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Abstract: The laser heterodyne radiometer (LHR) has the advantages of miniaturization, low cost, and
high spectral-resolution as a ground-verification instrument for satellite observation of atmospheric
trace-gas concentration. To verify the accuracy of LHR measurements, a new performance evaluation
method is presented here, based on an ASE source and a CO2 absorption cell in the laboratory.
Preliminary simulation analysis based on the system parameters of LHR is carried out for the
performance analysis and data processing of this new combined test system. According to the
simulation results, at wavelength deviation of fewer than 30 MHz, the retrieval error, which increases
with bandwidth, can obtain an accuracy of 1 ppm within the bandwidth range of the photodetector
(1.2 GHz) when this instrument line shape (ILS) is calibrated. Meanwhile, when the filter bandwidth
is less than 200 MHz, the maximum error without ILS correction does not exceed 0.07 ppm. Moreover,
with an ideal 60 MHz bandpass filter without ILS correction, LHR’s signal-to-noise ratio (SNR) should
be greater than 20 to achieve retrieval results of less than 1 ppm. When the SNR is 100, the retrieval
error is 0.206 and 0.265 ppm, corresponding to whether the system uncertainties (temperature and
pressure) are considered. Considering all the error terms, the retrieval error (geometrically added) is
0.528 ppm at a spectral resolution of 0.004 cm−1, which meets the measurement accuracy requirement
of 1 ppm. In the experiment, the retrieval and analysis of the heterodyne signals are performed for
different XCO2 with [400 ppm, 420 ppm] in the absorption cell. Experimental results match well with
the simulation, and confirm the accuracy of LHR with an error of less than 1 ppm with an SNR of 100.
The LHR will be used to measure atmospheric-CO2 column concentrations in the future, and could
be effective validation instruments on the ground for spaceborne CO2-sounding sensors.

Keywords: LHR; CO2 absorption cell; ILS; SNR; XCO2

1. Introduction

The increase in greenhouse gas (GHG) concentrations is the primary cause of global
warming in the atmosphere. Global warming accelerates the melting glaciers and causes
extreme weather disasters [1]. CO2 is not only one of the primary GHGs but also a
significant contributor to the global carbon cycle and radiation budget [2]. Therefore, long-
term and accurate observation of CO2 and other greenhouse gases is of great importance
for developing appropriate mitigation plans and studying climate change. The observation
mode of GHGs can be classified into satellite-based, airborne-based, and ground-based.
Spaceborne measuring instruments, such as GOSAT and OCO-2, can provide CO2 column
concentrations (XCO2) distribution information on a global scale [3–6]. However, the
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temporal and spatial resolution is low, and they cannot achieve long-term observation in the
local area. On the other hand, ground-based measurement methods are still indispensable,
especially as a verification tool for spaceborne instruments [7]. Among them, the Fourier-
transform spectrometer (FTS) is most commonly used because of its high spectral-resolution
and measurement accuracy [8–10]. However, its large size and high-cost limit its application.
The laser heterodyne radiometer (LHR), therefore, due to its miniaturization, low cost, and
high spectral-resolution, is a suitable alternative as a portable measuring instrument.

The laser heterodyne radiometer (LHR) has been developed in recent years. The
LHR system constructed by Weidmann et al., STFC Rutherford Appleton Laboratory, is
mainly operated in the mid-infrared band [11–14]. The O3 profile was retrieved using
the ground-based prototype quantum-cascade laser LHR [11]. Moreover, an ultra-high-
resolution (0.002 cm−1) LHR system based on the external-cavity quantum-cascade laser
(EC-QCL) has been developed for the detection of a variety of gas molecules (H2O, O3,
N2O, CH4, CCl2F2) in the atmosphere [12,13]. Hollow waveguide technology was applied
in the LHR [14] and spectral-channel optimization and early-performance analysis for
the Methane Isotopologues measurement by Solar Occultation (MISO) [15] was carried
out. The NASA Goddard Space Flight Center’s near-infrared LHR utilized fiber optics
to greatly reduce the difficulty of coupling and miniaturizing the system. Wilson et al.
developed a mini-LHR for near-infrared CO2 and CH4 in the atmospheric column [16,17],
and carried out field measurements. Wang et al. studied a 3.53 µm room-temperature
interband-cascade LHR, which can simultaneously observe CO2 and CH4 in ground-based
solar-occultation mode [18]. They also developed a fiber near-infrared LHR to observe CO2
and CH4 [19]. The near-infrared LHR developed by Deng et al. can measure CO2, CH4,
H2O, and O2 with high resolution (0.066 cm−1) [20,21].

