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Abstract: Accurate knowledge of urban forest patterns contributes to well-managed urbanization, but
accurate urban tree canopy mapping is still a challenging task because of the complexity of the urban
structure. In this paper, a new method that combines double-branch U-NET with multi-temporal
satellite images containing phenological information is introduced to accurately map urban tree
canopies. Based on the constructed GF-2 image dataset, we developed a double-branch U-NET
based on the feature fusion strategy using multi-temporal images to obtain an accuracy improvement
with an IOU (intersection over union) of 2.3% and an F1-Score of 1.3% at the pixel level compared
to the U-NET using mono-temporal images which performs best in existing studies for urban tree
canopy mapping. We also found that the double-branch U-NET based on the feature fusion strategy
has better accuracy than the early fusion strategy and decision fusion strategy in processing multi-
temporal images for urban tree canopy mapping. We compared the impact of image combinations of
different seasons on the urban tree canopy mapping task and found that the combination of summer
and autumn images had the highest accuracy in the study area. Our research not only provides
a high-precision urban tree canopy mapping method but also provides a direction to improve the
accuracy both from the model structure and data potential when using deep learning for urban tree
canopy mapping.

Keywords: urban forest; remote sensing; deep learning; multi-temporal; data fusion

1. Introduction

Increasing urbanization and urban growth cannot be ignored in today’s world [1–5].
Only 30% of the world’s population lived in cities in 1950, while more than half of the
world’s human population lived in urban areas in 2018, and the proportion of the urban
population will increase to nearly 70% by 2050 [3]. According to the World Bank, the
proportion of the world’s urban population gradually increased from 47% in 2020 to 56% in
2021 [6]. It is indisputable that the city is becoming an increasingly important human habitat.
Well-managed urbanization has become a critical issue with increasing urbanization and
urban growth [7]. As an important part of urban ecosystems, urban forests provide a variety
of ecological services [8–10], including reducing greenhouse gases by sequestering and
storing large amounts of carbon [11], evapotranspiration to reduce urban temperature [12],
reducing gaseous pollutants and particulate matter to improve air quality [13], improving
urban landscapes to improve human mental health [1,14,15], providing food, wood and
medicine to provide economic benefits [16], and providing habitat to maintain urban
ecosystem biodiversity [14,17]. More effective planning and management of urban forests
to fully utilize their ecological services to achieve well-managed urbanization and improve
the quality of urban life has attracted much attention [18].
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Timely and accurate knowledge of urban forest patterns is critical for developing
appropriate planning and management policies. The urban tree canopy, which is defined
as the ground area covered by layers of foliage, branches and trunks, is one of the most
widely used metrics to characterize urban forest patterns [19]. The conventional method of
urban tree canopy mapping requires ground surveys by the relevant forestry department.
Ground surveys are not only expensive in terms of manpower, time and economy but also
difficult to provide accurate, time-consistent and real-time observations of urban forest
canopies due to the difficulty of covering a large area in a short period of time [20]. With
the development of remote sensing technology, remote sensing data that can cover a large
area in a short period of time can grasp the urban forest pattern in real time with low time,
human and economic costs to support relevant decision-making [21–23].

The urban forest is a kind of forest with unusual characteristics [24]. The complexity
and spatial heterogeneity of urban structures make it a challenging task to automatically
map urban tree canopies using remote sensing data [23,25,26]. Urban canopy mapping
requires the use of high-resolution imagery and high-performance machine learning meth-
ods, since urban forests are often mixed with other urban features [24,27,28]. Conventional
machine learning algorithms that are commonly used in remote sensing image processing
include unsupervised machine learning algorithms such as K-MEANS [29], the itera-
tive self-organizing data analysis technique algorithm (ISODATA) [30] and vegetation
index methods [31,32]. Supervised machine learning algorithms include the decision tree
(DT) [33], random forest (RF) [34], support vector machine (SVM) [35] and maximum
likelihood methods [36]. However, the shortcomings of requiring more engineering by
hand and difficulty in utilizing deep abstract features limit the performance of shallow
conventional machine learning [37–40].

With the development of high-performance GPU, cloud computing, data processing
technology (such as various activation functions) and other related computer technologies,
deep learning technology has achieved outstanding performance in many fields [38,41–46].
Convolutional neural networks have shown outstanding performance in the field of image
processing [47–49]. Typical convolutional neural networks such as AlexNet can only judge
the probability of the target object appearing in the image block due to the existence of the
fully connected layer, which makes it difficult to efficiently perform pixel-level process-
ing [50,51]. Long et al. replaced all the fully connected layers in a typical convolutional
neural network with convolutional layers to construct a fully convolutional neural network
(FCN) that can efficiently perform pixel-level classification [52]. After that, a series of fully
convolutional neural network models were constructed on the basis of FCN [53–56]. Several
studies have applied deep learning methods to urban tree canopy mapping. Martins et al.
applied FCN, U-NET, Seg-Net, DeepLabV3+ and a dynamic dilated convolution network
to the Campo Grande area for urban tree canopy mapping and obtained IOU ranging from
70.01% to 73.89% [27]. Wanger et al. applied the U-NET model to São Paulo, Brazil, and
obtained an overall accuracy of approximately 96% [57]. Existing studies have shown that
U-NET is the fully convolutional neural network that currently performs the best for urban
tree canopy mapping tasks after comprehensively considering indicators such as accuracy
and the number of model parameters [27,58].

Almost all plant life exhibits seasonal changes due to abiotic factors and the character-
istics of the plants themselves. This seasonal change in plants is also known as phenology,
which is important for distinguishing plant species [59,60]. As special multi-source data,
multi-temporal data can compensate for the lack of spectral information by including
the phenological information of plants to effectively capture the local details of vegeta-
tion [37,61–64]. It has been shown that the full use of multi-temporal data in vegetation
classification tasks can achieve higher accuracy compared to mono-temporal data [65].
Since the methods for classifying and identifying urban forests based on remote sensing
data are still in their infancy, there have been few studies on improving the accuracy of
urban tree canopy mapping tasks by mining multi-temporal data [18,37,62]. Exploring
methods to efficiently mine multi-temporal data to improve the accuracy of urban tree
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canopy mapping tasks can significantly improve the application effect of remote sensing
data in urban forestry.

With the development of deep learning, multi-branch networks that can effectively
process multi-source data with different structures have been constructed and have shown
excellent performance [66–69]. Multi-branch convolutional neural networks with different
structures were constructed based on different data fusion strategies, including multi-
branch neural networks based on a feature fusion strategy and multi-branch networks
based on a decision fusion strategy [70–74]. Some studies have shown that multi-branch
networks can effectively process multi-source data with different structures, but few studies
have tried to combine multi-branch networks with multi-temporal data as special multi-
source data to improve the accuracy of vegetation classification tasks.

Multi-temporal data have shown great potential for vegetation remote sensing, and
multi-branch networks have demonstrated strong capabilities in processing multi-source
data [62,75]. However, no research has combined multi-temporal data with multi-branch
neural networks for urban tree canopy mapping [18]. In this paper, we constructed a multi-
temporal dataset based on GF2 satellite images, developed a double-branch U-NET based
on the feature fusion strategy to process multi-temporal images and obtained significant
accuracy improvement for the urban tree canopy mapping task compared to the U-NET
using mono-temporal images which performed best in the existing studies.

The contributions of this paper can be summarized in the following three aspects:
(1). This paper demonstrates the effectiveness of using multi-temporal data to improve

the accuracy of urban canopy mapping. To the best of our knowledge, this is the first study
to combine multi-temporal imagery and double-branch convolutional neural networks to
deeply mine multi-temporal data for urban tree canopy mapping tasks.

