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Abstract: Aquaculture plays a key role in achieving Sustainable Development Goals (SDGs), while it
is difficult to accurately extract single-object aquaculture ponds (SOAPs) from medium-resolution
remote sensing images (Mr-RSIs). Due to the limited spatial resolutions of Mr-RSIs, most studies have
aimed to obtain aquaculture areas rather than SOAPs. This study proposed an object-oriented method
for extracting SOAPs. We developed an iterative algorithm combining grayscale morphology and
edge detection to segment water bodies and proposed a segmentation degree detection approach to
select and edit potential SOAPs. Then a classification decision tree combining aquaculture knowledge
about morphological, spectral, and spatial characteristics of SOAPs was constructed for object filter.
We selected a 707.26 km2 study region in Sri Lanka and realized our method on Google Earth Engine
(GEE). A 25.11 km2 plot was chosen for verification, where 433 SOAPs were manually labeled from
0.5 m high-resolution RSIs. The results showed that our method could extract SOAPs with high
accuracy. The relative error of total areas between extracted result and the labeled dataset was
1.13%. The MIoU of the proposed method was 0.6965, representing an improvement of between
0.1925 and 0.3268 over the comparative segmentation algorithms provided by GEE. The proposed
method provides an available solution for extracting SOAPs over a large region and shows high
spatiotemporal transferability and potential for identifying other objects.

Keywords: aquaculture ponds; water; wetland; object-oriented; image segmentation; image classifi-
cation; morphology; edge detection; Sentinel-2; Google Earth Engine

1. Introduction

Aquaculture is an important source of food and livelihood for hundreds of millions of
people around the world [1–3]. As shown in Figure 1, the human consumption quantity of
aquaculture and fishery products has almost doubled since the 1990s. Driven by increasing
populations and social needs, aquaculture has been one of the fastest-growing food pro-
duction sectors in the world over the past decades [4]. The influences of aquaculture on
local natural and social environments are double-edged. On the one hand, the aquaculture
industry provides nutritive food and many job opportunities for people, which contributes
to the “zero hunger” [5] and “no poverty” [6] goals directly related to the Sustainable
Development Goals (SDGs) [7]. On the other hand, the booming aquaculture industry also
exerts a negative influence on the environment, causing problems, such as sediment accu-
mulation and water eutrophication [8–11]. The operation and development of aquaculture
are also threatened by natural disasters such as tropical cyclones, floods, and tsunamis.
Because aquaculture pond areas are usually close to oceans, lakes, and other natural water
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bodies, the destruction of aquaculture ponds causes a reduction in aquaculture products,
such as fish, shrimp, and mollusks, resulting in vast economic losses. Aquaculture-related
losses are considered and measured by the Sendai Framework for Disaster Risk Reduction
2015–2030 [12]. With the increasing development of the global aquaculture industry, it is
extremely vital to strengthen both the monitoring and the management of aquaculture [13].

Figure 1. World aquaculture and fishery production and consumption. Data source: [14].

As a result of the rapid global growth of aquaculture in recent years, the spatial
distribution of aquaculture and the collection of relevant geographical data reflecting spatio-
temporal changes of aquaculture properties represent a focus in agricultural, environmental,
and coastal research [4,15,16]. The geospatial information on aquaculture can support the
effective management and sustainable development of this growing industry. Aquaculture
ponds are the basic units of aquaculture properties; the spatial distribution and temporal
change information of aquaculture ponds offer valuable resources for understanding
aquaculture situations [15], implementing fishery resource surveys [4], protecting the water
environment [16], etc. In addition, when a disaster occurs, a map depicting aquaculture
ponds can provide basic geospatial information for disaster relief and loss evaluation.
Therefore, accurate and spatially explicit extraction of aquaculture ponds is crucial for
monitoring and managing aquaculture properties and further improving the sustainability
of the aquaculture industry.

Remote sensing has the features of wide-area spatial coverage and routine observation
capability and is a suitable tool for mapping water bodies in wetlands on a regional,
national, or global level [17–19]. As a type of wetlands, aquaculture ponds are suitable to be
detected and extracted from remote sensing images (RSIs) with various spatial, temporal,
and spectral resolutions. Researchers have regarded remote sensing as a promising tool
for aquaculture mapping [20]. Current methods for extracting the spatial distribution of
aquaculture ponds can be divided into four categories. The first category involves visual
interpretation methods [21,22]. These methods use aquaculture priori knowledge to classify
water bodies and map aquaculture resources from high-resolution remote sensing images
(Hr-RSIs). The second category comprises pixel-based image processing methods [23–25].
Such methods identify aquaculture and non-aquaculture pixels according to spectral [24,25]
and texture [23] features extracted from RSIs. However, most studies of this category
aimed to obtain aquaculture areas rather than aquaculture at a single-pond level, since
the extraction results tend to contain aquaculture ponds stuck together, forming adhesion
areas. The third category involves machine learning methods [26–29]. These methods are
also pixel-based while relying on training samples. Researchers extract features from RSIs
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and input them into machine learning models, the outputs of which show the identification
results of aquaculture pixels. Machine learning methods, especially those based on deep
learning models [28,29], are widely used in aquaculture studies. However, those models
essentially are data-driven “black-box”; a major limitation in using these models is their sole
dependence on the available labeled data [30], which is often limited in aquaculture ponds
extraction tasks. The fourth category represents object-oriented methods [4,31,32]. These
methods obtain water components by segmenting RSIs, then extract the characteristics
of these objects, such as their area and rectangular degree, to finally distinguish between
aquaculture and non-aquaculture objects according to knowledge-driven classification
rules [31,32] or data-driven statistical models [4]. Compared with other methods, object-
oriented approaches can delineate and classify the landscape objects or patches at different
scales and are suitable tools for segmenting and classifying aquaculture ponds at a single-
object level. Therefore, we explored an object-oriented method for extracting aquaculture
ponds in this study.

According to the current literature, various challenges have been faced in studies map-
ping the spatial information of aquaculture ponds. First, single-object aquaculture ponds
(SOAPs) are the basic units of the aquaculture properties. Different kinds of aquaculture
products with diverse productive and economic values may be present in such ponds. Since
SOAPs represent aquaculture properties at the single-pond level, once a disaster occurs, it is
more meaningful to calculate the economic losses of the aquaculture industry based on the
affected situation of SOAPs than based on that of pond-clustering aquaculture regions; this
is a distinct feature that separates aquaculture from other types of agriculture. However,
most studies have aimed to obtain pond-clustering aquaculture areas rather than SOAPs,
while the spatial information of aquaculture at the single-pond level is more helpful than
that of aquaculture areas for achieving scientific management. Second, it is difficult to
accurately extract SOAPs from medium-resolution remote sensing images (Mr-RSIs) due
to their limited spatial resolutions. Previous studies usually extracted aquaculture ponds
from Hr-RSIs, while an enormous number of Hr-RSIs for study regions at national or global
levels are costly and difficult to acquire. The extraction performance using Hr-RSIs is also
limited by their long data revisit periods because the object detection of aquaculture ponds
requires temporarily dense time series to distinguish ponds from temporarily flooded areas
and abandoned aquaculture ponds. Third, object-oriented methods are considered to be
suitable tools for segmenting water components and distinguishing SOAPs from them.
However, there still exists room for improving the accuracy of extracting SOAPs from
Mr-RSIs. Some studies tried to map aquaculture at a single-pond level, while many ponds
were mutually connected in the extraction results, and some natural water bodies were
misclassified as aquaculture water, resulting in the limited performance of such methods.

Image segmentation is a crucial part of extracting aquaculture ponds at the single-
pond level. Although the spatial resolution of the Mr-RSIs poses challenges in detecting
detailed structures of small-scale aquaculture ponds, water bodies can be identified and
partitioned into proper-scale segments with effective remote sensing indices and well-
designed segmentation techniques. Moreover, in terms of object classification, classifiers
that comprehensively understand the morphological, spectral, and spatial characteristics
of aquaculture ponds have huge potential in distinguishing aquaculture water and non-
aquaculture water, while relevant studies are scarce. We thus hypothesize that: (1) an image
segmentation algorithm with a fine segmentation strategy can overcome the limitation
coming from 10 m spatial resolution to a certain extent, and enhance the segmentation
accuracy of SOAPs as soon as possible, and (2) based on a comprehensive understanding of
morphological, spectral, and spatial characteristics of aquaculture ponds, we can construct
a knowledge-driven classifier to filter aquaculture ponds from segmented objects and
realize high classification accuracy. Aiming to solve the problems existing in previous
studies and verifying the above hypotheses, the specific objectives of this study are (1) to
develop a segmentation algorithm using 10 m Sentinel-2 time series data to explore the
potential of applying Mr-RSIs to extract SOAPs, (2) to construct a classification framework
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for identifying SOAPs according to aquaculture prior knowledge, and (3) to verify the
extraction accuracy of aquaculture ponds at the single-pond level. We realized our method
on a Google Earth Engine (GEE) big data cloud platform and produced SOAP extraction
results. These results were confirmed by a manually labeled verification dataset and by
comparing our result with those from widely used image segmentation algorithms on GEE.

2. Materials
2.1. Study Region

A 707.26 km2 study region (7◦39′~60′N, 79◦44′~51′E, Figure 2a), selected for the de-
velopment and testing of the proposed methodology, is located in Northwest Province,
Sri Lanka, Asia. This region is one of the major landside aquaculture production ar-
eas in the country. Various types of water bodies exist in the study region, includ-
ing marine areas, rivers, and other water bodies, though aquaculture ponds dominate
(Figure 2b,c). The aquaculture ponds in the study area show the following character-
istics. First, these aquaculture ponds are located mainly alongside sea, river, and lake
regions, especially around lagoons and their connected water systems (Figure 2c). In
addition, Sri Lanka is a developing country; its aquaculture industry is dominated by
small-scale ponds [33]. These ponds are clustered and separated by thin embankments
(Figure 2d,e). In particular, the shapes and sizes of aquaculture ponds are not fixed
but change over time. Some ponds may shrink or even dry up because of pond clean-
ing or dry seasons (Figure 2d). Moreover, Sri Lanka witnessed an economic recession
in 2020 due to the COVID-19 epidemic [34]. According to data from the World Bank
(https://datatopics.worldbank.org/world-development-indicators/themes/economy.html,
accessed on 11 December 2022), the gross domestic product (GDP) of Sri Lanka in 2020
was USD 80.7 billion, down 3.6% from the previous year. This economic recession has
limited the development of Sri Lanka’s aquaculture industry, causing many ponds to be
abandoned. The complex features of aquaculture ponds in the study region, combined with
the limited resolutions of Mr-RSIs (Figure 2e), have undoubtedly increased the difficulty of
extracting SOAPs. Therefore, we chose this area for methodology testing and validation to
prove the effectiveness of the proposed method.

Figure 2. Study region selected in this study: (a) location of the study region; (b) overview of the
study region; (c) Sentinel-2 true-color RSI; (d) detailed image from 0.5 m Hr-RSI, where SOAPs can be
explicitly seen; (e) detailed image from 10 m Sentinel-2 Mr-RSI, where SOAPs are hard to distinguish.
All maps in this paper are projected using the Cylindrical Equal Area project (ESRI: 54034).

https://datatopics.worldbank.org/world-development-indicators/themes/economy.html
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2.2. Data

The method described in this paper was designed and implemented on GEE. We
achieved the proposed algorithm by calling GEE’s application programming interface (API)
on the open-source Python interface of Visual Studio Code. GEE is a cloud-based geospatial
processing computing platform; it allows for geospatial data retrieval, processing, and anal-
ysis from the local to planetary scales [35]. A massive amount of RSIs and geospatial data
are available on GEE. This platform can reduce the technical and infrastructural require-
ments of large-scale and long time-series geospatial analyses, thus making it possible to
rapidly and accurately process various amounts of satellite data. To ensure the consistency
of spatial location and the accuracy of area statistics [25,36], all data in this paper were
projected using the Cylindrical Equal Area project (ESRI: 54034).

For the entire study region, we employed Sentinel-2 multi-spectral images from the
entire year of 2020 to extract SOAPs, resulting in a total of 48 standard processed slices
embedded in GEE. All of the images were Level-2A and were orthorectified to correct for
atmospheric surface reflectance through the Sen2Cor processor [37]. Each scene has spectral
bands with spatial resolutions ranging from 10 m to 60 m. Sentinel-2 is a constellation
with two twin satellites, Sentinel-2A (S2A) and Sentinel-2B (S2B), with a revisit cycle of
up to five days. Table 1 lists the specifications of the primarily used Sentinel-2 bands. The
comprehensive use of time-series data throughout the year can effectively prevent the effects
of missing data caused by cloud interference and facilitate the effective distinguishing of
permanent features from seasonal water bodies [23]. Since the study region is located at low
latitudes, the RSIs in this area are vulnerable to the influence of clouds, and it is necessary to
preprocess the acquired Sentinel-2 images. We constructed a cloud mask for each RSI based
on the quality assessment (QA) band of Sentinel-2 and produced full-coverage clear-sky
images. To select aquaculture ponds among the water objects, we acquired the European
Space Agency (ESA) WorldCover product for 2020 on GEE. This product provides a global
land-use land cover (LULC) map at 10 m resolution based on Sentinel-1 and Sentinel-2
data; the map contains 11 LULC classes, including croplands, herbaceous wetlands, built-
up areas, etc. According to the validation report of the ESA WorldCover 2020 product
(https://esa-worldcover.org/en/data-access, accessed on 9 September 2022), the overall
accuracy of the LULC product reaches 80.7 ± 0.1% in Asia; for the cropland type, the
producer’s accuracy is 82.1 ± 0.4%, and the user’s accuracy is 80.5 ± 0.4%.