However, the accuracy of these LHR measurements was evaluated by comparing
their results with those observed by spaceborne instruments (such as GOSAT) or ground-
based observation systems (such as TCCON). Nevertheless, no truth value of the gas
concentration in the atmosphere can be referred to as an evaluation criterion for LHR.
Beyond this, it is also difficult to analyze the effect of each critical-system parameter on
the retrieved results, quantitatively. In contrast, a true value can be set in advance in the
laboratory, and the performance evaluation of the LHR system will be possible. At the
same time, the influence of some important parameters can be analyzed through simulation
and experiment validation, and the simulation can provide an important reference for
atmospheric measurement and instrument parameter optimization.

In this paper, an ASE light source and a specially-designed CO2 absorption cell are
used to simulate the absorption line of CO2. Referring to the integrated-path differential
absorption (IPDA) [22], the pure CO2 pressure in the absorption cell is equivalent to XCO2
in the atmosphere. This takes advantage of the fact that the method of the integrated-
path differential-absorption optical depth (DAOD) of CO2 is the same in both states, for
equivalence. The LHR system is evaluated by analyzing the difference between the retrieval
CO2 pressure and the actual value. The paper is arranged as follows. Section 1 is the
introduction. Section 2 mainly introduces the principle of the LHR system, the calibration
experiment design, and the retrieval algorithm. In Section 3, the influence of the system
parameters and algorithm on the retrieval results are considered, through simulation.
In addition, the retrieval error is statistically analyzed, especially the influence of the
filter bandwidth and signal-to-noise ratio (SNR). The simulation work in this section can
provide a reference for filter selection and performance evaluation in the experiment. In
Section 4, an experiment system based on the simulation results is built. The XCO2 is
set in the range of 400 ppm to 420 ppm. Discussion and conclusions are presented in
Sections 5 and 6, respectively.

2. Methods

The LHR utilizes a narrow-linewidth local-oscillator (LO) laser to mix with a broad-
band signal light, which achieves frequency down-conversion from optical frequency to
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radiofrequency (RF). In the point-by-point scanning mode of LO, RF signals within the
system bandwidth around the LO wavelength at each point are retained for future signal
processing. The signal light’s spectral information can be reproduced by processing the
RF signal. The sunlight transmitted through the atmosphere contains a large amount
of information about the absorption of atmospheric molecules. Therefore, analyzing the
spectrum signal of sunlight can obtain atmospheric molecules’ concentration and vertical
profile. The basic principle of LHR has been described in detail by Weidmann et al. [23],
and is not the focus of this paper.

The LHR system presented in this paper is designed for measuring CO2 column
concentration in the atmosphere. It is an all-fiber system in the near-infrared band with a
sweeping range of 1571.895–1572.145 nm, which covers the CO2 R18 absorption line. We
develop an experimental prototype employing an indoor CO2-absorption cell to analyze the
performance of the LHR system, precisely. This CO2 absorption cell is specially designed
to charge pure CO2 gas to simulate the CO2 DAOD of the total atmosphere layer on the
spaceborne platform, and has a length of 15.213-m.

We use an L-band ASE source (Connet, Shanghai, China, VASS-L-B) and an absorption
cell charged with pure CO2 to simulate the absorption of CO2 in the atmosphere, then
obtain the spectrum information in the sweep-frequency range through the all-fiber LHR
system. Table 1 gives basic information on the ASE source, whose output power can be
adjusted. A diagram of the experimental setup is shown in Figure 1. Light from the ASE
source passes through a reflective collimator (Thorlabs, Newton, NJ, USA, RC08APC-P01)
and enters the CO2 absorption cell. After the absorption of CO2, it is collected by a single-
mode optical fiber through another reflective collimator. The collected signal light is split
into two parts. An InGaAs photodetector (Thorlabs, DET01CFC/M) receives one part to
monitor the energy fluctuation of the signal light. The other part is intensity-modulated at
800 Hz by an acousto-optic modulator (AOM, Gooch & Housego, Ilminster, UK, FIBER-
Q) for subsequent coherent-heterodyne detection. The extinction ratio of the AOM is
50 dB. A near-infrared distributed-feedback (DFB) laser emitting around 1.572 µm (FITEL,
Carrollton, GA, USA, FRL15DCWD) functions as the LO laser. The wavelength of DFB
can be tuned by adjusting its temperature and current. A signal generator generates a
ramp voltage signal to control the injection current of the laser, to realize the frequency
sweeping. At the same time, it generates a trigger signal to control the data acquisition
card. The DFB laser’s output is split into two beams by a fiber beam-splitter: one as an
LO laser for subsequent coherent detection, the other as a reference beam for intensity
and wavelength monitoring. A photodetector and a wavemeter monitor intensity and
wavelength changes, respectively. The multiple adjustable attenuators (AA) used in the
system are designed to adjust the light intensity to suit different SNR requirements. The
LO laser and the AOM-modulated signal light are mixed through a fiber coupler and
superimposed on a photodetector (Thorlabs, DET01CFC/M) with a bandwidth of 1.2 GHz.
The DC-Block isolates the DC term in the beat signal generated by the photodetector, and
the reserved RF signal contains the ASE components within the detector bandwidth around
the wavelength of the LO-laser sweep point. The RF signal first passes through a two-stage
RF amplifier. Then the amplified RF signal is filtered by a bandpass filter, and finally a
square-law detector (Herotek, San Jose, CA, USA, DHM020BB) measures the RF signal. In
particular, the double-side bandwidth of the bandpass filter reflects the spectral resolution
of the system. The generated low-frequency voltage signal with the modulation frequency
as the characteristic frequency is demodulated by the lock-in amplifier (Zurich Instruments,
Zürich, Switzerland, MFLI). The demodulated signal, the monitoring signal of the ASE
source, and that of the LO laser are acquired synchronously.
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Table 1. Important parameters of ASE source.

Minimum Typical Maximum Unit

Output Power 10 - 100 mW
Wavelength Range 1570 - 1602 nm

Spectral width (FWHM) - 32 - nm
Flatness of spectrum - - 3.5 dB
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Figure 1. Diagram of experimental setup for LHR performance evaluation based on a CO2 absorption
cell. AA, adjustable attenuator; FOC, fiber-optic coupler; FC, fiber collimator, Amp, amplifier; BP
Filter, bandpass filter; SLD, square-law detector; PD1, photodetector 1; PD2, photodetector 2; PD3,
photodetector 3.

This specially-designed 15.213-m CO2-absorption cell includes a CO2-absorption-cell
pipe, an optical- path turning structure, a temperature control system, a pressure detection
system, a vacuuming system, and a CO2 gas charging system [24]. The two 45◦ mirrors
in the absorption-cell pipe give a total optical path of 15.213 m to the vertically incident
beam. To evaluate the performance of LHR, it is necessary to analyze the correlation
between the absorption-cell pressure and the CO2 concentration in the atmosphere. For
LHR, the absorption line in the absorption cell may have some differences from that in the
real atmosphere. However, using the principle of path-integrated differential absorption
(IPDA), the DAOD in the atmosphere can be equivalent to the DAOD of the absorption
cell. The absorption cell can simulate the DAOD of atmospheric CO2 concentration, due
to its long optical path. The LHR may serve as a high-accuracy instrument on the ground
to validate the performance of spaceborne-IPDA-lidar or passive-GHGs measurement
instruments. The online and offline wavelengths of IPDA are selected in the strong- and
weak-absorption regions of the CO2 absorption line. The online and offline wavelengths are
1572.024 nm and 1572.085 nm, respectively, located on the R18 line [25]. Figure 2 shows the
optical depth (OD) of CO2 of the spaceborne platform and the corresponding absorption
cell when the CO2 column-averaged dry-air mixing ratio (XCO2) is 400 ppm. Based on
the principle of the space-borne IPDA lidar developed in our laboratory, the double-path
DAOD and integrated weight function (IWF) for different concentrations are calculated [26].
The DAOD of the IPDA lidar and the absorption cell can be expressed as

DAOD = 2
∫ RA

RG

ρCO2(r) ·
P(r) · NA · ∆σCO2(P(r), T(r))

R · T(r) ·
(
1 + ρH2O(r)

) dr (1)

DAODCO2 =
P · NA
R · T · ∆σCO2 · L (2)

where P is the pressure and T is the temperature.∆σCO2 is the differential absorption cross-
section, which is related to the pressure and temperature distributions.ρCO2 and ρH2O
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are the dry-air mixing ratio of CO2 and H2O, respectively. NA is Avogadro’s number,
and R is the gas constant. RA and RG are the altitude of the satellite platform and the
surface hard-target, respectively. In the absorption cell, the DAOD of the integrated path is
directly converted to the product of the length of the absorption cell (L), due to the uniform
temperature and pressure distribution. Combining DAOD with IWF, one obtains XCO2 as

XCO2 =
DAOD
2 · IWF

(3)

