNN and NTFRA need to have a certain detection ability under
the condition of a high false alarm rate. ALCnet has a good performance on Sequence.1, but
performs poorly on Sequence.2 and Sequence.3, which shows that it is heavily dependent
on the quality of the training set. IPI, RIPT and the proposed method perform well, and the
proposed method achieves a better performance.
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Figure 17. The 3-D surface maps of the results from proposed methods.

(a) Original Image (b) ADMD (c) TLLCM (d) IPI (e) RIPT (f) PSTNN (g) NTFRA (h) ALCnet (i) Ours

Figure 18. The detection results of each method on the four single-frame infrared images from
different groups. The first column contains original images and corresponding 3D map.
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Figure 19. Comparison of different infrared small target detection methods.

column is the original image (the four original images are from different groups), and the

Figure 18. The detection results of each method on the four single-frame infrared images from
different groups. The first column contains original images and the corresponding 3D map. The
correctly detected target is marked with a green rectangle,while the wrong one is marked with a
red rectangle, and a close-up of the target is given in the lower right or lower left corner of the
target image.
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Figure 19. Comparison of different infrared small target detection methods.
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Table 1. Pd (Fa = 0.5) and AUCs of different methods. The best results are shown in red.

Methods
Group.1 Group.2 Group.3 Group.4 Sequence.1 Sequence.2 Sequence.3

Pd AUC Pd AUC Pd AUC Pd AUC Pd AUC Pd AUC Pd AUC

ADMD 4.3% 0.186 2.2% 0.068 1.7% 0.038 1.8% 0.028 3.0% 0.050 13.6% 0.194 1.0% 0.025
TLLCM 4.8% 0.166 1.4% 0.107 0.8% 0.085 0.7% 0.088 1.0% 0.151 4.1% 0.576 0.5% 0.050

IPI 28.7% 0.886 34.6% 0.767 51.0% 0.830 80.4% 0.861 100.0 1.000 100.0% 1.000 96.3% 0.973
RIPT 97.5% 0.975 86.5% 0.903 43.9% 0.859 63.2% 0.844 100.0% 1.000 100.0% 1.000 89.4% 0.967

PSTNN 96.0% 0.943 88.5% 0.893 95.7% 0.937 80.9% 0.910 100.0% 1.000 100.0% 1.000 72.5% 0.851
NTFRA 10.5% 0.067 0.8% 0.038 2.5% 0.187 4.2% 0.308 100.0% 1.000 100.0% 1.000 14.5% 0.604
ALCnet 94.3% 0.928 54.5% 0.892 86.7% 0.938 58.9% 0.884 100.0% 0.995 48.6% 0.918 5.8% 0.437

Ours 100.0% 0.991 97.7% 0.963 87.8% 0.954 88.4% 0.938 100.0% 1.000 100.0% 1.000 98.3% 0.977

Table 2. SCRG and BSF for different methods. The best results are shown in red.

Methods
Group.1 Group.2 Group.3 Group.4 Sequence.1 Sequence.2 Sequence.3

SCRG BSF SCRG BSF SCRG BSF SCRG BSF SCRG BSF SCRG BSF SCRG BSF

ADMD 1.091 0.168 1.071 0.237 1.106 0.331 1.337 0.624 2.759 0.742 2.926 0.298 1.626 0.510
TLLCM 1.218 0.270 1.586 0.429 1.755 0.707 1.949 1.460 2.252 2.426 3.697 0.643 4.676 1.992

IPI 2.474 0.850 3.476 1.824 5.522 3.635 9.670 8.249 21.387 10.821 2.950 1.358 16.142 19.218
RIPT 1.798 1.176 2.692 2.246 4.902 4.776 7.878 11.037 24.278 17.132 2.373 1.483 8.221 10.005

PSTNN 2.921 1.434 4.519 2.558 6.737 4.008 9.081 12.075 40.654 17.616 2.677 1.300 27.740 23.690
NTFRA 0.802 0.285 1.836 0.828 3.309 1.722 6.838 6.682 35.569 17.174 2.969 1.345 17.952 9.070
ALCnet 2.206 0.423 6.180 1.258 8.240 2.268 12.046 4.988 40.658 17.616 2.633 0.805 37.810 21.176

Ours 3.125 1.117 4.911 2.710 5.666 4.985 8.792 9.735 41.323 17.616 2.580 1.275 14.612 12.745

5. Conclusions

In this paper, an improved infrared small target detection method based on a low-
rank sparse tensor decomposition model is proposed. The proposed method constructs
a low-rank sparse tensor model by patch matching, uses the local entropy of the image
as the statistics to reduce the influence of the sparse objects in the image patches on the
matching results, and ensures the low rank of the background tensor according to the local
similarity of the image. The proposed method constructs a three-channel low-rank sparse
image patch tensor model by matching each reference image patch only twice. Based on
this, TNN based on t-SVD was used to approximate the low-rank background and ADMM
was used to optimize the model. The experimental results show that the proposed method
can not only effectively detect the target in the infrared image but also has a low false alarm
rate, and other various metrics are also excellent.
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