Table 1. Specification of Sentinel-2 bands used in this study.

Band Name Description Spatial Resolution (m) Wavelength (nm)

B2 Blue 10 496.6 (S2A)/492.1 (S2B)
B3 Green 10 560 (S2A)/559 (S2B)
B4 Red 10 664.5 (S2A)/665 (S2B)
B8 NIR 1 10 835.1 (S2A)/833 (S2B)
B11 SWIR 2 1 20 1613.7 (S2A)/1610.4 (S2B)
B12 SWIR 2 20 2202.4 (S2A)/2185.7 (S2B)

QA60 3 Cloud mask 60 ——
1 Near infrared (NIR); 2 shortwave infrared (SWIR); 3 quality assessment (QA) band with 60 m resolution.

3. Methodology

It is a challenging task to extract SOAPs from Mr-RSIs. In terms of image segmenta-
tion, densely distributed aquaculture ponds are difficult to distinguish in Mr-RSIs, and this
difficulty hinders the accurate segmentation of SOAPs. In terms of object classification,
the various sizes and shapes of aquaculture ponds make it difficult to select true SOAPs
from water objects. To address the spatial and temporal accuracy challenges faced when
extracting SOAPs at large scales, we proposed a refined single-object aquaculture pond
extraction method, as shown in Figure 3. Our method comprises three parts: (1) producing
a per-pixel maximum water index image from Sentinel-2 time series data, then identifying
water pixels by the thresholding method and constructing a binary water and non-water

https://esa-worldcover.org/en/data-access
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image (hereinafter referred to as the BWI); (2) implementing an iterative algorithm com-
bining grayscale morphology and Canny edge detection to acquire water objects from
the BWI, then detecting the segmentation degree of all water objects to select potential
SOAPs from those water objects and finally expanding the boundaries of the potential
SOAPs to bring them closer to the ground-truth data; and (3) constructing a decision tree
based on prior aquacultural knowledge in which true SOAPs are selected according to their
morphological, spectral, and spatial features.
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3.1. Water Pixels Identification

The water index method, which is both simple and rapid, is widely used to identify wa-
ter pixels from RSIs. Some commonly used water indices include the Normalized Difference
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Water Index (NDWI) [38], modified Normalized Difference Water Index (mNDWI) [39],
and Automated Water Extraction Index (AWEI) [40]. Calculating the mNDWI and AWEI re-
quires SWIR bands of Sentinel-2 with 20 m resolutions (Table 1); in contrast, the calculation
of NDWI requires the B3 (green) and B8 (NIR) bands of Sentinel-2 with 10 m resolutions,
and these bands can make distinguishing the embankments between SOAPs easier [23].
Therefore, based on the cloud-free Sentinel-2 time-series images, we calculated NDWI
images according to the following formula:

NDWI =
B3− B8
B3 + B8

(1)

To identify water bodies from the NDWI time-series data, a single-band image can be
produced by mean, median, or maximum calculation. As mentioned in Section 2.1., the
morphology of aquaculture ponds in the study region changes over time. When ponds are
in regulation or witnessing abundant precipitation, they have abundant water storage and
are close to regular shapes, such as squares or trapezoids; when the ponds are abandoned
or in a dry season, they tend to shrink in size or even dry up (Figure 2d). A per-pixel
maximum image can reflect the entire morphology of ponds compared to that derived
using a mean or median calculation. Since we aimed to extract all potential SOAPs in the
image segmentation process, we calculated the maximum value corresponding to each
pixel throughout the time-series images and produced a maximum NDWI image (MNI).

Since the MNI was produced from the NDWI time-series data throughout the year
using the maximum calculation method, noisy pixels may exist on the generated image.
For each pixel covering the study region, a high NDWI value may occur due to sensor
errors or temporary water caused by floods. The existence of such noisy pixels would
interfere with the refined water segmentation results. We introduced three-sigma limits [41]
to reduce possible noise. This is a statistical calculation method in which the data must
be within one to three standard deviations from the mean. This approach is available
for reducing possible noise in the NDWI time-series data. In this study, data within two
standard deviations were retained in the NDWI time-series data and used to produce the
MNI. Since the pixels with NDWI values greater than or equal to 0 tend to be identified as
water [42], we set 0 as the threshold to separate the MNI pixels into water or non-water
and produced a binary water and non-water image (hereinafter referred to as the BWI) for
water pixel identification.

3.2. Water Segmentation and Selection

The spatial agglomerating feature of aquaculture ponds and the limited spatial res-
olution of Sentinel-2 images pose challenges when attempting to achieve refined SOAP
extractions. We developed an iterative algorithm combining grayscale morphology (GM)
and Canny edge detection (CED) to partition the BWI into water segments explicitly. A
segmentation degree detection procedure was embedded into the algorithm to extract
potential SOAPs among the water objects. The boundaries of the output objects were
expanded to recover the true sizes of the aquaculture ponds. A flowchart of the developed
algorithm is shown in Figure 4 and summarized as follows:

• Inputs: MNI and BWI.
• Output: potential SOAPs.
• Parameters: n is the total number of iterations; i is the sequence number during

the iteration.
• Step 1: Set the value of i to 0.
• Step 2: Compare the values of n and i. If i < n, then go to Step 3; otherwise, end the

procedure and output the potential SOAPs.
• Step 3: Use a 3 × 3 square kernel to implement the GM erosion operation on the MNI

and output a processed MNI.
• Step 4: Implement the CED operation (threshold = 0.2) on the processed MNI and

output a Canny edge image (CEI).
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• Step 5: If i = 0, then go to Step 6; otherwise, overlay the CEI with the previously output
CEIs and output an accumulated CEI.

• Step 6: For the BWI, remove the intersected pixels between the output CEI and the
BWI and then output a segmented BWI with water segments.

• Step 7: Implement the connect component labeling operation on the segmented BWI
and mark all water segments as unique water objects based on pixel connectivity
(four-connected).

• Step 8: Implement segmentation degree detection on all water objects and select those
passing this detection as potential SOAPs.

• Step 9: Remove the pixels belonging to potential SOAPs from the BWI and output a
new BWI for Step 6.