When the absorption cell is at a fixed temperature, the pure CO2 charged with different
pressures is the only variable that causes the change in DAOD. The US Standard Atmo-
sphere model [27] and the spectroscopy database HITRAN 2020 [28] are used to simulate
the DAOD of XCO2 between 400 and 420 ppm, equivalent to that of the absorption cell
under various pressures. The deviation of the charged pressure from the retrieved pressure
can evaluate the accuracy of LHR by retrieving the measured heterodyne signals. Multiple
sets of experiments with different XCO2 can rule out chance.
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The measured heterodyne signals are retrieved using the optimal-estimation method
(OEM) [29]. In this experiment, the retrieved quantity is the pressure of the absorption cell,
which is equivalent to XCO2 in the atmosphere. The forward model, F, is described by

y = F(x, b) + ε (4)

where y is the measurement vector, x is the state vector, and ε is the error vector; b rep-
resents all other model parameters having an impact on the measurement. The forward
model includes the transmission model of the absorption cell and the model of the LHR
system, representing how the ASE optical signal containing the absorption information
converts into the measurement signal and the associated noise. The OEM is based on
the basic assumption of the multivariate-Gaussian-probability-distribution function. Be-
cause the problem is moderately nonlinear, combined with Bayesian statistics, the OEM
is a Levenberg–Marquardt (LM) iterative algorithm based on the nonlinear-least-square
method and minimizes the cost function to

χ2 = (y− F)TS−1
ε (y− F) + (xi − xa)

TS−1
a (xi − xa) (5)

where Sε is the measurement covariance matrix and Sa is a priori covariance matrix; xa is a
priori vector. The iterative formula of the state vector is

xi+1 = xi +
[
KT

i S−1
ε Ki + (1 + γi)

]−‘1[
KT

i S−1
ε (y− F(xi))− S−1

a (xi − xa)
]

(6)
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where K is the Jacobian matrix (or weighting functions), γ is the Levenberg–Marquardt
parameter, and the subscript represents the number of iterations.

3. Simulation Analysis

The absorption spectrum of CO2 in the absorption cell is not the same as that of
atmospheric CO2, and the pressure in the absorption cell is uniform. The results of the sim-
ulation of LHR based on the absorption cell may have some limitations, but the idea of the
simulation is the same. According to the calculation using the U.S. Standard Atmosphere
model, when the XCO2 is 400 ppm, the pressure of the CO2 absorption cell is approximately
439 hPa. The following simulations are based on the premise of a 439-hPa charging pressure.
According to the simulation, the influences of system bandwidth, wavelength shift, SNR,
retrieval algorithm, and some systematic errors are studied. The statistical analysis of the
errors is useful for subsequent experiments. Spectral resolution and SNR are two important
parameters for characterizing LHR performance. The theoretical shot-noise-limited SNR of
LHR can be expressed as [30,31]

SNR =
2 · η · T0 ·

√
B · τ

exp
(

h·υ
k·TB

)
− 1

(7)

where η is the effective quantum efficiency of the photodetector, and T0 is transmission
factor of the LHR system; B is the system bandwidth, and τ is the integration time; h
is Planck’s constant, and k is Boltzmann’s constant; υ is the frequency, and TB is the
temperature of the black body. SNR is proportional to the square root of the bandwidth,
but larger bandwidth means lower spectral resolution. Therefore, these two parameters,
SNR and bandwidth, need to be balanced. In this paper, the SNR and spectral-resolution
requirements are first considered separately and then combined to select a suitable filter.

3.1. Influence of Filter Bandwidth

In the point-by-point scanning mode of LO, the system bandwidth can be equivalent
to the bandwidth of the bandpass filter, since the linewidth of LO can be negligible. The
double-side bandwidth of the bandpass filter reflects the LHR system’ spectral resolution.
The spectral resolution of the system is kept constant during the LO frequency scan, and
each sweep point can be controlled independently. The signal at each sweep point can be
regarded as the integrated quantity of the spectral signal within the system’s bandwidth
near the LO wavelength. The system determines the range of integration, and therefore
defines the instrument line shape (ILS). The ILS, a significant parameter in the forward
model, mainly reflects the broadening effect of the system caused by bandwidth [32]. The
measured heterodyne signal reflects the convolution of the actual spectral signal with
the ILS of the LHR system. Figure 3 shows a schematic of the measurement process,
visualizing the effect of the broadening effect of ILS. In principle, the ILS needs to be
measured accurately. In addition, it is required to deconvolute the heterodyne signal
before retrieving it. The smaller the bandwidth, the higher the spectral resolution, but the
corresponding SNR will decrease. Therefore, selecting an appropriate filter bandwidth in
the measurement process is necessary. Before analyzing the effects of other factors, the
retrieval result is simulated for the ideal state of noiseless and infinitely small bandwidth.
The retrieval error is only 0.001 ppm, which proves that the retrieval algorithm itself can
achieve high accuracy.

However, when the bandwidth increases, the retrieval errors increase. The influences
of different filter-bandwidths are analyzed in the retrieval results within the 1.2 GHz
bandwidth of the photodetector, and the necessity of ILS correction is proposed. Figure 4
shows the influence of different filter-bandwidths on retrieval results, and compares the
correction degree of the ILS correction. The extent of ILS correction is illustrated by
comparing the errors with and without the ILS correction for different filter-bandwidths.
Figure 4a shows the pressure error at 439-hPa, and the corresponding XCO2 error is shown
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in Figure 4b. If the ILS correction is not implemented, the error is larger than 1 ppm when
the bandwidth is larger than 780 MHz. The retrieval result is significantly improved with
ILS correction, and the error within the whole bandwidth of the detector (1.2 GHz) is
less than 1 ppm. However, the smaller the bandwidth, the more accurate the retrieval
results. When the filter is within 200 MHz, the maximum error with/without ILS correction
is 0.006/0.069 ppm, respectively. Therefore, when the bandwidth is less than 200 MHz,
the maximum error without ILS correction is less than 0.07 ppm. However, the actual
bandwidth of the filter does not exactly match the nominal bandwidth. The ILS needs to be
measured. The smaller the bandwidth, the more difficult it is to measure the ILS accurately.
Therefore, the smaller the effect of ILS correction, the better.
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3.2. Influence of Wavelength Shift

Wavelength calibration of the original heterodyne signal has always been an important
step. Wavelength calibration is generally performed using the absorption peak of the
simulated spectrum and the measured heterodyne signal. Due to the limitations of the
system and the correction algorithm, there may be some errors in wavelength calibration.
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The effect of wavelength shift based on a minimum sweep-step of 30 MHz is analyzed.
Figure 5a shows the error of the retrieval results with and without ILS correction, while
Figure 5b shows that of the equivalent XCO2.
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When the wavelength shift is 30 MHz, there is an error in the retrieval result which is
uncorrected. The error without ILS correction is even smaller than that with ILS correction
under low bandwidths. However, the error of retrieval results increases faster without
ILS correction with the increase of bandwidths. The error is larger than 1 ppm when the
bandwidth is larger than 600 MHz. The retrieval error with ILS correction can be within
1 ppm. When considering the effect of the wavelength deviation, the filter selection is
within 200 MHz. In this case, the lack of ILS correction can compensate for some effects of
wavelength deviation. When the filter bandwidth is within 200 MHz and the wavelength
deviation is 30 MHz, the maximum absolute error is 0.533/0.375 ppm with/without ILS
correction, respectively. For a bandwidth of 200 MHz, the corresponding double-side
spectral resolution is ~0.013 cm−1. Therefore, the bandwidth of the filter should be better
within 200 MHz. The smaller the bandwidth of the bandpass filter, the smaller the error, if
the SNR can meet the requirements. These analyses provide a reference for the selection of
filters in subsequent experiments.

3.3. Influence of SNR

According to the theoretical calculation and measurement, when the system is used
for atmospheric CO2 measurement, the SNR remains greater than 100 for bandwidths
greater than or equal to 30 MHz. As the actual filter-bandwidth may be greater than
the nominal bandwidth, 60 MHz bandwidth provides some leeway. The ideal 60 MHz
bandpass-filter is chosen as the simulation basis for the next simulation, where the error
without ILS correction is only 0.008 ppm. Since the calculation method of SNR in the actual
measurement is slightly different, the ratio of spectral-absorption depth to the standard
deviation of the baseline is taken as the SNR here. The main purpose of simulating the
influence of different SNRs is to find the boundary value of SNR for good retrieval results.
The influence of random Gaussian noise added to the forward model at different SNRs on
the retrieval results is analyzed. Due to the randomness of noise, the simulation results
can only be reference values, and cannot represent the absolute correlation between the
SNR and the retrieval bias. Fifteen sets of random heterodyne-signals are generated under
each group of SNR, and the retrieval results are shown in Figure 6. The errors between
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the simulated true concentrations (red line) and the average of the retrieval results (green
dotted line) are shown separately for different SNRs. The errors and standard deviations
are calculated under different SNRs, as shown in Table 2. The SNR should be greater than
20 to keep the multiply averaged errors less than 1 ppm. Figure 7 compares the differences
between heterodyne signals from multiple simulations, with SNRs 20 and 60 as examples.
The larger the SNR, the less the heterodyne signals deviate.

Remote Sens. 2023, 15, x FOR PEER REVIEW 9 of 20 
 

 

without ILS correction is only 0.008 ppm. Since the calculation method of SNR in the ac-
tual measurement is slightly different, the ratio of spectral-absorption depth to the stand-
ard deviation of the baseline is taken as the SNR here. The main purpose of simulating the 
influence of different SNRs is to find the boundary value of SNR for good retrieval results. 
The influence of random Gaussian noise added to the forward model at different SNRs 
on the retrieval results is analyzed. Due to the randomness of noise, the simulation results 
can only be reference values, and cannot represent the absolute correlation between the 
SNR and the retrieval bias. Fifteen sets of random heterodyne-signals are generated under 
each group of SNR, and the retrieval results are shown in Figure 6. The errors between the 
simulated true concentrations (red line) and the average of the retrieval results (green dot-
ted line) are shown separately for different SNRs. The errors and standard deviations are 
calculated under different SNRs, as shown in Table 2. The SNR should be greater than 20 
to keep the multiply averaged errors less than 1 ppm. Figure 7 compares the differences 
between heterodyne signals from multiple simulations, with SNRs 20 and 60 as examples. 
The larger the SNR, the less the heterodyne signals deviate. 

 
Figure 6. Retrieval results using SNR of (a) 60; (b) 50; (c) 40; (d) 30; (e) 20; (f) 10, respectively. The 
actual retrieval results (blue dot), averages of retrieval results (green dotted-line) and true values 
(red line) are shown. 
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Table 2. Retrieval results of different SNR statistics.

SNR Mean/ppm Std/ppm Error/ppm

60 399.558 0.410 −0.371
50 399.520 0.539 −0.409
40 399.461 0.551 −0.468
30 399.294 0.902 −0.635
20 398.960 0.980 −0.969
10 397.281 2.600 −2.648

The double-side spectral resolution is approximately 0.004 cm−1, corresponding to
the bandwidth of 60 MHz. The output-power regulation of the ASE source ensures that
the SNR of the LHR system is maintained at around 100. Random noise with Gaussian
distribution is added, to simulate the spectra of multiple measurements at an SNR of
100. The retrieval results are analyzed and compared in Figure 8. The error and standard
deviation caused by the retrieval analysis are 0.206 ppm and 0.198 ppm, respectively.
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3.4. Influence of LO Fluctuation

Based on the analyses in the previous section, ILS correction can be ignored at a
spectral resolution of 0.004 cm−1. Table 3 shows the critical-system parameters used in
the simulation. The system is modeled, and the error caused by the system model and the
retrieval algorithm together is 0.052 ppm when noise is not considered.



Remote Sens. 2023, 15, 788 11 of 19

During the sweeping process, the unstable LO’s power also causes errors in the
retrieval results. Through experimental monitoring, the power-variation range is 12.5%,
and the power instability of the LO is 2‰, within the frequency-sweep range. The LO
power fluctuation is added to the forward model to analyze the error. After removing the
error of the retrieval algorithm, the error is approximately 0.05 pp, due to the influence of
the LO power fluctuation. Table 4 shows the error for different conditions.

Table 3. System parameter in the simulation.

Category Parameter Value Unit

DFB Wavelength-sweep range 1571.895~1572.145 nm
Average power 1 mW

Photodetector Bandwidth 1.2 GHz
Response 0.95 A/W

DC-Block Bandwidth 0.1–8000 MHz
Amplifier Gain 13 × 2 dB

Bandpass filter Bandwidth 60 MHz
Square-law detector Frequency range 0.1–2000 MHz

Lock-in amplifier Reference frequency 800 Hz
Integration time 10 ms

Table 4. Influence of LO fluctuations on retrieval results.

XCO2/ppm Error/ppm

True value 399.929
Ideal state 399.980 0.052

LO fluctuation 400.030 0.101

At the same time, the effect of the LO power fluctuation on the SNR of 100 is analyzed.
Considering the effect of LO-power-fluctuation noise, Figure 9 compares the retrieval
results at the SNR of 100. The average retrieval error of multiple models is approximately
0.151 ppm.
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3.5. Influence of Temperature and Pressure Uncertainty

In the experimental setup, the absorption cell itself has some uncertainties, the in-
fluence of which it is necessary to evaluate. The absorption cell can then be judged as to
whether it can be standard equipment for the LHR calibration in the laboratory. Table 5
shows some uncertainties in the absorption-cell temperature and pressure, parameters in-
herent to the construction of the absorption cell. In addition, these parameters are analyzed
in this section.

Table 5. Index parameters of the absorption cell.

Parameter Precision Value

Pressure measurement 100 Pa
Pressure control 200 Pa

Temperature control 2 K
Temperature measurement 0.1~0.15 K

Given that the temperature measurement uncertainty is 0.1 K, the influence on the
retrieval results is analyzed with an SNR of 100. In the forward, model regardless of noise,
the error caused by temperature uncertainty is 0.04 ppm. In the SNR of 100, the error
caused by temperature uncertainty under multiple averages is 0.07 ppm. The pressure
measurement uncertainty of the absorption cell is 100 Pa, resulting in an error of 0.256 ppm.
The error caused by the CO2 absorption cell (temperature and pressure) is 0.265 ppm
(geometrically added), which can meet the standard equipment’s requirement. Errors
caused by all uncertainties are statistically analyzed, and the results are shown in Table 6.
The geometric sum of all error terms is 0.528 ppm, which is of great help in the subsequent
experimental work. The simulation results have some limitations, but the analysis method
can be used for column-concentration measurements of atmospheric CO2.

Table 6. Contributions of various error terms of LHR verification.

Error Term Error/ppm Uncertainty for XCO2

Retrieval algorithm 0.052 -
Bandwidth 0.006 60 MHz

Wavelength shift 0.375 30 MHz
SNR 0.206 100

LO fluctuation 0.151 2‰
Temperature 0.07 0.1 K

Pressure 0.256 100 Pa
Error budget 0.528 -

(geometrically added)

4. Experimental Results and Discussion
4.1. Experimental Setup and SNR Analysis

To validate the performance of the LHR, five groups of experiments are implemented
at a range of 400 ppm to 420 ppm. Figure 10 shows a diagram of the experimental setup,
which includes the principle prototype of the LHR and the CO2 absorption cell. Table 7
lists both the theoretical pressure and actual pressure in the absorption cell when XCO2 is
changed from 400 to 420 ppm.

The RF signals of beat-frequency signal, LO, signal-light, and no-light state are mea-
sured. The RF signal’s frequency spectrum, as shown in Figure 11, is measured with a
spectrum analyzer. The main noise-frequency-range is between 300 MHz and 800 MHz, so
the passband range of the bandpass filter should be less than 300 MHz. In the LHR system,
DC-140 MHz and 58–82 MHz filters are selected, due to the lack of a suitable filter with a
30 MHz bandwidth. This combination can avoid the upward warps of the 58–82 MHz filter
in the high-frequency part of the transmittance curve. The ideal 58–82 MHz bandpass filter
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should correspond to a double-side-bandwidth spectral resolution of ~0.0016 cm−1, and
ILS correction can be ignored during retrieval.
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Table 7. The pressure in the absorption cell and the corresponding XCO2.

Theoretical Value Actual Value

XCO2/ppm Theoretical pressure/hPa XCO2/ppm Actual pressure/hPa

400 439.2 399.812 438.7
405 452.6 405.186 453.1
410 467.1 409.961 467.0
415 483.0 414.993 483.0
420 500.6 420.103 501.0
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Each group is measured at different pressures, 15 times, in the experiment. The SNR
of measured heterodyne signals is analyzed with a pressure of 438.7 kPa. Figure 12a shows
the heterodyne signals measured at a pressure of 438.7 kPa, and the residuals between all
measurement periods are shown in Figure 12b. The SNR of the experimental LHR system
is approximately 100.
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measurement-signals.

4.2. Results

The original signal needs to be preprocessed. It mainly consists of three parts: correc-
tion of LO, background DC noise, and wavelength shift. ASE source monitoring is used
for distinguishing the effectiveness of the heterodyne signals. The collected signals are
removed when the ASE source fluctuation exceeds 5%. In the actual experimental process,
the maximum uncertainty of the ASE source is less than 2%, which meets the accuracy
requirements. The background noise is converted into a certain DC bias, and superimposed
on the heterodyne signals. In the actual test process, each sweep cycle takes 2 s to collect the
heterodyne signal of no LO, which can be used as the background noise. The DC bias needs
to be corrected before retrieving the heterodyne signals. Otherwise, it will cause a large bias
in the retrieval result. From the previous analysis of wavelength deviation, wavelength
calibration affects the retrieval results tremendously. The wavelength alignment should
be as accurate as possible. The wavelength calibration is carried out through maximum
correlation, during data preprocessing.

The heterodyne signals of each group are preprocessed and compared with two
different processing methods. One method is to retrieve the single heterodyne signal
and analyze the standard deviation distribution. Another is to average the heterodyne
signals of multiple periods, to improve accuracy. Figure 13 shows the distribution of
retrieval results of five sets of single measured signals and their errors, from the truth
values. The results are summarized in Table 8. A linear fit is performed for the true and
retrieval XCO2 concentrations, and the correlation coefficient reaches 0.997, as in Figure 14.
The root-mean-square error (RMSE) between the true and retrieval concentrations is only
0.54 ppm.
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Table 8. Comparison of retrieval results.

Method 1 Method 2

Pressure/hPa Mean/ppm Std/ppm Error/ppm XCO2/ppm Error/ppm

438.7 400.724 1.099 0.912 400.732 0.919
453.1 405.138 0.867 −0.047 405.186 −0.047
467.0 409.941 0.468 −0.020 409.964 0.003
483.0 415.713 0.368 0.720 415.719 0.726
501.0 420.440 0.435 0.337 420.461 0.361
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The deviations between the averaged heterodyne-signal and the best-fit model curves
are shown in Figure 15a–e. Figure 15f shows the differences in averagely measured
heterodyne-signals under different pressures. The fitting curves have a close consistency
with the heterodyne signals, and the maximum residuals are less than 2.5%. For the second
processing method, the retrieval results are also listed in Table 8. The retrieval results of
the two processing methods are close, and the heterodyne-signal averaging could obtain
high accuracy. The LHR system can achieve 1 ppm accuracy, which verifies its performance
with high accuracy. The LHR system can be used for future atmospheric XCO2 measure-
ments as an effective ground-verification device for satellite observations. Moreover, the
experimental results are close to the simulation results, which verifies the model’s validity.
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Figure 15. The experimental average heterodyne-signals and the model-fitting results at (a) 438.7 hPa,
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heterodyne-signals at different pressures. (g) The partially enlarged view of (f).

5. Discussion

In this paper, the LHR system is modeled, and the influence of important parameters is
analyzed. The simulation analysis provides an important reference for appropriate system-
parameter selection. The simulation method can guide atmospheric CO2 measurement,
but the current simulation results have some limitations, due to the inhomogeneity of
the atmosphere. The simulation and experimental system based on the CO2 absorption
cell cannot fully simulate the absorption spectrum of CO2 column concentration in the
atmosphere. More relationships between bandwidth and SNR need to be established by
the simulation analysis of atmospheric CO2 measurements.

The DAOD of CO2 in the absorption cell is equated to the DAOD in the atmosphere
by the principle of IPDA. The pressure in the absorption cell could be adjusted, to change
the DAOD. Experiments with different concentrations, from 400 ppm to 420 ppm, are
implemented, and the measurement accuracy of the LHR system is well-proven with less
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than 1 ppm. It is worth mentioning that SNR is controllable, because the signal light is
simulated with an ASE source of adjustable power. The SNR of the system in the actual
atmospheric observation is higher than 100, so a better performance is possible to realize.

6. Conclusions

The LHR has unique advantages over FTS. Although several research teams have
built their LHR systems, they are not yet commercially available. The accuracy of the LHR
measurement is mainly evaluated by comparison with other instruments. In addition,
the extent to which important instrument-parameters affect the observations has not been
quantified. A new performance-evaluation method is proposed, based on a CO2 absorption
cell here. In other cases, simulations are carried out to optimize the system parameters.
The advantage of this method is that the true value is a criterion for evaluation. We have
built an LHR system and have attempted to evaluate its performance before conducting
atmospheric-observation experiments. At the same time, some important instrument
parameters are quantified, and the error terms are analyzed and compared. Not only
could these parameters be optimized, but the performance improvement method is also
presented, for subsequent LHR field observations.

Simulation analysis is performed with the LHR system with a CO2 absorption cell.
The sensitivity analysis is performed using the actual LHR-system parameters. The filtering
bandwidth affects the retrieval accuracy and the effectiveness of ILS correction, for which
some analyses have been performed. When the filter bandwidth is 200 MHz, i.e., the
spectral resolution is 0.013 cm−1, the maximum retrieval error without ILS correction is
0.07 ppm. Selecting a bandpass filter with low bandwidth can simplify the ILS correction
procedure. With an ideal 60 MHz bandpass-filter without ILS correction, LHR’s SNR
should be greater than 20 to meet the 1 ppm accuracy requirement. Based on the SNR of
100 and 60 MHz bandwidth, the error is ~0.206 ppm. The system’s uncertainties regarding
temperature and pressure cause a geometrically added error of 0.265 ppm. In a statistical
analysis of the main error terms, the geometrically added error is 0.528 ppm, which can
meet the accuracy of 1 ppm.

LHR performance is tested by simulating the change in XCO2 from 400 to 420 ppm,
corresponding to changing the pressure in the absorption cell. Then the heterodyne signals
are retrieved. The error of the retrieval results is less than 1 ppm for different concentra-
tions, and the high accuracy of the LHR is validated. The correlation between the true
concentration and the retrieval concentration is as high as 0.997, and the RMSE is only
0.54 ppm.

In this paper, the calibration experiment based on the CO2 absorption cell for the
LHR is carried out to validate the measurement ability, which is useful for the subsequent
measurements of the atmospheric solar-absorption-spectrum. In addition, the simulation
based on two significant parameters (bandwidth and SNR) can provide an important
reference for atmospheric measurement and instrument-parameters optimization. The
actual experimental results verify the fact that the performance of the LHR system can meet
the measurement requirements with high accuracy. The retrieval algorithm and correction
method are helpful for future atmospheric CO2 measurements.
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