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Abstract: Precise knowledge of crop water consumption is essential to better manage agricultural
water use, particularly in regions where most countries struggle with increasing water and food
insecurity. Approaches such as cloud computing and remote sensing (RS) have facilitated access,
process, and visualization of big geospatial data to map and monitor crop water requirements. To
find the most reliable Vegetation Index (VI)-based evapotranspiration (ETa) for croplands in drylands,
we modeled and mapped ETa using empirical RS methods across the Zayandehrud river basin in Iran
for two decades (2000–2019) on the Google Earth Engine platform using the Normalized Difference
Vegetation Index (NDVI) and the Enhanced Vegetation Index 2 (EVI2). Developed ET-VI products
in this study comprise three NDVI-based ETa (ET-NDVI*, ET-NDVI*scaled, and ET-NDVIKc) and an
EVI2-based ETa (ET-EVI2). We (a) applied, for the first time, the ET-NDVI* method to croplands
as a crop-independent index and then compared its performance with the ET-EVI2 and crop ET,
and (b) assessed the ease and feasibility of the transferability of these methods to other regions.
Comparing four ET-VI products showed that annual ET-EVI2 and ET-NDVI*scaled estimations were
close. ET-NDVIKc consistently overestimated ETa. Our findings indicate that ET-EVI2 and ET-NDVIKc

were easy to parametrize and adopt to other regions, while ET-NDVI* and ET-NDVI*scaled are site-
dependent and sensitive to image acquisition time. ET-EVI2 performed robustly in arid and semi-arid
regions making it a better tool. Future research should further develop and confirm these findings
by characterizing the accuracy of VI-based ETa over croplands in drylands by comparing them with
available ETa products and examining their performance using crop-specific comparisons.

Keywords: actual evapotranspiration; croplands; drought; GEE; Vegetation Index (VI)

1. Introduction

Water stress is significantly increasing in many countries in arid and semi-arid regions
due to a sharp decline in precipitation. Consequently, these countries are not able to meet
their water and food demands [1] and their agricultural sector is under severe pressure.
The effect of drought on cultivated areas is a reduction of available water for actual evap-
otranspiration (ETa) and is often combined with increasing potential evapotranspiration
that results in failing and declining crop yields [2]. This is because less water is available
for irrigation when the demand is high. Agricultural areas are far more affected by water
shortage than uncultivated land cover areas [3]. Thus, the accurate prediction of ETa, as the
main indicator of crop water consumption, is essential for drought monitoring, irrigation
scheduling, and sustainable water resources management [4,5].
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Mapping the spatial distribution of ETa has been facilitated through remote sensing
(RS) over large areas [6]. With the rise of cloud-based computing, the use of RS in many
studies has greatly improved. Without the need to download and store data locally, a
cloud-based platform such as Google Earth Engine (GEE) could effectively overcome
the difficulties involved in large data processing and enable long-term environmental
monitoring [7]. Using cloud computing platforms, researchers can share their scientific
findings on a number of themes, including the monitoring of vegetation and crop water
requirements, i.e., ETa at various spatial scales.

RS-based methods of ETa estimation can be classified into two groups: (1) satel-
lite land surface temperature methods [8–10] and (2) vegetation index-based methods
(ET-VI) [11–13]. In the first method, ETa is calculated as a residual of the energy balance
equations using a thermal band collected from satellites [8,14], a variety of empirical and
physically based models, input data, and assumptions to solve the energy balance equa-
tion [15]; while the link between crop coefficients (Kc) and reference ET (ETo) is employed
in ET-VI-based approaches to predict crop water requirements [12,16].

The ET-VI method is one of the most commonly applied empirical approaches to model
ETa using VIs as a proxy of Kc, as presented in the Food and Agriculture Organization
(FAO56) method [14]. FAO56 applies the Penman–Monteith (PM) method to calculate the
ET of a hypothetical reference crop, such as well-watered grass with a height of 12 cm,
predefined roughness and albedo, and meteorological data [14]. Next, ETo is multiplied
by Kc and Ks. Kc relates the ETa of a specific crop to those of the reference crop, while Ks
describes the reduction of ETa due to water insufficiency. Under well-watered conditions
(irrigation) Ks equals to 1 [14]. Similarly, in the ET-VI method, a VI is used to estimate the
product of Kc and Ks [12,17]. Two Kc calculation approaches are considered in FAO56:
(1) in most studies, Kc values are acquired using the single Kc approach which merges
crop transpiration and soil evaporation into a single Kc coefficient [14,16,18], and less
frequently, in method (2) the dual Kc approach is employed. This method determines crop
transpiration and soil evaporation independently [18].

The most commonly used VIs are the Normalized Difference Vegetation Index (NDVI),
Enhanced Vegetation Index (EVI), and the two-band version of the Enhanced Vegetation
Index 2 (EVI2), which have been widely tested for ETa estimation in different landscapes
including agricultural land [19–23], riparian vegetation [12,24–26], restored riparian [27],
semi-arid sagebrush steppe [28], and urban green spaces [13,29,30]. Among these VIs,
NDVI has been widely employed as a proxy of Kc at the field scale for different crops
by determining the correlation between Kc and NDVI. The history of using NDVI as
a proxy of Kc goes back to a study by Bausch and Neale (1987), who investigated the
estimation of Kc using NDVI at two sites in Colorado; they validated the Kc estimated
by radiometric measurements of NDVI against lysimeter measurements [31]. Kamble
et al. (2013) developed a linear regression model between NDVI derived from MODerate
Imaging Spectroradiometer (MODIS) and ground-based Kc extracted from AmeriFlux. A
strong agreement was observed between the NDVI-Kc and the ground-based Kc during
mid-season periods [32]. Duchemin et al. (2016) investigated the application of NDVI
derived from Landsat 7 to estimate Kc values for wheat in Morocco, and reported a linear
relationship between NDVI and Kc to monitor crop water requirements over irrigated
agricultural fields [33]. The ability of NDVI to estimate ETa was examined using the Sentinel
2 and Venus satellites by French et al. (2020) over wheat fields at the farm scale in Yuma and
Maricopa, Arizona, USA [23]. Comparisons of estimated ETa with crop evapotranspiration
(ETc) observations revealed that RS-based ETa agreed well for most of the growing season,
particularly during the mid-season [23]. Groeneveld et al. (2007) suggested the use of
NDVI*, which reduces the scene-to-scene variability of Landsat images by removing
NDVI outliers at the high- and low-ranges; their initial application estimated ETa over
phreatophyte communities [34]. They scaled the NDVI by assigning values for bare soil at
0 and values for dense agricultural areas reflecting fully transpiring crops at 1.0 [35]. In
this method, NDVI values are standardized between scene-specific bare soil NDVI (which
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means NDVI* equals to 0) and maximum NDVI (which means NDVI* equals to 1) to
remove variation between scenes [34,36]. Bresloff et al. (2013) also applied these methods
in desert phreatophyte communities after scaling sap flux measurements [37]. Jarchow et al.
(2020) modified the Groeneveld equation and used NDVI* to calculate vegetation health
and ETa dynamics in a semi-arid sagebrush steppe where ETa was calibrated with a 3-ha
lysimeter [28], as well as for the ETa of tamarisk along the Shiprock, New Mexico, USA
floodplain. Their seasonal ETa estimates for the New Mexico floodplain were significantly
correlated with groundwater level (r2 = 0.71) [38]. Recently, Nouri et al. (2020) applied EVI,
EVI2, and NDVI* to estimate the ETa of urban green spaces where ET-EVI2 showed the
highest correlation with ground data [39]. The NDVI* index has not been modified to be
tested over croplands in an irrigation district per se. In a previous study, we evaluated the
applicability of ET-VI for mapping and monitoring drought in arid agricultural systems
using EVI and EVI2 and considering harvested area changes. We developed ET-EVI and
ET-EVI2 using Landsat sensors over croplands in the Zayandehrud River Basin (ZRB) in
Iran. Since EVI and EVI2 were optimized for MODIS and first used in estimating ETa [22],
using these VIs with Landsat sensors required a cross-sensor transformation to allow for
their use in the ET-VI algorithm (methodology can be found in [40]). Our results showed
that ETa estimates agreed well with each other and are all suitable to monitor ETa in the
ZRB. Compared to ETc values, ET-EVI2 performed slightly better across croplands.

This study aims to evaluate RS-based ET-VI methods over croplands by comparing
the performance of four VIs – NDVI*, NDVI*scaled, NDVIKc, and EVI2 – in the calculation
of crop-independent ETa using reported ETc and FAO56 Kc values in the ZRB. In this study,
we, for the first time: (a) applied NDVI* over croplands in a large irrigation district; and (b)
assessed the applicability and possibilities of translation of these methods to other regions.
Since over 40 different crops are cultivated in the ZRB and it is not possible to calibrate
NDVIs as a proxy of Kc for all crops, we applied methods that are crop independent and
suitable for operational applications. NDVI* ranges from 0 to 1 while the maximum Kc
of many crops reaches 1.2 [41,42]. Therefore, NDVI* was scaled (NDVI*scaled) to match
the Kc range. NDVIKc is a crop-independent relationship between NDVI and Kc values
described by [43]. We compared the ETa calculated using these three NDVIs to our localized
ET-EVI2 [40], reported ETc derived from the local authorities’ reports, and crop-specific ET
(wheat) values from the literature. The Google Earth Engine (GEE) platform was used to
develop and generate ET-VIs and harvested areas’ changes time series in the ZRB.

The two main questions addressed in this paper are: (a) how to apply NDVI* to be
adopted in agricultural lands for ETa estimation? So far, the application of NDVI* has
not been tested for ETa estimation over croplands within basin-scale studies; therefore,
we adjusted this index to be applied to crop water requirement estimation; and (b) which
ET-VI is a better proxy of ETa over croplands? To find out which ET-VI performs better,
ET-VIs were compared to reported ETa values. To evaluate the crop water requirements
using ET-VIs time series, these methods were assessed in terms of ease of applicability and
translation to other districts.

2. Materials and Methods
2.1. Study Site

One of the most important basins in central Iran is the ZRB which covers an area of
26,917 km2 (Figure 1). The ZRB suffers from overexploitation, water scarcity, and recurring
drought [44], and provides water for approximately 4.5 million residents [45]. The ZRB
plays an important role in supplying potable, industrial, and agricultural water [46]. The
main river of the basin flows 350 km [47] and is regulated by the Zayandehrud dam. Annual
precipitation ranges from 63 mm downstream to 1281 mm upstream [40]. The average
annual precipitation upstream is 475 mm and downstream is 144 mm (Figure 1b). The
basin experiences the highest temperature from June to August (Figure 1c). Croplands are
irrigated due to the low precipitation in the eastern and central parts of the basin. Wheat,
barley, alfalfa, maize, potato, onion, and rice are the main staple crops of the basin [40].
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Most farmlands in the ZRB are irrigated and the irrigation water is supplied by a dam.
Drought and low rainfall result in less water release from the dam and consequently
impairment of the agriculture sector and food production in the basin. Hence, analysis of
spatial and temporal variations of ETa is vital to optimizing water resources management
for irrigated agriculture.
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Figure 1. (a) The Zayandehrud River basin (ZRB), (b) Annual average precipitation upstream and
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and temperature.

2.2. Satellite Data and Preprocessing

Landsat series (5 ETM, 7 ETM+, and 8 OLI) with a spatial resolution of 30 m for
the period 2000–2019 were processed and corrected on the GEE platform to produce
monthly VIs and ET-VIs time series (Figure 2). GEE consists of a repository of publicly
accessible datasets, including satellite images from different sensors, and environmental,
weather and climate, land cover, and topographic datasets with planetary-scale analysis
capabilities [7,48]. It enabled us to process satellite images through a web-based code editor
tool for algorithm development and accessing petabytes of data.

Corrected Landsat scenes for topography and bidirectional reflectance distribution
function (BRDF) are further processed to remove clouds, shadows, snow, water, and poor-
quality pixels. The missing data resulting from scan line errors in the Landsat 7 ETM+ were
ignored, and we only retained data that was present. Abnormalities along the scene edges
of Landsat 5 images were removed by applying a 500 m inwards-buffer mask. Discontinuity
biases originating from small differences between the spectral characteristics of Landsat 5,
7, and 8 were addressed through transformation corrections developed by [49].

2.3. Calculation of NDVIs and ET-NDVIs

In this study, to calculate ET-NDVIs, three different NDVI-based proxies of Kc values
were calculated: NDVI*, NDVI*scaled, and NDVIKc. NDVI is a widely used index and proxy
of vegetation health and greenness; it is calculated as a normalized ratio of the near-infrared
(NIR) and red (R) bands:

NDVI =
NIR − R
NIR + R

(1)

NDVI* is an empirically modified version that aims to reduce the residual scene-
to-scene variability of Landsat images by removing NDVI outliers at the high and low
ends [28,38]. NDVI values were standardized between scene-specific bare soil (NDVI0)
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and most-active vegetation (NDVImax) to remove variation between scenes caused by
atmospheric and soil conditions [34,36], and to compare scenes from different times under
potentially different atmospheric opacities [34]. Groeneveld et al. (2007) identified NDVI0
inside homogeneous areas of native phreatophyte alkali scrub by using a simple linear
regression over the lower portion of the cumulative frequency distribution for the pooled
NDVI values for each year. We sampled constant areas with only bare soil inside each
scene to calculate the mean NDVI0. For each image, NDVI0 was calculated using a simple
linear regression of the cumulative frequency distribution applied to the sampled regions.
The x-intercept resulting from the linear regression was chosen as the NDVI0 (Figure 3).
To generate NDVImax, the absolute highest NDVI value was determined in each scene
and then the average of all pixels falling within 5% of the maximum value was taken to
be NDVImax [36,38,39,50]. NDVImax values vary scene-to-scene depending on absolute
maximum values.
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The NDVI* is then computed using the following equation:

NDVI∗ =
NDVI − NDVI0

NDVImax − NDVI0
(2)

According to FAO56, ETa is calculated as Ks × Kc × ETo. Consequently, VIs (NDVI*,
NDVI*scaled, and NDVIKc) are used to proxy the Ks × Kc value. Under unstressed and
well-watered conditions, the maximum Kc of many crops reaches 1.2 [41,42] while NDVI
cannot exceed 1. To use NDVI* as a proxy for Kc, we scaled NDVI* to match the Kc range
and then compared NDVI* with NDVI*scaled:

NDVI*scaled = 1.2 × NDVI* (3)

In the single Kc approach, the effect of crop transpiration and soil evaporation is
incorporated into a single Kc that can be approximated with the NDVI. Many crops under
unstressed conditions during the peak vegetation activity have a Kc of 1.2 [14] which
approximately equals to an NDVI value of 0.8. Similar to that during the initial stage
of the growing season, many crops have a Kc of 0.4 and an NDVI value of approxi-
mately 0.16 [18,43]. A crop-independent relationship between NDVI and Kc was reported
by [18,41,43]:

NDVIKc = (1.25 × NDVI) + 0.2 (4)

Three versions of ETa were derived by multiplying pixel-wise estimated crop coeffi-
cients (NDVIKc, NDVI*, and NDVI*scaled) and ETo values (Equations (5)–(7)).

ET-NDVI* = ETo × NDVI* (5)

ET-NDVI*scaled = ETo × NDVI*scaled (6)

ET-NDVIKc = ETo × NDVIKc (7)

where ETo was calculated using GCWM. It should be noted that the VI method considers
transpiration from green vegetation and only to a small extent the evaporation from bare
soil. This explains possible underestimations during the initial and developing stages of
the crop cycle [23].

After obtaining the ET-VI layers from GEE, missing monthly ET-VI values were
replaced with average values from the previous and subsequent months.

2.4. Evaluation of ET-VIs and VIs

ET-NDVIs were compared with ET-EVI2 and long-term average ETc values; details
of ETc calculations were reported by [40]. ET-NDVIs’ performance was evaluated and
compared with that of ET-EVI2 using annual average values, annual ET-VIs time series,
ETa anomaly (as the deviation from the average ET-VI), and quartile analysis. The Mann–
Kendall (MK) test, a non-parametric test, was applied to detect the existence of monotonic
trends in the time series of ETa [51]. Since the MK test cannot provide the slope of the trend
(magnitude), the Sen method, a nonparametric estimator (S), was used to determine the
magnitude of the trend. Negative S values show a descending trend and positive values
present an ascending trend [52]. Statistical analysis and visualization of the ET-VIs were
conducted in R [53] and QGIS [54].

Ground-truthing data (control point) from wheat farms were collected for the growing
season (November–June) over several field visits (2015–2016, 2017–2018, and 2018–2019) by
the Isfahan Agriculture Organization (IAO) (https://agri-es.ir/Default.aspx?tabid=1925,
accessed on 20 June 2021) in the Isfahan county located in the ZRB. These data were used to
evaluate VIs and ET-VIs against the FAO-Kc’s curves and reported ETwheat for the region
by [55], respectively. For this purpose, the corresponding pixel values of VIs and ET-VIs at a
monthly scale were extracted at each point across three different growing seasons of wheat
(2015–2016, 2017–2018, and 2018–2019). ET-VIs and VIs were then compared to ETwheat and

https://agri-es.ir/Default.aspx?tabid=1925
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FAO56-Kc during three growing seasons. Long-term average ETc data (2000–2019) of major
crops were also used to determine if the estimated ET-VIs represent the reported ones.

3. Results
3.1. ETa Products Comparison

Comparing ET-VIs demonstrated that ETa rates are lower in the northwest of the
ZRB and higher along the river where croplands are irrigated (Figure 4c; Appendix A:
Figures A2–A5). To show the interannual variability of ETa caused by different cultivated
areas, an annual average of the ET-VIs’ volumes (Km3/year) were plotted against the
harvested areas’ changes (Figure 4a). Nearly all annual ET-VIs showed that the highest ETa
was recorded during 2004–2007 when rainfall was adequate and larger volumes of water
were released from the dam to the lower reaches of the ZRB (Figure 4a). ET-VIs, particularly
ET-NDVI* and ET-NDVI*scaled were not significantly sensitive to harvested area changes
and dry periods and remained less variable. Figure 4b shows that ET-NDVI*scaled estimates
are closer to ET-EVI2 than those of ET-NDVI* and ET-NDVIKc. The lowest and the highest
ETa values are those of ET-NDVI* and ET-NDVIKc (Figure 4b), respectively. The quartile
curves show that the lower and second quartiles of ET-EVI2 and ET-NDVI*scaled agree with
the second and third quartiles of ET-NDVI*. Additionally, the upper quartile of ET-EVI2
and ET-NDVI*scaled are aligned with the median of ET-NDVIKc. The trend analysis of ET-
VIs (Appendix A: Table A1) showed a non-significant downward trend for both ET-NDVIKc
and ET-EVI2, with a decrease of 0.58 and 0.79 mm/year, respectively, while ET-NDVI* and
ET-NDVI*scaled had a significant downward trend (−4 and −4.91 mm/year, respectively).
ET-NDVI*scaled has the highest downward trend based on S with −4.91 mm/year.

3.2. ET-VIs versus Ground-Based Data

To evaluate the ET-VIs’ estimates, long-term average annual ETa estimates were
compared with that of reported ETc values (Figure 5a). The results show that all ET-VIs
except ET-NDVI* exceeded ETc values. This is because NDVI* has not been scaled to
Kc values, therefore ET-NDVI* estimates are lower than other ET-VIs. Among ET-VIs,
ET-NDVI* showed the closest values to ETc. ET-NDVIKc had the maximum difference
compared to ETc, being 328 mm. ET-NDVI* had the lowest deviation from the reported ETc
(8 mm) followed by ET-EVI2 and ET-NDVI*scaled (97 and 117 mm), respectively (Figure 5a).
It should be noted that ETc values were calculated within crops’ growing season, while ET-
VIs estimates were reported at an annual scale; that is, soil evaporation out of the growing
season has not been excluded from the ET-VIs estimate (Figure 5a). Therefore, annual
ET-VIs are always larger than the reported ETc. Among scaled VIs, ET-EVI2 followed by
ET-NDVI*scaled showed the lowest difference compared to ETc. We also compared the
monthly ETa estimated using RS for three growing seasons with the ETc of wheat reported
by [55]. Similarly, ET-EVI2 followed by the scaled ET-NDVI* showed the lowest difference
compared to ETwheat (Figure 5b). The differences increased in 2018 because of a drought
event and a significant decrease in wheat cultivation (an almost 80% decline) (Figure 5c).

In the dry year of 2018, ET-VIs are lower than the reported ETwheat. In 2016, the
differences in ET-VIs are close to their corresponding values in 2019. Figure 5a,b show
that it is important to consider the growing season in the ETa derivation to avoid ETa
overestimation.
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A comparison between monthly ET-VIs during three growing seasons and the reported
monthly ETwheat (Figure 6) shows that all ET-VIs’ estimates exceed ETwheat during the
end-stage (in June) in all growing seasons, that is, ET-VIs tend to estimate ETa higher at the
end-stage even during the dry year in 2018. Additionally, in April 2016 and 2019 all ET-VIs
except ET-NDVI* had a slightly higher ETa. In the early stage (November to January) when
evaporation is more dominant than transpiration, almost all ET-VIs estimates were lower
than ETc. ET-VIs reached their maximum in May for all growing seasons. From November
to February, ET-NDVI*, ET-NDVI*scaled, and ET-EVI2 have relatively close estimates. A
comparison of the monthly average of VIs’ curves as a proxy of Kc values versus FAO-Kc
of wheat during three growing seasons (Figure 7a) shows that the VIs’ lowest and highest
estimates were from NDVI* and NDVIKc, respectively. This is because NDVI* values range
between 0 and 1 while other VIs were scaled to reach a maximum of 1.2. FAO-Kc’s values
of wheat maximize at 1.15 under no-stress conditions, while in ZRB, due to water scarcity,
crops may suffer from water stress even when irrigated and having hardly reached their
maximum Kc values. In 2018, VIs’ curves showed a decrease in value at all stages. NDVIKc
for wheat showed that the minimum Kc value is about 0.4 while the maximum Kc value
is 1 (Figure 7a,b). However, other VIs’ minimum values were lower than 0.2 and their
maximum values hardly reached 1.

The initial stage in the VI- and FAO-based curves, except for NDVIKc, had considerable
differences for wheat. All VIs’ estimates exceeded FAO-Kc during the end-stage (in June) in
all growing seasons leading to a higher ETa at the end-stage. At the early stage (November
to January) and mid-stage (February to May), all VIs’ estimates were lower than FAO-Kc,
which reached the highest rate in April during all growing seasons.
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4. Discussion

Annual croplands’ ETa was spatially mapped over the ZRB (2000–2019) using GEE plat-
form. We evaluated three NDVI-based ETa (ET-NDVI*, ET-NDVI*scaled, and ET-NDVIKc)
and compared them with those of a previously derived ET-EVI2 for the study site [40] and
reported ETc values for the ZRB. The VIs, as surrogates for Kc values, were also compared
with FAO-Kc. In our study, the comparison of ET-VIs with the long-term averaged ETc
revealed that all ET-VIs except ET-NDVI* have higher values of ETa at an annual scale
which gives a better picture of the annual water consumption of croplands. The ETa at an
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annual scale includes ETa values not only within the growing season but also out of the
growing season and leads to a higher ETa rate. For the sake of comparison with the field
data (reported ETc), we extracted monthly ETa values of our ET-VI products during the
growing season and compared them with ETwheat (2016, 2018, and 2019) to evaluate the
performance of ET-VIs. All ET-VIs except ET-NDVIKc showed lower values than ETwheat.

Under well-watered and unstressed conditions, Kc maximizes at 1.2 [41] while NDVI
maximizes at 1. Therefore, ET-NDVI* will always have lower ETa estimates. Annual
changes in ET-VIs agreed well with each other, however, ET-NDVI* and ET-NDVI*scaled
showed a slightly decreasing trend which can be due to the parameterization and calcu-
lation methods. The NDVI*’s results are sensitive when images do not correspond to the
maximum vegetation cover [28]. Moreover, this method is suitable under stable condi-
tions and cannot provide reliable estimates in extreme events such as floods and disease
outbreaks during parts of the growing season [25]. These major drawbacks make NDVI*
and ET-NDVI* more difficult to apply under real-world conditions in the estimation of
croplands’ ETa in dry regions. This may not be the case for other land covers such as
riparian vegetation [34,38].

Intra-annual cropland changes could capture the drought and water shortage (Figure 8).
The climatic conditions in the observation period are characterized by a sequence of normal
to wet years (2004–2007) and droughts in the periods 2001–2002, 2011–2012, and 2018 [56],
with harvested areas being considerably lower in dry years. Reducing the cultivated areas
and keeping lands fallow is a well-known response of farmers to drought in arid and semi-
arid regions, particularly in irrigated regions when water resources cannot meet demand.
A decrease in the availability of water can also cause soil moisture to decrease and vege-
tation stress to increase, even in irrigated areas. Our annual ET-VIs’ anomalies (Figure 8)
illustrated that all ETa products had similar inter-annual variations with a capability to
capture the drought and changes in agricultural areas.
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Analysis of the variability of ET-VIs’ anomalies and cropped areas (Figure 8) showed
that water stress and drought events affected cultivated areas considerably more than
ET-VIs. ETa remained less variable in dry years while cropped areas showed stronger
responses with declines of up to 69%. The croplands in the ZRB are inevitably reliant on
irrigation. In this region, drought has forced farmers to use their limited available water
in a smaller area to safeguard reliable crop production. Marston et el. (2017) reported in
a study in the Central Valley of California a 12% reduction in harvested areas through a
3-year successive, exceptional drought leading to the reallocation of limited water supplies
from low-value to higher-value crops during the drought [57]. Knowing that drought
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events affect not only the cropland areas but also yields, particularly in arid and semi-
arid regions [58,59], water scarcity has a direct impact on food production (quantity and
diversity) and consequently food security.

As opposed to NDVI, EVI2 is less susceptible to saturation and less sensitive to
the difference in soil color; this is why EVI2 performs better than NDVI in capturing
vegetation conditions and structure changes [60]. Another major advantage of EVI2 is
its direct application compared to NDVI* which requires an empirical determination of
bare soil inside each scene during the study period. Previous studies support this finding
about EVI2 as a better parametrization for ETa estimation in arid and semi-arid regions.
Nouri et al. (2020) studied the applicability of three VIs (EVI, EVI2, and NDVI*) in ETa
calculation over green spaces in Adelaide, Australia, using three different sensors with
different spatial resolutions. Different satellite-based ET-VIs were analyzed and compared
with the in-situ data. Their results showed that ET-EVI2 performed well across the three
sensors and had the highest correlation with in-situ measurements. Abbasi et al. (2021)
analyzed ET-EVI and ET-EVI2 using Landsat imagery over dynamic harvested areas in
ZRB. Compared to ETc values, ET-EVI (EVI2) performed well across croplands and are
all suitable to monitor ETa in the ZRB. Overall, aligning with the results of our previous
study [40], our findings showed that the ET-VIs’ approach and the dynamic cropped areas
can be used not only for water and agricultural management, but also for developing
and implementing sustainable long-term strategies moving toward a secure water and
food future.

Although VI-based methods are simpler and more straightforward [11], they have
some sources of error and biases. While the NIR- and the R-reflectance of the visible
band—to calculate the VIs—usually have a higher resolution than thermal bands, these
bands cannot capture evaporation losses from the soil after irrigation and rainfall [12,23,24].
This introduces some disadvantages when discussing drought and water stress. Although
water shortage does not considerably and immediately impact structural properties of
the plant [61], NDVI saturates over dense vegetation and is not a reliable indicator for
short-term changes in plant water stress. EVI addresses the NDVI saturation, particularly
over dense vegetation cover [62] and any remaining residual atmosphere, and it is less
sensitive to background noise and atmosphere variability. EVI requires the presence of
a blue band, which has a low signal-to-noise and becomes unstable at times; therefore,
EVI2 was proposed as an alternative to EVI that does not require the blue band and is less
sensitive to noise, making it a much more stable index [60,63]. Thus, VI-based methods are
more suitable for long-term ETa estimates, from a monthly to an annual cycle for natural
vegetation, unless images with a high temporal resolution are available.

Nevertheless, as with all similar studies, the design of the current study was subjected
to some limitations resulting from: (1) lack of sufficient validation data, (2) excluding
images in 2003 due to a lack of sufficient images (Appendix A, Figure A1), and (3) using a
gridded ETo in this study, as limited access to field observations of ETo might have affected
ETa estimates. As of yet, not many studies were conducted in which a sufficient number of
stations were installed over a large area to capture the spatial variability of ETo.

5. Conclusions

Our work revealed that ET-EVI2 and ET-NDVI*scaled agreed well and more closely
reproduced reported ETc values. ET-EVI2 and ET-NDVIKc are the easiest to apply in other
regions, while ET-NDVI* and ET-NDVI*scaled are scene-dependent by design and therefore
require more parameterization and localization. Consequently, we recommend using
ET-EVI2 when applying vegetation index-based ETa estimation in semi-arid croplands.
Our findings showed that ETa remained less variable in comparison to the cropland areas.
In this region, droughts forced farmers to cultivate a smaller area to cope with water
shortages; this highlights the fact that less crop water consumption is not necessarily the
effect of water-saving strategies, but more so the result of the adjusted crop area. Further
investigation is required to precisely understand the reliability of ET-VIs’ estimates across
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croplands in drylands and examine their crop-specific performance, especially for high-
water-consumptive crops such as Alfalfa. In a follow-up study, we plan to assess the
translation of our method (ET-EVI2) to other basins in different arid and semi-arid regions
and compare it with energy balance methods.
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Table A1. Trend analysis of ET-VIs. Sen’s slope is in mm/year. The critical Z value at the 5%
confidence level is ±1.96, and there is a trend if the MK’s Z value is greater than the Z critical value.
Otherwise, the trend is not statistically significant at the confidence level. Additionally, if the p-value
is less than the significance level, the null hypothesis is rejected, meaning that there is a trend in the
time series [51].

Parameter ET-NDVI* ET-NDVI*scaled ET-NDVIKc ET-EVI2

Z-Value −3.54 −3.26 −0.42 −0.32
p-value 0.0004 0.001 0.67 0.75

Sen’s slope −4 −4.91 −0.58 −0.79
Average 635 760 971 740
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46. Sarvari, H.; Rakhshanifar, M.; Tamošaitienė, J.; Chan, D.W.; Beer, M. A Risk Based Approach to Evaluating the Impacts of
Zayanderood Drought on Sustainable Development Indicators of Riverside Urban in Isfahan-Iran. Sustainability 2019, 11, 6797.
[CrossRef]

47. Gohari, A.; Eslamian, S.; Abedi-Koupaei, J.; Massah Bavani, A.; Wang, D.; Madani, K. Climate change impacts on crop production
in Iran’s Zayandeh-Rud River Basin. Sci. Total Environ. 2013, 442, 405–419. [CrossRef] [PubMed]

48. Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial
analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [CrossRef]

49. Roy, D.P.; Kovalskyy, V.; Zhang, H.K.; Vermote, E.F.; Yan, L.; Kumar, S.S.; Egorov, A. Characterization of Landsat-7 to Landsat-8
reflective wavelength and normalized difference vegetation index continuity. Remote Sens. Environ. 2016, 185, 57–70. [CrossRef]
[PubMed]

50. Nagler, P.L.; Barreto-Muñoz, A.; Chavoshi Borujeni, S.; Jarchow, C.J.; Gómez-Sapiens, M.M.; Nouri, H.; Herrmann, S.M.; Didan, K.
Ecohydrological responses to surface flow across borders: Two decades of changes in vegetation greenness and water use in the
riparian corridor of the Colorado River delta. Hydrol. Process. 2020, 34, 4851–4883. [CrossRef]

51. Hamed, K.H.; Ramachandra Rao, A. A modified Mann-Kendall trend test for autocorrelated data. J. Hydrol. 1998, 204, 182–196.
[CrossRef]

52. Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. 1968, 63, 1379–1389. [CrossRef]
53. R Core Team. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021.
54. QGIS.org. QGIS Geographic Information System; QGIS Association, 2022. Available online: http://www.qgis.org (accessed on 2

February 2022).
55. Salemi, H.; Toomanian, N.; Jalali, A.; Nikouei, A.; Khodagholi, M.; Rezaei, M. Determination of Net Water Requirement of Crops and

Gardens in Order to Optimize the Management of Water Demand in Agricultural Sector; Springer: Cham, Switzerand, 2020; pp. 331–360.
[CrossRef]

56. Karamouz, M.; Rasouli, K.; Nazif, S. Development of a Hybrid Index for Drought Prediction: Case Study. J. Hydrol. Eng. 2009, 14,
617–627. [CrossRef]

57. Marston, L.; Konar, M. Drought impacts to water footprints and virtual water transfers of the C entral V alley of C alifornia. Water
Resour. Res. 2017, 53, 5756–5773. [CrossRef]

58. Rezaei, E.E.; Ghazaryan, G.; Moradi, R.; Dubovyk, O.; Siebert, S. Crop harvested area, not yield, drives variability in crop
production in Iran. Environ. Res. Lett. 2021, 16, 64058. [CrossRef]

59. Lesk, C.; Rowhani, P.; Ramankutty, N. Influence of extreme weather disasters on global crop production. Nature 2016, 529, 84–87.
[CrossRef] [PubMed]

60. Jiang, Z.; Huete, A.R.; Kim, Y.; Didan, K. 2-band enhanced vegetation index without a blue band and its application to AVHRR
data. In Remote Sensing and Modeling of Ecosystems for Sustainability IV; Optical Engineering + Applications; Gao, W., Ustin, S.L.,
Eds.; SPIE: San Diego, CA, USA, 2007; p. 667905.

61. Moran, M.S.; Clarke, T.R.; Inoue, Y.; Vidal, A. Estimating crop water deficit using the relation between surface-air temperature
and spectral vegetation index. Remote Sens. Environ. 1994, 49, 246–263. [CrossRef]

62. Huete, A.; DIDAN, K.; MIURA, T.; Rodriguez, E.; Gao, X.; Ferreira, L. Overview of the radiometric and biophysical performance
of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [CrossRef]

63. Jiang, Z.; Huete, A.; DIDAN, K.; MIURA, T. Development of a two-band enhanced vegetation index without a blue band. Remote
Sens. Environ. 2008, 112, 3833–3845. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.agwat.2019.05.047
http://doi.org/10.3390/su11236797
http://doi.org/10.1016/j.scitotenv.2012.10.029
http://www.ncbi.nlm.nih.gov/pubmed/23178843
http://doi.org/10.1016/j.rse.2017.06.031
http://doi.org/10.1016/j.rse.2015.12.024
http://www.ncbi.nlm.nih.gov/pubmed/32020954
http://doi.org/10.1002/hyp.13911
http://doi.org/10.1016/S0022-1694(97)00125-X
http://doi.org/10.1080/01621459.1968.10480934
http://www.qgis.org
http://doi.org/10.1007/978-3-030-50684-1_16
http://doi.org/10.1061/(ASCE)HE.1943-5584.0000022
http://doi.org/10.1002/2016WR020251
http://doi.org/10.1088/1748-9326/abfe29
http://doi.org/10.1038/nature16467
http://www.ncbi.nlm.nih.gov/pubmed/26738594
http://doi.org/10.1016/0034-4257(94)90020-5
http://doi.org/10.1016/S0034-4257(02)00096-2
http://doi.org/10.1016/j.rse.2008.06.006

	Introduction 
	Materials and Methods 
	Study Site 
	Satellite Data and Preprocessing 
	Calculation of NDVIs and ET-NDVIs 
	Evaluation of ET-VIs and VIs 

	Results 
	ETa Products Comparison 
	ET-VIs versus Ground-Based Data 

	Discussion 
	Conclusions 
	Appendix A
	References