• Step 10: Expand the boundaries of the newly acquired potential SOAPs and set the
distance to expand these SOAPs equal to i× 2.5 m.

• Step 11: Set i to i + 1, then go to Step 2.
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3.2.1. Grayscale Morphology and Canny Edge Detection

The BWI generated by the single-threshold segmentation method can identify water
bodies and estimate water areas at large scales but can hardly achieve explicit water segmen-
tation results. In this binary image, aquaculture ponds often appear to be connected. Since
the contrast between the features of embankments and water bodies is obvious on the MNI
(Figure 5c), edge detection can be carried out based on the NDWI within the detected water
bodies to further identify the embankments of aquaculture ponds. We selected the widely
used Canny operator [43] to implement edge detection on the MNIs. After testing a few
sample sites, we set the Canny edge detection threshold to 0.2 and produced a Canny edge
image (CEI). The spatial resolution of the CEI is settable on GEE because the Canny edge is
calculated according to the difference between two adjacent pixels. Considering that the MNI
and BWI from Sentinel-2 data have 10 m resolutions, we reprojected the initial CEI to a 5 m
resolution image and overlaid it with the BWI. A few testing sample sites showed that the
5 m CEI could partition the BWIs into water segments that were similar to the ground truth.

Figure 5. Example of the use of the proposed iterative algorithm to segment water pixels: (a) 0.5 m
Hr-RSI: (b) 10 m Mr-RSI from Sentinel-2: (c) maximum NDWI image (MNI); (d) Canny edge image
(CEI) generated from the MNI at the first iteration, where a few aquaculture ponds are segmented
completely; (e) CEI at the second iteration, where most aquaculture ponds are segmented completely;
(f) CEI at the third iteration, where all the aquaculture ponds are segmented completely.

However, a single CED can hardly identify all SOAPs from the CEI because narrow
embankments cannot be seen clearly in the CEI due to its limited spatial resolution. Mathe-
matical Morphology (MM) contributes a wide range of operators to the image-processing
domain and is widely used to change the morphology of objects on the image [44]. As a
kind of MM approach, binary morphology (BM) methods such as expansion or opening
operations are usually applied to link Canny edges [23], but these procedures may change
the initial morphology of water segments. Instead of implementing BM procedures on the
CEI, we chose to carry out a grayscale morphology (GM) operation on the MNI, one of
the key steps to achieve refined water segmentation. Although GM operations change the
digital numbers (DNs) of the MNI, the shapes of aquaculture ponds are retained on the pro-
cessed MNI, constituting the advantage of the GM compared to the BM [45]. Therefore, we
combined the GM and CED methods to produce the CEI from the MNI and acquired water
segments by overlaying the CEI with the BWI. The above operations were repeated during
the execution of the iterative algorithm. As shown in Figure 5, as the iterative segmentation
proceeded, the MNI was continually eroded by the GM operation; then, a new CEI was
generated by implementing CED on the eroded MNI. The new CEI was accumulated
with the previously generated CEIs, so the interrupted parts of the previous CEIs were



Remote Sens. 2023, 15, 856 10 of 24

supplemented by the new Canny edges (Figure 5d–f). Therefore, the iterative operation
connected Canny edges while maintaining the initial shapes of the aquaculture ponds.

3.2.2. Segmentation Degree Detection

After acquiring water segments from the BWI at each iteration, connected component
labeling (CCL) was introduced to mark each segment with a unique label. The CCL approach
detects objects by considering the connectivity of focal pixels with neighboring pixels (four
neighbors were used in this study), where the connected pixels are merged into the same
objects [46]. As shown in Figure 5f, continuous segmentation and CCL operations on aquacul-
ture pond segments are unnecessary, thus not only increasing the computational effort of the
developed algorithm but also leading to the possible destruction of the morphology of these
ponds. Considering that aquaculture ponds commonly have regular boundaries that are artifi-
cially constructed to minimize construction costs [47], we used morphological regularity to
depict the geometric differences between aquaculture ponds and non-aquaculture ponds and
thus proposed the segmentation degree detection (SDD) method. For each water object, if its
geometry passed the SDD, it was identified as a potential SOAP and the corresponding water
segment was removed from the BWI; otherwise, this object was considered as a connected
pond and participated in the next segmentation iteration.

The key step of SDD is defining suitable parameters for measuring the consistency
between the water object and the aquaculture pond. We classified the object morphology
into three segmentation degrees (Figure 6e). The first degree was the appropriate segmen-
tation degree, among which each water object had a regular contour and involved only
one single-object pond (Figure 6b). The second degree represented over-segmentation.
As shown in Figure 6a, over-segmented objects were usually man-made dykes or levees
alongside aquaculture ponds. The last degree was under-segmentation, and such water
bodies were connected with aquaculture ponds or embankments (Figure 6c,d). If connected
embankments were contained in an object, the morphology of this object was irregular; if
ponds were connected in the object, its contours tended to appear cogged-like.
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under-segmented objects (LSI ≤ 2.5 and RPOC > 1.5); (e) an illustration of these segmentation degrees.
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We defined two SDD parameters to determine whether an object needed to participate
in the next segmentation round or not. The landscape shape index (LSI) [48] was introduced
in this study to measure the morphological regularity of objects. This index measures the
complexity of a shape by calculating the deviation between the object and the square of
the same area. An object having a large LSI indicates that its shape greatly deviates from
the corresponding square, representing a highly irregular morphology. LSI is formulated
as follows:

LSI =
0.25Pobject√

Aobject

(2)

where Pobject is the perimeter of the object, and Aobject is the area of the object.
LSI can measure the regularity of objects and further indicate their segmentation

degrees. However, its capability to measure contour-based regularity is limited, especially
when the object involves a few connected ponds or embankments (Figure 6d). We found
that the contour of the completely separated object appears close to that of its correspond-
ing convex hull. In contrast, objects involving connected ponds or embankments have
anfractuous contours, and the perimeters of such objects appear far beyond those of their
convex hulls. Therefore, we defined the ratio of the perimeter between an object and its
convex hull (hereinafter referred to as RPOC) to measure the contour-based regularity,
formulated as follows:

RPOC =
Pobject

Pconvex hull
(3)

where Pconvex hull is the perimeter of the convex hull corresponding to the object.
After testing a few sample sites, we set the LSI threshold to 2.5 and the RPOC threshold

to 1.5. These thresholds conform to the general regulation of aquaculture ponds and
show good applicability. If both the LSI and RPOC of the water object were less than
or equal to their thresholds, this object was considered appropriately segmented and
extracted as a potential SOAP. Because the SOAPs were separated by the overlay of CEI
and BWI, their current sizes were smaller than those of the ground truth. The weakening
phenomenon of the size of an object increased incrementally as the iterative method
proceeded. Therefore, we extended the boundary of each potential SOAP to restore its true
morphology. Considering that the resolution of Canny edges was set to 5 m in this study,
we set the distance to buffer these selected objects as the product of 2.5 m and the sequence
number of iterations.

3.3. Aquaculture Ponds Extraction

The proposed water segmentation and selection algorithm output potential SOAPs,
among which some incorrect types were included, such as natural water objects, such
as oceans, rivers, and lakes, and manual objects, such as rice paddies and embankments
between aquaculture ponds. Such misclassified objects share similar morphology fea-
tures with SOAPs but may differ in their spectral or spatial characteristics. To filter these
misclassifications from the potential SOAPs, we constructed a decision tree according to
aquaculture knowledge. We employed the decision tree to select true SOAPs based on their
morphological, spectral, and spatial characteristics, as detailed in Figure 7.

We implemented a survey in the study area and found that the SOAP area did not
exceed 520,000 m2. Therefore, we filtered objects larger than this size, thus excluding
water objects such as oceans, lakes, and rivers. Since aquaculture ponds are clustered in
the study area, the embankments between two ponds are usually difficult to distinguish
using 10 m Sentinel-2 Mr-RSIs. This situation is especially common regarding densely
distributed aquaculture ponds. Although the spatial resolution of the Sentinal-2 images is
limited, we can take advantage of the abundant spectral bands of these images to expand
their application for identifying the embankments between ponds. Since the NDWI of an
embankment is lower than that of a pond, we counted the median NDWI of each object
from the potential SOAPs and excluded objects with median NDWIs lower than 0.15. This
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threshold was determined after a few testing sample sites and was shown to successfully
filter not only embankment objects but also abandoned ponds, because an abandoned pond
lacks regular water supplementation and can see restored water only during the rainy
seasons, thus determining its unstable NDWI throughout the time-series data. Rice paddies
share similar morphology and spatial distribution characteristics with aquaculture ponds,
making it difficult to exclude these objects from potential SOAPs. Thanks to the current era
of big data, we have a wealth of thematic data at our disposal that can be used to further
eliminate misclassified objects. We implemented overlay analysis between acquired LULC
imagery and potential SOAP objects. For each object, we counted its LULC content; if 50%
or more pixels in this object belonged to cropland, it would be identified as rice paddies
and would be filtered from potential SOAPs. Since aquaculture ponds are clustered, objects
distant from other water bodies are likely to be non-SOAPs. We sampled some aquaculture
ponds from the study area and counted their numbers of near-neighbor ponds within
100 m. After a few testing sample sites, we found most aquaculture ponds have 3 or more
near-neighbor ponds. According to the above aquaculture priori knowledge, the decision
tree selects true SOAPs based on the following rules: (1) areas smaller than 520,000 m2,
(2) median NDWIs greater than or equal to 0.15, (3) LULC contents of cropland less than
50%, and (4) numbers of near-neighbor objects within 100 m greater than or equal to 3.
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4. Results
4.1. Mapping Aquaculture Ponds

We achieved the proposed method by calling GEE’s API on the Python interface of
Visual Studio Code. Aquaculture ponds in the study region were extracted as SOAPs and
mapped in Figure 8. Most extracted aquaculture ponds were concentrated around oceans,
lagoons, and other water systems (Figure 8a), and this result not only conforms to the
real situation in the study area but also conforms to the general distribution pattern of
aquaculture ponds [47,49]. We used the developed iterative algorithm to partition the BWI
into water segments and selected potential SOAPs from these segments, thus successfully
separating adjacent waters from aquaculture ponds (Figure 8b,c). The boundary expansion
operation applied to the potential SOAPs successfully made their shapes and sizes close to
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those shown in the ground-truth data (Figure 8b). We considered the spectral characteristics
of aquaculture ponds while constructing the decision tree to extract aquaculture ponds,
thereby filtering abandoned ponds from potential SOAPs and producing a temporally
efficient map of aquaculture ponds (Figure 8d).

Figure 8. Extraction result of SOAPs in the study region: (a) a comprehensive overview of the
distribution of aquaculture ponds in the study region; (b) the similar shapes and sizes of SOAPs
extracted in this study compared to the ground-truth data; (c) most extracted aquaculture ponds
were separated from adjacent waters and extracted as SOAPs; (d) abandoned ponds excluded from
the extraction result.

To explore the SOAP extraction results, we counted the numbers of aquaculture ponds
within different areal ranges. The statistical operation was implemented using Python
tool packages mentioned in Appendix A. The results presented in Figure 9a show that our
proposed method extracted a total of 3577 aquaculture ponds in the study region, with a
total area of 13,208,439.33 m2. Most aquaculture ponds were 0–10,000 m2 in size, accounting
for 96.39% of all SOAPs extracted in this study. Only 129 aquaculture ponds were larger
than 10,000 m2, thus accounting for a small proportion compared to those at smaller scales.
This situation is in line with the ground truth because the aquaculture industry in the
study region is dominated by small-scale ponds. Only 10 aquaculture ponds larger than
50,000 m2 were extracted in this study, illustrating that very large aquaculture ponds are
rare in the local aquaculture industry. To further explore the numerical distribution of
common aquaculture ponds within the size of 0–10,000 m2, a histogram is presented in
Figure 9b. The number of extracted SOAPs with areas of 1000–2000 m2 was the greatest,
accounting for 30.37% of all extracted SOAPs within the size of 0–10,000 m2. With an
increase in the areal range, the number of corresponding SOAPs decreased. It is noticeable
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that the proposed method extracted only 289 SOAPs smaller than 1000 m2, 27.60% of
those within the size of 1000–2000 m2. This situation may deviate from the real situation
because we extracted SOAPs from 10 m Mr-RSIs where small-scale ponds were difficult to
distinguish from adjacent water bodies. Although the performance of the proposed method
in extracting small-scale aquaculture ponds was limited by the spatial resolution of the
Mr-RSIs, we took advantage of the abundant spectral information and frequent revisits of
Sentinel-2 images and realized a refined SOAP extraction method as soon as possible. Our
method promoted the application value of the Mr-RSIs in mapping aquaculture ponds.

Figure 9. (a) Number of SOAPs in different areal ranges extracted in the study region
and (b) histogram of the numerical distribution of SOAPs ranging in size from 0 to 10,000 m2.

4.2. SOAPs Extraction Accuracy Assessment

To verify the performance of the proposed method in extracting aquaculture ponds,
we selected a 25.11 km2 region as a verification plot (Figure 10a). Aquaculture experts were
invited to mark SOAPs by visually interpreting the 0.5 m Hr-RSIs from World Imagery Way-
back (https://livingatlas.arcgis.com/wayback, accessed on 28 September 2022). During
the manual labeling process, the MNI served as reference information to filter abandoned
SOAPs and ensure the consistency of label coverage and ground-truth water. A total of

https://livingatlas.arcgis.com/wayback
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433 SOAPs with a total area of 1,737,425.02 m2 were finally labeled from the verification
plot. The size of labelled SOAPs varied from 0 to 20,088.66 m2 and were representative
in terms of morphological, spectral, and spatial characteristics. This manually labeled
dataset was accurate and could be considered as ground truth. We tested our method in
the verification region and extracted 526 SOAPs with a total area of 1,757,058.66 m2. The
relative error of the total areas between labelled SOAPs and extracted SOAPs was 1.13%,
revealing a high agreement between the manual annotations in the verification data and
the extracted result.

Figure 10. Comparison between extracted SOAPs and labeled SOAPs: (a) location of the verification
region; (b) distribution of omission and commission SOAPs; (c) example of commission SOAPs;
(d) example of omission SOAPs.

4.2.1. Classification Accuracy Assessment

To further evaluate the classification accuracy of the proposed method, we overlaid
labeled SOAPs with extracted SOAPs and produced spatially matched SOAP samples on
GEE. Those extracted SOAPs with spatially matched labeled SOAPs would be concerned as
correctly classified SOAPs. As a comparison, extracted SOAPs without spatially matched
labeled ponds would be concerned as commission SOAPs; labeled SOAPs without matched
extracted ponds would be concerned as omission SOAPs. The omission and commission
errors were calculated by using the Python tool packages mentioned in Appendix A.
Overall, 3.46% of the labeled SOAPs were missed in the extraction result (Table 2). The
omission error of the area covered by labeled SOAPs was 1.95%. All ponds larger than
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4000 m2 were correctly classified in the verification region. The above analyses revealed
a high producer’s accuracy of the proposed method. Moreover, ponds within the size of
2000–4000 m2 contributed most to the omission SOAPs (Figure 10d).

Table 2. Omission error evaluation from the comparison between labeled and extracted SOAPs. The
statistics show the number of SOAPs (and their areas) that the proposed method did not extract for
different SOAP size classes.

SOAP Size Number Omission Omission
(%)

Omission %
from Total
Number

Area (m2)
Omission
Area (m2)

Omission
Area (%)

Omission
(%) from

Total Area

All 433 15 3.46 3.46 1,737,425.02 33,919.10 1.95 1.95
≤2000 m2 63 7 11.11 1.62 91,731.57 10,979.46 11.97 0.63

2000–4000 m2 202 8 3.96 1.85 603,841.49 22,939.64 3.80 1.32
4000–6000 m2 100 0 0.00 0.00 485,161.17 0.00 0.00 0.00
6000–8000 m2 47 0 0.00 0.00 324,497.41 0.00 0.00 0.00

8000–10,000 m2 12 0 0.00 0.00 102,317.70 0.00 0.00 0.00
>10,000 m2 9 0 0.00 0.00 129,875.68 0.00 0.00 0.00

Table 3 shows the commission errors between extracted and labeled SOAPs. Among
all the SOAPs extracted by the proposed method, 17.87% of them were actually non-
aquaculture ponds, which accounted for 13.17% of the total area of extracted SOAPs.
Moreover, SOAPs with areas ≤ 2000 m2 contributed most to the commission ponds, and
those within the size of 2000–4000 m2 contributed most to the total area of the wrongly
extracted ponds. Most wrongly extracted objects were located in rivers, lakesides, and
coasts close to aquaculture areas (Figure 10c). A possible explanation is that the morphology
of water bodies in those regions was unstable during the whole year, which generates
obvious contrast between these water bodies and adjacent objects on the MNI. It can be
found from Tables 2 and 3 that the classification error is mainly contributed by small-scale
aquaculture ponds with an area ≤ 4000 m2, because these aquaculture ponds are difficult
to distinguish on Mr-RSIs.

Table 3. Commission error evaluation from the comparison between extracted and labeled SOAPs.
The statistics show the number of SOAPs (and their areas) extracted from the proposed method while
labeled as background, for different SOAP size classes.

SOAP Size Number Commission Commission%
Commission
% from Total

Number
Area (m2) Commission

Area (m2)
Commission

Area (%)

Commission
(%) from

Total Area

All 526 94 17.87 17.87 17,57,058.66 231,476.63 13.17 13.17
≤2000 m2 171 52 30.41 9.89 236,285.85 64,936.18 27.48 3.70

2000–4000 m2 208 26 12.50 4.94 595,886.07 75,470.61 12.67 4.30
4000–6000 m2 90 12 13.33 2.28 433,611.42 60,642.55 13.99 3.45
6000–8000 m2 37 2 5.41 0.38 252,144.04 13,836.04 5.49 0.79

8000–10,000 m2 8 2 25.00 0.38 68,465.23 16,591.25 24.23 0.94
>10,000 m2 12 0 0.00 0.00 170,666.05 0.00 0.00 0.00

4.2.2. Segmentation Accuracy Assessment and Comparison

Compared to those manually labeled SOAPs from 0.5 m Hr-RSIs, the SOAPs extracted
using the proposed method were generated from 10 m Mr-RSIs, causing their shapes and
sizes to deviate from the ground-truth data somewhat. However, those labeled SOAPs
are available for comparing the segmentation performance between the proposed method
and other widely used image segmentation algorithms. We compared our method with
three image segmentation algorithms provided by GEE: K-Means [50], G-Means [51], and
Simple Non-Iterative Clustering (SNIC) [52]. For each method, we input the same MNI,
acquired image segments from this water index image, and examined whether the labeled
SOAPs matched the corresponding segments in terms of their locations, shapes, and sizes.
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All three algorithms on GEE were pretested and deployed with optimized parameters to
output optimal image segmentation results. Table 4 provides the parameters setting for the
proposed and comparative methods.

Table 4. Parameters setting for the proposed and comparative methods.

Method Parameters

Proposed method
Canny threshold = 0.2; LSI threshold = 2.5; RPOC threshold= 1.5;

area threshold = 520,000; median NDWI threshold = 0.15;
number threshold of near-neighbor objects = 3

K-Means numClusters = 6; numIterations = 20; neighborhoodSize = 0;
forceConvergence = false; uniqueLabels = true

G-Means numIterations = 10; pValue = 582; neighborhoodSize = 0; uniqueLabels = true

SNIC size = 5; compactness = 1; connectivity = 4

Figure 11 shows the differences among the four methods in partitioning the MNI into
water objects. The water objects representing SOAPs extracted by the proposed method are
close to the labeled SOAPs, meaning that our method successfully separated water objects and
could further acquire SOAPs that were similar to the ground truth. In contrast, many noisy
pixels were observed in the K-Means segmentation results, even though the algorithm was
deployed with optimized parameters. The G-Means results showed that some water objects
involving aquaculture ponds were connected with natural waters, thus indicating that this
method could not separate aquaculture ponds from adjacent water bodies well. Compared
to the G-Means results, the SNIC segmentation results correctly distinguished aquaculture
waters from natural waters, but some water objects representing SOAPs were over-segmented
and separated into multiple parts. Compared to the methods provided by GEE, our proposed
method implemented a refined image segmentation process, implying that the SOAPs extracted
from the following decision tree classification method were similar to the ground-truth data.Remote Sens. 2023, 15, x FOR PEER REVIEW 20 of 27 
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SNIC methods; the red contours represent the labeled SOAPs.

To further evaluate the segmentation accuracy of the proposed method, we overlaid
the labeled SOAPs with extracted SOAPs and acquired produced spatially matched SOAP
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samples on GEE. Similar operations were also conducted between labeled SOAPs and image
segments from the K-Means, G-Means, and SNIC methods to compare the segmentation
accuracy between the proposed method and image segmentation algorithms provided by
GEE. We introduced four metrics to verify and compare the segmentation performances of
the proposed, K-Means, G-Means, and SNIC methods. These five indicators were the root
mean squared error (RMSE), mean absolute error (MAE), mean absolute percentage error
(MAPE), and mean intersection over union (MIoU), which can be formulated as follows:

RMSE =

√
1
n

n

∑
i=1

(yi − xi)
2, (4)

MAE =
1
n

n

∑
i=1
|yi − xi|, (5)

MAPE =
100%

n

n

∑
i=1
|
yi − xi

yi
|, (6)

MIoU =
1
n

n

∑
i=1

AreaOverlap

AreaUnion
, (7)

where n is the number of spatially matched SOAP samples; xi is the area of extracted SOAP
in the ith sample; yi is the area of labeled SOAP in the ith sample; x̄ and ȳ are the average
areas of extracted SOAPs and labeled SOAPs, respectively, for each matched SOAP sample;
AreaOverlap is the area of the overlap between the extracted SOAP and the corresponding
labeled SOAP; and AreaUnion is the area of the union of the two SOAPs.

We calculated the areas of labeled SOAPs and their spatially matched extracted SOAPs,
as well as their IoUs, on GEE, and counted the above four metrics using the Python tool
packages as mentioned in Appendix A. Table 5 shows the overall segmentation accuracy of the
proposed and comparative methods. We introduced the RMSE and MAE metrics to evaluate
the comprehensive SOAP segmentation performances among the four methods. The RMSE
of our method was 3850.41 m2, which was higher than that of SNIC and G-Means. However,
the proposed method has the lowest MAE at 1286.04 m2, followed by 1803.92 m2 MAE of the
SNIC method. The highest MAE, coming from the G-Means method, was 2533.89 m2, over
twice that of the proposed method. Since aquaculture ponds have diverse sizes, the RMSE and
MAE results may be influenced by matched SOAP samples with huge areal deviations between
labeled and segmented objects. For each sample with labeled SOAP and the corresponding
segment, we calculated the relative error of their areas and introduced the MAPE metric to
eliminate possible interruptions due to huge areal deviation. The result showed that the MAPE
of the proposed method was 34.23%. In other words, the area of each extracted SOAP exhibited
a 34.23% deviation from the true area on average. The MIoU of the proposed method was 0.6965,
showing an obvious improvement compared with that of the SNIC (0.5040), K-Means (0.4326),
and G-Means (0.3697) methods. In general, compared to the widely used image segmentation
methods on GEE, our proposed method showed the best performance in segmenting SOAPs.

Table 5. Overall segmentation accuracy comparison between the proposed, K-Means, G-Means, and
SNIC methods.

Method RMSE (m2) MAE (m2) MAPE (%) MIoU

Proposed method 3850.47 1286.04 34.23 0.6965
K-Means 3907.93 2355.55 72.64 0.4326
G-Means 3556.88 2533.89 63.70 0.3697

SNIC 2610.18 1803.92 49.21 0.5040

To further explore the segmentation accuracies of the proposed, K-Means, G-Means, and
SNIC methods for aquaculture ponds at different scales, we compared the RMSEs, MAEs,
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MAPEs, and MIoUs of these four methods for SOAPs in different size classes. The accuracy
assessment result was produced by using the Python tool packages on Visual Studio Code
(for more details, please see Appendix A), which is shown in Figure 12. It can be found
that our proposed method showed higher segmentation accuracy for large-scale aquaculture
ponds than the comparative methods. All four metrics of the proposed method showed
the best performance for segmenting SOAPs with areas >6000 m2 among all the image
segmentation methods. In contrast, for large-scale aquaculture ponds (>8000 m2), surprising
accuracy consistency could be found among the K-Means, G-Means, and SNIC methods;
in particular, the three comparative methods showed unsatisfied segmentation accuracy for
SOAPs larger than 10,000 m2. The majority of aquaculture ponds in the verification region
are small-scale, and those comparative methods after parameter optimization tend to show
segmentation performance well for most SOAPs, which is small. At the same time, the
segmentation accuracy for large aquaculture ponds was ignored, which may explain the
accuracy consistency of the comparative methods for large-scale SOAPs. This phenomenon
demonstrated that the three comparative algorithms provided by GEE failed to simultaneously
satisfy the segmentation requirement for SOAPs with diverse sizes. In contrast, our proposed
method showed stable and good segmentation performance for aquaculture ponds with
different sizes. It can be seen in Figure 12d that the MIoUs of the proposed methods are higher
than those of the comparative methods, increasing steadily from 0.6569 (0–2000 m2) to 0.8043
(>10,000 m2). However, the performance of our method for aquaculture ponds with the size
class 4000–6000 m2 could be improved. As shown in Figure 12a–c, the RMSE of the proposed
method for 4000–6000 m2 SOAPs was the highest, at 6199.59 m2, and the MAE (2262.83) and
MAPE (48.65%) of the method for such SOAPs were higher than those of SNIC. A possible
explanation is that some extracted SOAPs failed to separate adjacent aquaculture ponds with
the size of 4000–6000 m2 and caused the ‘adhesion’ phenomenon [53]. Overall, the proposed
method showed a better segmentation performance than those image segmentation methods
on GEE and could satisfy the segmentation task for aquaculture ponds at different scales.
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5. Discussion
5.1. A Transferable Approach

We proposed an object-oriented method to extract SOAPs based on their real charac-
teristics. Although the development status of aquaculture varies regionally, some common
features of aquaculture ponds can be applied to SOAP extraction methods. The method
proposed herein can be applied to large-scale SOAP extraction and mapping tasks in other
regions around the world. First, we calculated the NDWI from Sentinel-2 time-series
data, which is a general approach for extracting water bodies. The MNI made from the
NDWI time-series images reflected the complete morphology of aquaculture ponds. In
addition, grayscale morphology and edge detection methods are widely used in processing
images, and we combined these two methods to implement a refined image segmentation.
We provided two segmentation degree detection parameters that measured the morphol-
ogy of water objects and selected potential SOAPs from those objects. These parameters
conformed to the general morphological rules of aquaculture ponds and helped achieve
preliminary SOAP selection. Moreover, the priori knowledge about common aquaculture
ponds in terms of their morphological, spectral, and spatial information was combined
to construct a decision tree classification framework. Finally, the proposed method was
implemented and realized on GEE. This method is easily transferable and can be applied
in any region around the world. By adjusting algorithm parameters to allow adaptation
to different regions, this proposed method is promising for mapping global aquaculture
ponds on GEE.

The proposed method can be applied not only to extract SOAPs but also to detect
and extract other objects, such as single-object buildings and cultivated plots. Our SOAP
extraction method is essentially an object-oriented image segmentation and classification
method. We created an MNI, a single-band image from which aquaculture ponds could
be clearly reflected. Researchers have proposed many remote sensing indices to help
extract various objects on Earth. For example, the normalized difference vegetation index
(NDVI) can be calculated using optical RSIs and can help extract plants on the surface of
the Earth and measure their growth situation. We also proposed the segmentation degree
detection procedure to measure the morphological regularity of segmented objects and
extract potential SOAPs during image segmentation. Many objects appear to be regularly
shaped and can be seen explicitly on such images using remote sensing indices. For
example, croplands with regular shapes can be clearly shown in the NDVI images. Bare
lands tend to exist between croplands, making the margins of croplands easily identifiable.
Therefore, we believe that the proposed method can be applied to cropland extraction tasks
and can output satisfactory results. We further recommend our method for the extraction
of such targets: (1) those shown on a single-band image, (2) with regular morphology, and
(3) with clear boundaries between the targets and nontargets.

5.2. Future Work

Some limitations to the proposed method exist. First, our method was developed
for processing single-band images. A procedure to transform original multiband images
to single-band images is thus necessary, and this limits the application of the proposed
algorithm. Second, our algorithm requires that many thresholds be set according to a few
testing sample sites, and this requirement, to a certain extent, challenges the professional
qualifications of the users. Some adaptive threshold methods will be explored to improve
the automaticity of our algorithm. Third, the classification rules proposed in this study
are exclusive to extracting aquaculture ponds. When applying our method to extract
other types of objects, extra work is needed, which limits the application scenarios of this
method. Some universal rules for extracting common objects will be explored and embed-
ded into our approach for expanding its application scenarios. In general, we proposed
an object-oriented method for extracting SOAPs based on the geological mechanisms of
aquaculture. Although the priori knowledge about these geological mechanisms has signif-
icantly advanced our understanding of aquaculture and guides us in extracting SOAPs,
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our proposed method is limited in its ability to extract all the knowledge directly from RSIs.
In the era of big data, data science and machine learning have become indispensable tools
for knowledge discovery, as the volume of data continues to explode in practically every
research domain [30,54,55]. In future research, we will try to use aquaculture big data and
machine learning models to extract SOAPs, explore their combinations with methods based
on geological mechanisms and propose new methods coupling geological mechanisms and
machine learning.

6. Conclusions

This study constitutes a step forward in achieving a refined SOAPs extraction from
Mr-RSIs. We proposed an object-oriented image segmentation and classification method to
extract SOAPs by producing an MNI and BWI from Sentinel-2 time-series data using the
water index and thresholding segmentation, respectively. To achieve water segmentation
and selection, we developed an iterative algorithm combining CM and CED. The iterative
algorithm acquired water objects from the BWI and MNI and employed LSI and ROPC to
detect their segmentation degrees. Potential SOAPs were selected from water objects and
buffered to make their shapes similar to the ground truth. Using a decision tree based on
aquacultural prior knowledge, true SOAPs were selected according to their morphological,
spectral, and spatial features. We selected a 707.26 km2 study region in Sri Lanka and
achieved the proposed method on GEE. We chose a 25.11 km plot for verification. A total
of 433 SOAPs were manually labeled from 0.5 m Hr-RSIs to compare with those extracted
by the proposed method and comparative image segmentation algorithms (K-Means, G-
Means, and SNIC) provided by GEE. The following conclusions were drawn from the
results that were obtained in this study:

1. A total of 3577 aquaculture ponds were extracted in the study region, with a total area
of 13,208,439.33 m2. Most aquaculture ponds were 0–10,000 m2 in size, accounting for
96.39% of all SOAPs extracted in this study, indicating that the aquaculture industry
in the study region is dominated by small-scale ponds.

2. The proposed method could extract SOAPs with high accuracy. The relative error
of the total areas between labeled SOAPs and extracted SOAPs was 1.13%, and the
omission errors of labeled SOAPs were 3.46% in number and 1.95% in area, revealing
that our method could effectively map aquaculture ponds.

3. The proposed method showed better performance in segmenting SOAPs than K-
Means, G-Means, and SNIC methods provided by GEE. The MIoU of our method
was 0.6965, representing an improvement of between 0.1925 and 0.3268 over the
comparative methods. The MIoUs of the proposed methods at all SOAP size classes
were higher than those of the comparative methods, indicating that our method is
superior to widely used image segmentation algorithms in segmenting SOAPs.

We provided an effective solution for extracting and mapping SOAPs at large scales.
As an object-oriented image-processing algorithm, the proposed method shows application
potential beyond the extraction of aquaculture ponds. In this paper, we proposed suitable
application scenarios for this method to extract other objects and recommended that
researchers apply this method in future work. However, the proposed method achieves
this effect by manually selecting the optimal parameters. The same parameters may no
longer be applicable after changing the scene, thus requiring that users possess professional
knowledge. We will further improve our method by altering these adaptive thresholds in
the hope of broadening its application scenarios and audience.
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Appendix A

Software and tools used for algorithm achievement, SOAPs extraction result analyses,
and accuracy assessments: Visual Studio Code 1.74.3, Python 3.11.0 (GEE Python API; basic
tool packages: numpy 1.24.1, pandas 1.5.3, and matplotlib 3.6.3), and ArcGIS 10.7.
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