(2). We developed a double-branch U-NET based on the feature fusion strategy that
performs better in processing multi-temporal data for urban tree canopy mapping than
multi-temporal images processing methods based on the early fusion strategy and the
double-branch U-NET based on the decision fusion strategy.

(3). We analyzed the performance of images with different seasonal combinations in
the urban tree canopy mapping task and found that the combination of images in summer
and autumn performed the best in Beijing.

2. Materials and Methods

All processing procedures in this paper are shown in Figure 1. All remote sensing
image processing processes are carried out in ENVI. Gaofen-2 satellite images (panchro-
matic band of 1 m spatial resolution, multi-spectral bands of 4 m spatial resolution) were
first preprocessed with radiometric calibration (Radiometric Calibration tool), atmospheric
correction (QUAC algorithm), orthorectification (RPC algorithm) and pan sharping (Gram-
Schmidt Pan sharping tool) to obtain 1 m resolution multi-spectral images. To obtain
ground truth, higher resolution satellite images such as Google Earth were used for visual
interpretation, and the interpretation results were corrected by a ground survey. The origi-
nal remote sensing images and ground truth were cropped to 256 × 256 pixel size tiles and
divided into a training dataset, a validation dataset and a test dataset. All canopy mapping
and data cropping processes are handled in ArcMap. The original images and ground truth
in the training dataset were adopted to train the deep learning model, and the model with
the best performance on the validation was saved. The test dataset was fed into the trained
model to obtain urban tree canopy mapping results. Finally, the accuracy of the results of
each model’s semantic segmentation was evaluated, and the effects of various time-phase
satellite image combinations on the mapping of urban forest canopy were investigated.
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Figure 1. All processing procedures in this paper: (a) satellite image preprocessing; (b) model training;
(c) model prediction; (d) comparison of results from all methods and effects of various time-phase
satellite image combinations.

2.1. Study Area

Beijing, the capital of China, has a typical temperate continental climate, which favors
the growth of temperate coniferous forests and warm-temperate deciduous broad-leaved
woods. The government of Beijing attaches great importance to environmental protection
and has invested a great deal of energy in urban greening. According to the data provided
by the Beijing Municipal Forestry and Parks Bureau, Beijing has created 400 hectares of
urban green space in 2021, reached 49% urban green coverage and 44.6% forest coverage,
and planned to create 200 hectares of additional urban green space in 2022 in order to reach
49.1% urban green coverage and 44.8% forest coverage [76].

As the study area, we chose two blocks with a combined area of approximately 65 km2

in Chaoyang, Tongzhou, and Fengtai (Figure 2). There are urban forest parks, residential
areas, farmland and other areas in the two blocks, covering urban forests with different
distribution characteristics. Therefore, we can fully explore and verify the effect of different
methods on urban tree canopy mapping based on the data of the study area.
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2.2. Data Source and Processing
2.2.1. Multi-Temporal Satellite Images

Gaofen-2 satellite images serve as the paper’s primary data. The PMS sensor of the
Gaofen-2 satellite has a panchromatic band (0.45 µm–0.90 µm) with a spatial resolution of
1 m and a multi-spectral band (blue band (0.45 µm–0.52 µm), green band (0.52 µm–0.59 µm),
red band (0.63 µm–0.69 µm), near infrared band (0.77 µm–0.89 µm)) with a resolution of
4 m. Four Gaofen-2 satellite images collected at three separate periods were obtained from
the Natural Resources Satellite Remote Sensing Cloud Service Platform in accordance with
the experimental design in this research. The first image was acquired in summer (taken on
28 May 2021). An image providing information about autumn was taken on 23 September
2021. The image representing winter was taken on 30 December 2021, and two images were
required to fully cover the study area.

After acquiring the Gaofen-2 satellite images, preprocessing was required to acquire
1 m resolution multi-spectral images, including radiometric calibration, atmospheric cor-
rection, orthorectification, image registration and image fusion. First, the radiometric
calibration of the panchromatic band and the multi-spectral band was carried out according
to the absolute radiometric calibration coefficient of the GaoFen-2 satellite released by the
China Center for Resources Satellite Data and Application. Atmospheric correction for the
multi-spectral bands was then performed using the QUAC algorithm. As a relative correc-
tion model to remove atmospheric noise from remote sensing data, the QUAC algorithm
does not require any auxiliary information and is already integrated into ENVI for easy
use [77]. DEM data with a 90 m spatial resolution and RPC Orthorectification Workflow
in ENVI were employed to ortho-correct multi-spectral and panchromatic bands. Due to
the spatial offset between the panchromatic band and the multi-spectral band, the control
points were manually selected for image registration. Finally, image fusion of panchromatic
and multi-spectral bands was performed using the Gram-Schmidt Pan sharping algorithm
to obtain multi-spectral satellite images with 1 m resolution.

2.2.2. Ground Truth

The ground truth is required to effectively complete experimental investigations. We
obtained satellite images taken at multiple times from the study area. In the experiment,
the satellite images on 28 May 2021 were regarded as the basic images, and the satellite
images at other times were regarded as supplementary information sources for providing
phenological information. All ground truth data in the experiments were based on satellite
images taken on 28 May 2021. To obtain the ground truth, the Gaofen-2 images were
displayed in the 4-3-2 band false color, combined with higher resolution satellite images,
such as Google Earth, Baidu Map, etc. The urban tree canopy contours were drawn in
ArcMap 10.2 using visual interpretation. Finally, the drawing results were corrected based
on the ground survey.

2.2.3. Sample Dataset

Due to the limitation of GPU in the hardware environment, the satellite images and
ground truth were cropped into tiles of 256 × 256 pixels. A total of 936 tiles were collected,
and 10% of the entire dataset was divided into the test dataset. Furthermore, 85% of the
remaining data were used as the training dataset, and 15% were used as the validation
dataset. There was no overlap among them. The mean and standard deviation of the
two-phase data in the training dataset, the validation dataset and the test dataset were
calculated separately to standardize the data during the experiment.

2.3. Networdk Structure

Three convolutional neural network models with different structures are presented
in this section: typical U-NET, improved double-branch U-NET using the decision fusion
strategy based on the typical U-NET (named DBDU), and improved double-branch U-NET
using a multi-level feature fusion strategy based on the typical U-NET (named DBFU).
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2.3.1. U-NET

Olaf Ronneberger et al. proposed the U-NET convolutional neural network in 2015 for
biological tasks [53]. U-NET has been extensively employed in the field of satellite image
processing because of its ability to analyze high-resolution images effectively [51].

The structure of the U-NET can be divided into two parts: the contracting path
(encoder) and the expansive path (decoder). The contracting path can efficiently extract
spatial characteristics and capture context information, whereas the expansive path employs
the image features that are extracted by the contracting path to provide the outcomes of
image segmentation. The U-NET is typically represented with a symmetrical U-shaped
architecture since the contracting path and the contracting path are more or less symmetrical.
Figure 3 depicts the U-NET structure employed in this paper.
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The max pooling operation and convolution operation are frequently employed in the
contracting path. In each basic operation unit, two 3 × 3 kernels are continuously used for
the convolution operation. A rectified linear unit (RELU) follows after each convolution
operation, and the number of feature channels increases during the convolution operation.
After two convolution operations, a max-pooling operation with a size of 2 × 2 and a stride
of 2 is performed to reduce the feature map size. The base operation unit is repeated four
times, and two additional convolution operations are performed on the result of the last
operation of the base operation unit.

The expansive path involves convolution operation, transposed convolutional opera-
tion, and concatenation operation. In each basic operation unit, a 2 × 2-sized transposed
convolution is first used to expand the size of the feature map, and the result is concatenated
with the feature map of the same size in the shrinking path. Then, two 3 × 3-sized kernels
are used for the convolution operations, adding a rectified linear unit (RELU) after each con-
volution operation. The basic operation is performed four times, and a 1 × 1 convolution
operation is performed on the result of the last basic operation to obtain the probability
map. Finally, SoftMax is used to obtain the semantic segmentation result.

2.3.2. Double-Branch U-NET Based on Decision Fusion Strategy

Most studies on the processing of remote sensing data by the double-branch convolu-
tional neural network have constructed two parallel processing branches and then used the
decision fusion strategy to fuse the feature maps of the two branches after processing [70].
In this case, we adopted a similar fusion strategy to construct a double-branch U-NET
based on the decision fusion strategy (named DBDU).
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Based on the architecture of U-NET, we built the DBDU. The overall structure is
shown in Figure 4. Two parallel processing branches are constructed for the GF2 satellite
images of two phases. The green blocks and orange blocks in Figure 4 represent the multi-
channel feature maps obtained by processing the satellite images captured at two different
times. The structure of each processing branch completely adopts the U-NET architecture
shown in Figure 3, including the contracting path and expansive path, the basic operation
unit in the contraction path and expansion path, the convolution operations, transposed
convolution operations, max pooling operation, etc., that form the basic operation unit.
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Figure 4. Architecture of DBDU (double-branch U-NET based on decision fusion strategy). Each
green box represents the multi-channel feature map obtained by the first-phase satellite image
operation, each orange box represents the multi-channel feature map obtained by the second-phase
satellite image operation, the yellow box represents the feature map after transposed convolution.
The number of channels is above the box, and the size is on the right side of the box. Different arrows
represent different operations.

The satellite images of the two phases were input into two parallel processing branches.
After four sets of processing by the basic operation unit of the contracted path and four
sets of processing of the basic operation unit of the extended path, two feature maps sized
256 × 256 and with a channel number of 64 were acquired. After concatenating the two
feature maps on the channel, an additional 1 × 1 convolution operation was performed to
obtain the probability distribution result, and the final result was obtained after processing
with SoftMax.

2.3.3. Double-Branch U-NET Based on Feature Fusion Strategy

In the research on using a double-branch convolutional neural network to process
satellite images, in addition to most of the double-branch network structures based on
the decision fusion strategy, some double-branch convolutional neural network structures
using the feature fusion strategy have also been constructed. Existing research has shown
that the double-branch convolutional neural network based on the feature fusion strategy
has outstanding performance in processing multi-source satellite images [68]. However,
no study has combined double-branch convolutional neural networks and multi-temporal
satellite imagery as special multi-source data for urban tree canopy mapping. To more
effectively process multi-temporal satellite images for urban tree canopy mapping, we
established a double-branch convolutional neural network based on the strategy of feature
fusion based on the U-NET (named DBFU). The model architecture is shown in Figure 5.
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Figure 5. Architecture of DBFU (double-branch U-NET of feature fusion). Each green box represents
the multi-channel feature map obtained by the first-phase satellite image operation, each orange box
represents the multi-channel feature map obtained by the second-phase satellite image operation, the
yellow box represents the feature map after transposed convolution. The number of channels is above
the box, and the size is on the right side of the box. Different arrows represent different operations.

Similar to the U-NET, the DBFU can also be divided into two parts: the contracting
path (encoder) and the expansive path (decoder). In the contracting path, we constructed
two parallel contracting paths for the satellite images of the two phases. The structures of
the two contracting paths are identical and are consistent with the U-NET contracting path
shown in Figure 3. The basic operation unit in the two contracting paths consists of two
3 × 3 convolutions followed by the rectified linear unit (RELU), as well as a max pooling
operation with a size of 2 × 2 and a stride of 2, and the basic operation unit is repeated
four times. After the fourth base operation unit, two further 3 × 3 convolution operations
are added.

Unlike the two parallel contracting paths established for the satellite images of the
two time-phases separately, there is only one expansive path. To better use the multi-
temporal data, we concatenate the feature maps on the channel in the two branches of
the contracting path at each size level to obtain multi-temporal feature map. