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Abstract: Airborne Laser Scanners (ALS) and Terrestrial Laser Scanners (TLS) are two lidar systems
frequently used for remote sensing forested ecosystems. The aim of this study was to compare crown
metrics derived from TLS, ALS, and a combination of both for describing the crown structure and
fuel attributes of longleaf pine (Pinus palustris Mill.) dominated forest located at Eglin Air Force
Base (AFB), Florida, USA. The study landscape was characterized by an ALS and TLS data collection
along with field measurements within three large (1963 m2 each) plots in total, each one representing
a distinct stand condition at Eglin AFB. Tree-level measurements included bole diameter at breast
height (DBH), total height (HT), crown base height (CBH), and crown width (CW). In addition, the
crown structure and fuel metrics foliage biomass (FB), stem branches biomass (SB), crown biomass
(CB), and crown bulk density (CBD) were calculated using allometric equations. Canopy Height
Models (CHM) were created from ALS and TLS point clouds separately and by combining them
(ALS + TLS). Individual trees were extracted, and crown-level metrics were computed from the three
lidar-derived datasets and used to train random forest (RF) models. The results of the individual tree
detection showed successful estimation of tree count from all lidar-derived datasets, with marginal
errors ranging from −4 to 3%. For all three lidar-derived datasets, the RF models accurately predicted
all tree-level attributes. Overall, we found strong positive correlations between model predictions
and observed values (R2 between 0.80 and 0.98), low to moderate errors (RMSE% between 4.56 and
50.99%), and low biases (between 0.03% and −2.86%). The highest R2 using ALS data was achieved
predicting CBH (R2 = 0.98), while for TLS and ALS + TLS, the highest R2 was observed predicting HT,
CW, and CBD (R2 = 0.94) and HT (R2 = 0.98), respectively. Relative RMSE was lowest for HT using
three lidar datasets (ALS = 4.83%, TLS = 7.22%, and ALS + TLS = 4.56%). All models and datasets had
similar accuracies in terms of bias (<2.0%), except for CB in ALS (−2.53%) and ALS + TLS (−2.86%),
and SB in ALS + TLS data (−2.22%). These results demonstrate the usefulness of all three lidar-related
methodologies and lidar modeling overall, along with lidar applicability in the estimation of crown
structure and fuel attributes of longleaf pine forest ecosystems. Given that TLS measurements are less
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practical and more expensive, our comparison suggests that ALS measurements are still reasonable
for many applications, and its usefulness is justified. This novel tree-level analysis and its respective
results contribute to lidar-based planning of forest structure and fuel management.

Keywords: lidar; machine learning; crown structure; southern forest; fusion

1. Introduction

Forests cover approximately one-third of the earth’s total land area and enrich human
lives on a day-to-day basis by providing timber, food, fuel, fodder, and bioproducts [1,2].
Apart from their economic significance, forested landscapes also offer numerous ecosystem
services such as carbon sequestration, biodiversity conservation, nutrient cycling, and water
and air purification, which are crucial for human well-being and global sustainability [3–5].
Therefore, precise and timely estimation of forest growth and structure is considered a
critical element in forest management and environmental change assessment. Addition-
ally, information on single trees is required to understand the phenomena and processes
occurring in forests [6]. In the case of pine-dominated forests, these tasks are primarily
accomplished by employing growth and yield models, which make use of tree attribute
information obtained through various direct and indirect data collection strategies [7,8].

Longleaf pine (Pinus palustris Mill.), native to the southeastern US, was one of the most
extensive ecosystems—with ecological and economic importance—in North America [9].
Compared to other southeastern pines, they are more resilient to the negative impacts of
global climate change and can withstand severe windstorms, resist pests, tolerate drought,
and help reduce air pollution [10,11]. Additionally, they support the existence of numerous
animals and birds that rely on longleaf pines for their habitat [12,13]. However, due to
their high-quality wood, these forests were heavily harvested for lumber production and
construction purposes throughout the 19th century. This, in addition to land-use changes
and fire suppression regimes, has resulted in the depletion of these landscapes, from over
92 million acres to a mere 3 million acres in a few decades. That being the case, sustainable
management and conservation of existing longleaf forests take high priority, and for this,
accurate measurement of tree counts and other forest attributes that are used at the tree,
plot, and stand levels are vital.

While many forest attributes are made using traditional field sampling techniques,
individual tree field measurements over large areas are generally non-viable due to limita-
tions set forth by budget, time, and labor constraints. As a consequence, remote sensing
technology, in particular Light Detection and Ranging (lidar), has become the most sought-
after remote sensing technology for plot and stand-level forest inventory due to its ability
to provide highly accurate and spatially detailed information about forest attributes across
vast forested landscapes [14,15]. With the boom of increased dataset availability, advanced
data processing capabilities, and algorithmic developments, applications of lidar technolo-
gies in forestry are expected to expand multiple folds in the coming years. Among the lidar
systems, Airborne Laser Scanners (ALS) and Terrestrial Laser Scanners (TLS) are imple-
mented extensively in the forest management discipline due to their ability to characterize
forest vertical structure at the stand or plot level using the acquired high-density 3D point
clouds [8,16,17].

ALS can be used to acquire the vertical and horizontal forest structure in detail with
laser pulses [18], and due to cost-efficiency and scale of operation, ALS has received
by far the most attention for large area retrieval of forest structural parameters [19]. In
particular, ALS has been applied for individual tree detection (ITD) over large areas, as
well as for tree crown delineation, forest uniformity calculation, and canopy gap anal-
ysis [20–23]. Although airborne systems can cover large areas efficiently and relatively
cost-effectively [24,25], difficulties persist in the observation of near-ground vegetation and
the lower canopy characteristics [26]. In addition, the estimation of forest structural param-
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eters using ALS faces a few persistent issues caused by factors such as species heterogeneity,
tree density, and crown overlapping that are not simply resolved by increased lidar return
density [8,13,16,27]. For instance, Silva et al. [8] realized the difficulty of modeling tree
basal area due to the lack of linearity in the relationship between height and diameter of
longleaf pine after this species reaches a diameter of ∼25 cm because longleaf pine height
growth asymptotes at ∼25 m while the diameter continues to increase.

Because of these ALS limitations, TLS data can be considered a satisfactory alternative
for more completely characterizing three-dimensional (3D) forest structures, especially for
the canopy understory given its horizontal and upward view perspectives [17], which com-
plements the downward view perspective of ALS [26]. TLS is capable of acquiring levels of
detail far beyond what ALS is capable of [28]. TLS offers an approach for calibrating and
validating ALS and thereby helps improve the accuracy of the estimated forest structural
variables [16,29–31]. However, TLS data collection methods suffer from their inability to
capture information outside their direct line of sight with respect to a fixed location. This
results in a high percentage of laser pulses being intercepted by the understory, stems, and
lower canopy, reducing the number of pulses reaching the upper canopy and areas that are
directly behind the trees [17].

Given that there exist several advantages and limitations for TLS and ALS for improv-
ing forest management operations, it is equally important to understand how each data
collection strategy affects the accuracy of extracted tree features as well as how certain
metrics derived from these tree parameters influence the performance of operational forest
modeling systems. In the case of fire behavior and effects models, in general, several
tree-level or stand-level parameters—such as tree count and maximum tree height—are
initially estimated from remotely sensed data [32,33]. Consequently, these parameters
are incorporated into statistical or machine learning models to choose the best metrics
for deriving crown-level metrics (for example, crown area and crown height). Finally,
these metrics are utilized to develop fire models that can be used for evaluating dynamic
relationships existing within the macroscale forest ecosystems, designing prescribed burn
plans, and quantifying canopy fuels, which in turn constrains fire behavior [34–36]. The
effectiveness and applicability of fire behavior and effects models rely predominantly on
the accuracy of forest-related estimates that are provided as inputs. Therefore, it is crucial to
develop synergies between complementary datasets—in this case, TLS and ALS—to better
estimate tree-level parameters with high accuracy. This way, we can expand the number
of obtainable crown structure and fuel estimates from TLS or ALS or their combination.
Moreover, analyzing how the accuracy of crown structure and fuel estimation impacts
fire modeling outputs (from widely used tools such as QUIC-Fire or WFDS) would allow
us to develop ways to streamline the parameters/workflow, dissect complex interactions
between individual parameters affecting wildfire behavior, optimize the fire model outputs,
and interpret results more constructively [34,37]. The study assesses the utility of ALS and
TLS systems and their combination (ALS + TLS) in estimating tree crown structure and fuel
attributes in a longleaf pine forest ecosystem. In particular, we used random forest (RF)
modeling to compare the capability of ALS, TLS, and ALS + TLS in (i) detecting individual
trees from 3D point clouds; (ii) deriving and comparing crown-level metrics from ALS, TLS,
and their fusion; and (iii) predicting tree-level structure and fuel attributes, namely stem
diameter at breast height (DBH), total tree height (HT), crown base height (CBH), crown
width (CW), foliage biomass (FB), stem branches biomass (SB), crown biomass (CB), and
crown-bulk density (CBD).

2. Materials and Methods
2.1. Study Area

The study area is located at Eglin Air Force Base north of Niceville, Florida, USA
(Figure 1). The climate is characterized by warm, humid summers, and generally mild
winters. The forest type is dominated by longleaf pine (Pinus palustris Mill.) and turkey
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oaks [38,39]; open overstory canopy cover (up to 50%) and open understories (sparse
understory shrub cover) are maintained by frequent prescribed fires.
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Figure 1. Study area and field plot location at Eglin Air Force Base: (a) United States, (b) state of
Florida, and (c) ALS and TLS extent. (d) Field plots and (d1–d3) photos at the bottom were collected
during the 2017 field measurement survey.

2.2. Field Data Collection

In the field, tree measurements were collected within three circular plots of 25 m
radius (0.196 ha) in 2017. Tree stems were geolocated using a differential Global Position-
ing System (DGPS) (Trimble Geo7X [40]). We used steel diameter tapes to measure the
diameter at breast height (DBH, 1.37 m above ground) of all individuals ≥ 5 cm DBH.
Laser rangefinders (LaserTech Impulse 200 [41]) were used to measure total tree height
(HT, m) and crown base height (CBH, m), and a cloth tape was used to measure crown
width (CW, m) along orthogonal (major and minor; CWMJ and CWMN) crown axes. All
trees tallied (n = 353) were geolocated using a GNSS (Trimble Geo7X); further details can be
found in the US Forest Service Research Data Archive [42]. Multi-stem trees (n = 5), dead
trees (n = 21), or trees < 10 cm DBH (n = 123) were dropped from consideration, leaving
n = 205 trees for subsequent analysis; of these, 146 of 149 conifers were longleaf pine, and
50 of 56 hardwoods were turkey oak, leaving insufficient diversity to consider beyond
conifer vs. hardwood trees. Foliage biomass (FB; kg), stem branches biomass (SB; kg),
crown biomass (CB; kg), and crown bulk density (CBD; kg m−3) were calculated for each
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longleaf pine and oak tree based on allometric Equations (1)–(8) below. Table 1 summarizes
all the field-based individual tree measurements used in this study.

Table 1. Descriptive statistics of field measurements of 205 trees included in the study: height
(Ht); diameter at breast height (DBH); canopy base height (CBH); crown width (CW; major and
minor); foliage biomass (FB); stem and branches biomass (SB); crown biomass (CB); and crown bulk
density (CBD).

Attributes Units Min. Mean Max. sd

HT m 3.90 10.65 16.90 2.96
DBH cm 10.0 16.40 39.50 5.05
CBH m 0.30 4.51 8.50 2.32
CW m 1.30 3.26 9.45 1.36
FB kg 1.72 7.25 41.02 5.54
SB kg 22.14 102.64 703.21 85.47
CB kg 4.77 23.09 226.92 26.54

CBD kg m−3 0.03 0.25 1.11 0.25

Longleaf pine (Pinus palustris) [7]:

FB (kg) = 0.0697 × DBH2.1631 × HT−0.5569 (1)

SB (kg) = 0.0070 × DBH3.6735 × HT−1.1735 + 0.0273 × DBH1.9745 × HT0.9163 (2)

CB (kg) = FB + 0.0070 × DBH3.6735 × HT−1.1735 (3)

Oaks (Quercus spp.) [43,44]:

FB (kg) = 0.0211 × (π × DBH2)/4 (4)

SB (kg) = 0.5614 × (π × DBH2)/4 (5)

CB (kg) = 1.68513 × 10−5 × DBH2.4767 × 102 (6)

where DBH is the diameter at breast height (DBH, 1.37 m above ground) and HT is the
total crown height (m). Crown bulk density (CBD; kg m−3) was calculated for each tree
based on the following equation:

CBD (kg m−3) = CB (kg)/CVellp (m3) (7)

where CB is the crown biomass (kg) and CVellp is the crown volume (m3) based on a
3D ellipsoid and calculated as a function of crown width (CWMJ and CWMN) and crown
length (CL):

CVellp (m3) = [4/3 × π × (CWMJ/2) × (CWMN/2) × CL/2] (8)

2.3. ALS Survey

The ALS data were acquired in November 2012 by Kucera International using a Leica
ALS60 sensor operating in Multiple Pulses in Air (MPiA) modes, with a 20◦ field of view
and 50% sidelap, flying at the height of 1200 m. Additional information on the ALS data
collection can be found in the US Forest Service Research Data Archive [45].

2.4. TLS Survey

The TLS data were acquired in October 2012 using an Optech ILRIS 36D-HD Scanner
mounted on a boom lift pointed downward at an angle of 23◦ at the height of 20 m above
the ground. Additionally, for each plot, the TLS sensor was placed at six different positions
at a 20 m distance from the border of the plot and was operated remotely from a tablet
computer via a wireless connection. Each of the six scans was configured to have a sampling
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resolution of 8 mm in the 20 m range, 2 cm in the 90 m range, and 5.6 cm in the 300 m
range. Additional information on TLS data collection can be found in the US Forest Service
Research Data Archive [46].

2.5. ALS and TLS Data Pre-Processing

The summary of the parameters for both ALS and TLS surveys is displayed in Table 2.
The data pre-processing was carried out using LAStools [47] and FUSION/LDV LiDAR [48].
First, ALS ground returns were classified using a progressive triangulated irregular network
densification algorithm [49] implemented in lasground [47] (settings: step is 20 m, bulge is
0.5 m, spike is 1 m, and switches are wilderness and ultra_fine) to create a 1-m resolution
digital terrain model (DTM). Second, both ALS and TLS returns were converted to above-
ground heights by subtracting the elevation values of the ALS-derived DTM. The ALS and
TLS normalized point clouds were combined using CloudCompare®(Align and Rotate
tools) [50] to create a fused dataset (ALS + TLS).

Table 2. ALS and TLS collection parameters.

Attributes ALS TLS

Point Density 6.8 points m−2 68.14 points m−2

Pulse rate 178.6 kHz 10.0 kHz
Scan Altitude 1200 AGL 16–27 m AGL

2.6. Individual Tree Detection and Crown-Level Metrics

Individual tree detection (ITD), extraction, and crown metrics computation using
ALS, TLS and ALS + TLS datasets was performed in three steps using the lidR [51] and
lidRplugins [52] packages in the R environment (R version 4.2.1) [53]. First, individual tree
detection was performed using an adapted approach by Eysn et al. [54] and implemented in
the lidRplugins package. The method is based on iterative canopy height model generation
(CHM; 0.5 m spatial resolution), followed by a sequential detection of potential tree tops
step using a local maximum filtering approach within a moving window over various
CHMs. Tree tops are then sorted by height and considered a detected tree if there is no
detected tree within a given 2D distance (2 m) as well as a given 3D distance (1 m) [54].
Relative difference (RD was used for accessing ITD performance (Equation (9)). Second,
the individual tree crowns were delineated based on the Voronoi diagram algorithm [55]
developed by Silva et al. [8] and implemented in the lidR package [51]. The segmented
crown areas were used to obtain the crown radius (CRAD; m) and canopy projected area
(CPA; m2), defined as the area of the circle with a radius equal to CRAD. Lastly, all height
returns within crown areas were extracted, and individual crown metrics (Table 3) were
computed for each tree detected. The mixtools package [56] was used to compute the
crown base height (CBH, m) by subtracting three times the component standard deviation
from the component mean of the topmost distribution. Crown volume (CV; m3) and crown
surface area (CSA; m2) were calculated as the volume and surface area of the 3D convex
hulls derived from all lidar returns within crown segments, respectively. The two-sided
Kolmogorov–Smirnov (KS) test was used to test if the distributions of the same crown-level
metric from ALS, TLS, and ALS + TLS differed significantly, with significance level of 0.05.

The relative difference (RD) between detected and observed trees was calculated
as follows:

RD (%) =
nl − n f

nl
100 (9)

where nl is the number of trees detected with lidar and n f is the number of trees inventoried
in the field for each plot.
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Table 3. ALS-derived crown metrics (Klauberg et al. [57]).

Definition Unit Abbreviation

Crown Height based
metrics

Maximum crown height m HMAX
Mean crown height m HMEAN

Height standard deviation m HSD
Variance of heights m2 HVAR
Kurtosis of heights - HKUR

Skewness of heights - HSKEW

Xth percentiles of heights m H5TH, H15TH, H20TH, ...,
H90TH, H95TH, H99TH

Crown morphology
based metrics

Crown base height m CBH
Crown length (HMAX—CBH) m CL

CBH-based crown ratio (100 × CL/CBH) % CRAT
Crown radius (

√
Segment Crown area/π) m CRAD

Simplified crown projected area (π × CRAD2) m2 CPA
Crown convex hull volume m3 CV

Crown convex hull surface area m2 CSA
Crown density (i.e., the ratio between the number of
returns above CBH and the total number of returns) % CDEN

HMAX-based crown ratio (100 × CL/HMAX) % CRT
Crown form index (100 × CL/(2 × CRAD)) % CFI

Crown thickness index (100 × (2 × CRAD)/CL) % CTI
Crown spread ratio (100 × (2 × CRAD)/CBH) % CSR

2.7. Crown-Level Structural and Fuel Load Attributes Modeling
2.7.1. Linking Field and Lidar Detected Trees

Field-inventoried trees and individual trees detected from lidar were linked based
on the minimum Euclidean distance (Dfl) calculated from four multidimensional spaces
(Equation (10)). The method works in two general steps; first, a lidar tree is randomly
selected, and the Dfl is computed for all the trees listed in the field database. The tree in
the field database that showed the lower Dfl is selected for matching. If two or more field
trees had the same Dfl values, we randomly selected one for matching, and the remaining
trees were returned for the next iteration. After the matching, both lidar and field trees are
removed from the database, and the process is repeated until all the lidar and field trees
are matched.

D f l =

√(
X f − Xl

)2
+
(

Y f − Yl

)2
+
(

HMAX f − HMAXl

)2
+
(

CPA f − CPAl

)2
(10)

where Dfl is the distance between the f -th tree in the field and the l-th tree detected in the
lidar data; Xf and Yf, and Xland Yl, are the xy coordinates (UTM) of the trees in the field
and lidar data, respectively; HMAXf and HMAXl are the field (HT) and lidar-based crown
height (HMAX) in m, respectively; and CPAf and CPAl are the field and lidar-based crown
projected area (m2), respectively.

2.7.2. Variable Selection and Random Forest Modeling

Pearson’s correlation (r) and model improvement ratio (MIR) (e.g., [58–60] were
applied to identify the most important ALS, TLS, and ALS + TLS crown-level metrics for
predicting DBH, HT, CW, CBH, SB, FB, CB, and CBD according to Silva et al. [61] and
Klauberg et al. [57]. To create parsimonious models, we reserved only the crown-level
metrics that exhibited r < 0.9 and MIRs ≥ 0.25. We used the two-sided Kolmogorov–
Smirnov (KS) statistic [62] in R to compare the distribution of the lidar-derived crown
metrics within datasets (ALS, TLS, and ALS + TLS) selected by MIR at a significance level
of 5%. After variable selection, the crown-level structure and fuel load attributes of interest
were predicted at the tree level using also the RF package [63] embedded in a bootstrap
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approach with 500 iterations; ntree was set to 1000, and mtry was set to equal the number
of best lidar metrics selected by MIR.

In each bootstrap iteration, we drew 205 times with replacements from the 205 avail-
able samples within the three field plots. In this procedure, on average, 45% of the total
samples (~70 samples) are not drawn. These samples were subsequently used as holdout
samples for independent validation (e.g., [24]). In each bootstrap iteration, the calibrated
RF model was applied to predict the crown-level structure and fuel attributes for the
holdout samples (out of bag). After 500 iterations, the average of the predictions for each
tree observation from the holdout samples is used as the final prediction. R2, absolute
and relative RMSE, and bias were computed based on the linear relationship between
observed and predicted crown structure and fuel attributes for assessing model accuracy
(Equations (11)–(13)).

R2 =

[
∑n

i = 1(yi − y)
(
ŷi − ŷ

)]2
∑n

i = 1 (yi − y)2 ∑n
i = 1

(
ŷi − ŷ

)2 (11)

RMSE =

√
n

∑
i = 1

(ŷi − yi)
2/n (12)

Bias =
1
n

n

∑
i = 1

(ŷi − yi) (13)

where n is the number of trees; yi and ŷi are the observed and predicted values for tree i;
y and ŷ are the observed and predicted mean values for tree i; and relative RMSE (%) and
biases (%) were calculated by dividing the absolute values (Equations (11) and (13)) by the
mean of the observed values. Figure 2 displays an overview of the methodology used in
this project.
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and prediction assessment.

3. Results
3.1. Individual Tree Detection and Crown-Level Metrics

The number of trees detected by the ITD algorithm was similar to the number of
trees ≥ 10 cm DBH tallied in the field (Table 4, Figure 3). The relative difference between
the number of observed and detected trees relative to the observed trees (i.e., detection
error) was between −4% and 3%, which can be considered marginal. There is no clear
error pattern across plots or datasets, which suggests that there is no systematic source
of errors in the ITD algorithm. Fused data (ALS + TLS) provided the lowest error range
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(from 0% to 2%), followed by the ALS data (from −2% to 2%) and TLS (from −4% to 2%).
While the overall error range of the ALS data seems slightly smaller when compared to
the TLS dataset, only one of the plots (N) was worse in the TLS dataset (possibly as a
result of occlusion because of the higher stand density). In the other two plots, the TLS
dataset either presented no error (W) or had an error similar to the one registered by the
ALS dataset (S). Although these ranges are comparable in practice, this pattern suggests
that the ITD algorithm effectiveness benefits slightly from ALS + TLS. Figure 4 shows the
distribution of crown-level metrics computed from ALS, TLS, and ALS + TLS datasets.
ALS-derived crown metrics in most of the cases differed significantly (p < 0.05) from TLS
and ALS + TLS-derived crown metrics based on the KS test. However, TLS and ALS + TLS
crown metrics were similar in all cases based on the KS test (Figure 4).

Table 4. Result of the individual tree detection (ITD) using ALS, TSL, and the fused (ALS + TLS) lidar
datasets; n = number of detected trees; RD = relative difference between detected and observed trees
relative to the number of observed trees (detection error).

Plot Observed
ALS TLS ALS + TLS

n RD n RD n RD

N 121 124 2% 116 −4% 123 2%
W 33 34 3% 33 0% 33 0%
S 51 50 −2% 52 2% 51 0%

Remote Sens. 2023, 15, x FOR PEER REVIEW 10 of 22 
 

 

pattern across plots or datasets, which suggests that there is no systematic source of errors 

in the ITD algorithm. Fused data (ALS + TLS) provided the lowest error range (from 0% 

to 2%), followed by the ALS data (from −2% to 2%) and TLS (from −4% to 2%). While the 

overall error range of the ALS data seems slightly smaller when compared to the TLS 

dataset, only one of the plots (N) was worse in the TLS dataset (possibly as a result of 

occlusion because of the higher stand density). In the other two plots, the TLS dataset 

either presented no error (W) or had an error similar to the one registered by the ALS 

dataset (S). Although these ranges are comparable in practice, this pattern suggests that 

the ITD algorithm effectiveness benefits slightly from ALS + TLS. Figure 4 shows the dis-

tribution of crown-level metrics computed from ALS, TLS, and ALS + TLS datasets. ALS-

derived crown metrics in most of the cases differed significantly (p < 0.05) from TLS and 

ALS + TLS-derived crown metrics based on the KS test. However, TLS and ALS + TLS 

crown metrics were similar in all cases based on the KS test (Figure 4). 

Table 4. Result of the individual tree detection (ITD) using ALS, TSL, and the fused (ALS + TLS) 

lidar datasets; n = number of detected trees; RD = relative difference between detected and observed 

trees relative to the number of observed trees (detection error). 

Plot  Observed  
ALS TLS ALS + TLS 

n RD  n RD n RD 

N 121 124 2% 116 −4% 123 2% 

W 33 34 3% 33 0% 33 0% 

S 51 50 −2% 52 2% 51 0% 

 

Figure 3. Illustration of the individual tree detection (ITD) and extraction from ALS, TLS, and ALS 

+ TLS data in one of the plots: (a1-a3) raw point cloud of ALS, TLS, and ALS+TLS data colored by 

point height above ground; (b1-b3) point cloud trees of ALS, TLS, and ALS+TLS segmented by the 

Figure 3. Illustration of the individual tree detection (ITD) and extraction from ALS, TLS, and
ALS + TLS data in one of the plots: (a1–a3) raw point cloud of ALS, TLS, and ALS + TLS data colored
by point height above ground; (b1–b3) point cloud trees of ALS, TLS, and ALS + TLS segmented by
the ITD algorithm; (c1–c3) 3D representation of the trees in the plots retrieved from ALS, TLS, ans
ALS + TLS data [64].
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Figure 4. Density plot of the ALS (blue line), TLS (orange line), and ALS + TLS (green line) derived
crown metrics. The red, yellow, and green squares represent the Kolmogorov–Smirnov test when
comparing ALS vs. ALS + TLS, TLS vs. ALS + TLS, and ALS vs. TLS crown metrics distribution,
respectively. The gray histogram is generated using the ALS + TLS crown metrics data. Ns refers to
not significantly (p > 0.05) in the two-sided Kolmogorov–Smirnov (KS) test.

3.2. Variable Selection

The first stage of the variable selection approach based on r values considerably
reduced the number of candidate metrics for the modeling, from 36 to 15 metrics in the ALS
data, to 16 metrics in the TLS data, and to 15 metrics in the ALS + TLS data (Figures 5 and 6).
Both crown height and crown morphology-based metrics were selected in the first filtering,
although the number of crown morphology-based metrics was greater.
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(−0.9 < r < 0.9) metrics (lower triangle). The “x” resents relationships where the r value is statistically equal to zero (p-value > 0.05).
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Figure 6. Mean model improvement ratio (MIR) of preselected metrics (i.e., metrics with Pear-
son’s correlation between −0.9 and 0.9 with each other). Metrics with MIR ≥ 0.25 were selected
for modeling.

For the ALS data, the number of selected metrics to train the RF model after the
exclusion of highly correlated variables varied from three to seven (Figure 6). The model of
CBH and SB included as predictors the lowest and largest number of metrics, respectively.
For the TLS data, the number of selected metrics ranged from four (i.e., for CB and CBD)
to nine (i.e., for CBH). For the fused dataset (ALS + TLS), the number of selected metrics
ranged from two (i.e., for DBH) to seven (i.e., SB). Regarding metric importance within the
model, H99TH, CL, and CSA highlighted the importance in most models using the ALS,
the TLS, and the ALS + TLS data.

3.3. Random Forest Model Assessment

RF model performance slightly varied across datasets and crown-level structure and
fuel attributes. Overall, all models from the bootstrapping procedure performed well and
produced R2, RMSE, and bias estimates ranging from 0.80 to 0.98, from 1.06% to 9.31% and
0.75% to 7.63%, respectively (Table 5).

The final predictions derived from the mean of the 500 bootstrap runs were highly
correlated to the observed values (R2 between 0.80 and 0.98), with low to moderate errors
(RMSE% between 4.56 and 50.99%) and bias close to zero (between 0.03% and −2.86%). By
using the ALS data, the model of CBH depicted the highest R2 (0.98), and the model of
HT had the lowest RMSE (4.83%). For TLS and the fused dataset (ALS + TLS), the models
for HT performed slightly better in comparison to the other modeled tree attributes. By
using ALS data, predictions for SB had the smallest R2 value (=0.80) and highest RMSE
(51%), but the bias was low. The accuracy for this attribute was higher using the TLS
(R2 ≥ 0.88 and RMSE < 39%) and the fused dataset (ALS + TLS). ALS performed better for
the HT and CBH models. Accuracies in terms of bias were comparable among models and
datasets, with values below absolute 3.00%. Overall, predictions for crown structural and
fuel attributes tended to underestimate high values and overestimate low values (Figure 7).
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Figure 7. Scatter plots of observed versus predicted crown-level structure and fuel load attributes,
RMSE, and bias across tree attributes and lidar datasets. The predicted values are derived from the
average of the 500 bootstrap iterations. Diameter at breast height (DBH); tree height (HT); crown
width (CW); canopy base height (CBH); foliage biomass (FB); steam branches biomass (SB); crown
biomass (CB); crown bulk density (CBD). The diagonal lines represent the perfect match (1:1) between
observed and predicted values.
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Table 5. Bootstrap prediction accuracies (mean ± sd) from the random forest (RF) models (n = 500)
in terms of R2, absolute and relative root mean square error (RMSE), and bias. Tree height (HT);
Diameter at breast height (DBH); crown width (CW); canopy base height (CBH); foliage biomass (FB);
stem branches biomass (SB); crown biomass (CB); crown bulk density (CBD).

Data Forest
Attributes

R2 RMSE (Mean ± sd) Bias (Mean ± sd)

(Mean ± sd) Absolute Relative (%) Absolute Relative (%)

ALS

HT (m) 0.97 ±0.01 0.53 ±0.11 4.94 ±1.06 −0.02 ±0.09 −0.15 ±0.79
DBH (cm) 0.94 ±0.05 1.46 ±0.60 8.78 ±3.47 −0.08 ±0.24 −0.48 ±1.42
CBH (m) 0.98 ±0.01 0.37 ±0.06 8.06 ±1.42 −0.01 ±0.06 −0.14 ±1.18
CW (m) 0.93 ±0.05 0.39 ±0.17 11.6 ±4.62 −0.03 ±0.07 −0.77 ±1.89
FB (kg) 0.86 ±0.07 2.62 ±0.82 34.19 ±9.03 0.01 ±0.43 0.28 ±5.56
SB (kg) 0.80 ±0.09 51.30 ±19.13 48.32 ±14.72 −1.74 ±8.08 −1.10 ±7.49
CB (kg) 0.90 ±0.08 11.99 ±5.80 47.42 ±17.84 −0.64 ±2.03 −1.86 ±7.63

CBD (kg m−3) 0.95 ±0.03 0.03 ±0.01 14.15 ±4.82 0.01 ±0.01 −0.73 ±2.06

TLS

HT (m) 0.94 ±0.02 0.79 ±0.14 7.35 ±1.35 0.01 ±0.13 0.01 ±1.19
DBH (cm) 0.92 ±0.04 1.67 ±0.56 9.62 ±2.99 −0.07 ±0.28 −0.35 ±1.59
CBH (m) 0.92 ±0.02 0.69 ±0.09 15.39 ±2.17 0.01 ±0.11 0.16 ±2.35
CW (m) 0.93 ±0.04 0.39 ±0.15 10.81 ±3.71 −0.02 ±0.06 −0.62 ±1.74
FB (kg) 0.90 ±0.05 2.21 ±0.90 26.87 ±9.31 −0.05 ±0.38 −0.37 ±4.50
SB (kg) 0.87 ±0.08 43.09 ±17.03 36.82 ±12.11 −1.89 ±6.97 −1.26 ±5.79
CB (kg) 0.87 ±0.08 12.83 ±5.35 47.04 ±15.66 −0.40 ±2.04 −0.86 ±7.28

CBD (kg m−3) 0.93 ±0.03 0.03 ±0.01 16.46 ±3.29 0.01 ±0.01 0.38 ±2.58

ALS + TLS

HT (m) 0.97 ±0.01 0.51 ±0.11 4.70 ±1.06 −0.01 ±0.08 −0.07 ±0.75
DBH (cm) 0.97 ±0.04 0.99 ±0.57 5.69 ±3.17 −0.08 ±0.17 −0.45 ±0.95
CBH (m) 0.96 ±0.01 0.49 ±0.08 10.89 ±1.80 −0.01 ±0.07 −0.13 ±1.59
CW (m) 0.91 ±0.05 0.43 ±0.16 11.59 ±4.02 −0.03 ±0.06 −0.8 ±1.67
FB (kg) 0.87 ±0.07 2.26 ±0.95 28.60 ±10.88 −0.04 ±0.36 −0.38 ±4.58
SB (kg) 0.80 ±0.11 46.65 ±20.19 40.19 ±15.23 −2.71 ±7.05 −2.01 ±5.94
CB (kg) 0.88 ±0.11 11.25 ±6.72 42.60 ±21.77 −0.67 ±1.92 −2.04 ±6.98

CBD (kg m−3) 0.96 ±0.01 0.03 ±0.01 12.99 ±3.03 0.01 0.01 −0.02 ±2.02

4. Discussion

Maps of crown structure and fuel attributes are highly demanded by fire and forest
managers in areas under frequently prescribed fire management for diverse applications
such as simulations of fire behavior [33,65–70]. However, measuring such attributes in the
field is difficult, costly, and prone to errors. To overcome this limitation, we developed
an easily implementable and transferrable modeling framework using ALS and TLS data.
Previous lidar-based studies showed the potential of lidar data for structure and fuel
canopy modeling [71–76], but to our knowledge, this is the first study to assess the impact
of ALS, TLS, and the fusion of both systems to crown-level structural and fuel metrics
modeling in longleaf pine forest ecosystems.

Comparable tree detection errors were observed using both ALS and TLS systems
(Table 4), which might be attributed to the point cloud densities of the lidar systems as
well as to the open forest structure of the study site. The similarity in tree detection errors
aligns with the results found by Huo et al. [77]. ITD algorithms are affected by the tree
density: where stands are denser, and detection errors are higher [78,79]. Trees in longleaf
and other managed southern pine savannas are sparse [80,81], in our case, around 347 trees
per hectare, so the local maxima filter could distinguish a high proportion of tree tops
regardless of the lidar dataset used. Utilizing only the ALS data at a relatively typical
point density (7 points m−2) was as effective as using the TLS data (68 points m−2) or
the ALS + TLS data (75 and points m−2). Previous studies signaled the importance of
lidar point density for tree detection but also pointed out that marginal improvements are
achieved when more than five points m−2 are used [82,83]. Additionally, the density plots
of the lidar metric distribution showed no significant difference between the three datasets
for the height metrics of the uppermost canopy (i.e., HMAX, H99TH) (Figure 4), indicating
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that both scanners were able to sample tree tops with the same efficiency and estimate the
tree attribute with comparable accuracy. This finding corresponds with other studies that
found a strong correlation between tree heights measured from ALS and TLS [16,65,84].

ALS and TLS datasets produced significantly different tree height metrics (e.g., H5TH)
distributions but similar crown-level metrics distributions (e.g., CL and CBH) (Figure 5),
and TLS data depicted slightly better performance compared to ALS data in the prediction
of crown structure and fuel attributes (e.g., FB, and SB) (Figure 7). That was expected based
on the differences between the two systems. ALS returns come mostly from upper branches
and the adaxial side of the leaves or needles, while returns from stems are relatively
scarce [85,86]. In contrast, the number of returns coming from the stems and branches
from the TLS system is relatively massive and can sample the geometry of needles and
woody parts more easily and at different locations [87,88]. This difference in ALS and TLS
operations is also suggested by Bazezew et al. [89]. These authors addressed in their study
that ALS was more adequate for upper canopy detection, while TLS for stem measurements
and lower canopy detection, TLS was more efficient.

TLS data have been traditionally collected from the ground using one or many scan-
ning points per plot [90], but we used a TLS raised up to the canopy height to collect data
from a single scanning position across three unusually large plots across a cumulatively
large area. Such an approach is novel and was shown to enhance estimations of crown
structure and fuel attributes. It should be noted, nevertheless, that a slightly higher accu-
racy was observed in the predictions of HT and CBH using the ALS data (Figure 7). This
might be explained by this surveying strategy and the data processing. ALS can attain
more points of the crown due to the data acquisition from a higher elevation on the top.
Moreover, the terrain model derived from the ALS data was used to normalize both TLS
and ALS data point clouds, so, likely, metrics of the uppermost height canopy (e.g., HMAX,
H99, H90, etc.) that were used as predictors in these RF model were more accurately
calculated when derived from ALS data.

The accuracy of the RF models using the fused dataset (ALS + TLS) in all modeled
tree attributes was relatively good (e.g., R2 > 0.80), and it was in agreement with other
studies fusing both ALS and TLS data. Jung et al. [16], for instance, found correlations
between predicted and observed values (R2) of 0.94 for HT and 0.75 for CBH, while
Giannetti et al. [91] found errors (RMSE) of 0.43 and 1.95 m for these attributes, respectively.
Giannetti et al. [91] also found errors of 1.13 m for tree DBH, and Paris et al. [92] found R2

of 0.86 for CW. However, it is important to point out that comparisons of accuracy among
studies should be carefully considered due to differences in data collection, modeling
approach, accuracy assessment, and evaluated forest type.

Despite this relatively good performance, we did not observe a gain in accuracy by
fusing both lidar systems. The results of the fused dataset (ALS + TLS) were considerably
similar to the results of both ALS and TLS data. Therefore, the use of either ALS or TLS
would be sufficient to model the tree crown structural and fuel attributes in this longleaf
pine forest ecosystem. Additionally, we believe that ALS data offers reasonable results
regarding the difference in point density and data acquisition capabilities of the two lidar
systems. This is operationally relevant because of the significantly larger area that can
be surveyed with the airborne system, especially if compared to the TLS, which needs
at least two scans captured from different perspectives or even more if stand density
causes occlusion [93–95]. Additionally, other authors have developed studies with the
fusion of different lidar datasets and have discussed how choosing the appropriate method
will depend on the objective of the forester [96]. While there was an asynchrony in data
collection that could potentially affect the accuracy of the models proposed here, given the
slow growth rates of mature longleaf pine, and the metrics that we are evaluating in this
study (crown-level structure and fuel metrics), we thoroughly expect that this impact is
going to be minimal on our modeling.

We proposed a workflow to model tree/crown structure and fuel attributes, and we
tested it in three specific inventory plots at Eglin AFB. Nevertheless, further research is
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needed to assess the implications of our analysis across diverse study sites. Factors such as
tree density, crown shape, tree overlaps, stem size, tree age, and species distribution affect
stand and plot structures and, therefore, should be carefully considered while performing
ITD and modeling individual tree attributes. Additionally, assessing the differences be-
tween using ALS and TLS data for modeling different forest types and stand conditions
would inform decision making. For instance, it would provide insights on whether a
specific data collection is required or if it is a justifiable tradeoff by looking into other
external factors—such as the size of the study area, ease of access to the location, density
of the forests, and cost of operations. Cost-effectiveness analyses of boom-lifted TLS data
collections also remain to be assessed. Such analysis must consider the costs of measuring
tree attributes and the costs of the TLS data collection, taking into account the covered area
and the number of trees that can be accurately measured from each scanning point. It is
possible that inexpensive UAV-lidar or mobile scanning lidar systems can collect similar
data at lower cost and more effectively from multiple view perspectives compared to
boom-lifted TLS.

5. Conclusions

In this study, we evaluated and compared the capability of ALS, TLS, and ALS + TLS
fusion in assisting with crown structure and fuel attribute estimations in a longleaf pine
forest ecosystem and demonstrated that lidar could enhance structure and fuel load mod-
eling at the tree level. The workflow involved individual tree detection from lidar point
clouds and the development of predictive models of crown-level structure and fuel and tree
attributes. Overall, both ALS- and TLS-based models showed relatively good performance
in the prediction of the tree attributes. Given that TLS measurements are less practical
and more expensive, our comparison suggests that ALS measurements are still reasonable
for many applications, and their usefulness is justified. Our analyses demonstrate the
applicability of lidar for modeling crown structure and fuel attributes and provide insights
for advancing forest fuel and fire management strategies. Further research is needed to
assess the operational and economic implications of these results for forest monitoring, fuel
management, and fire activity planning at a broader scope.
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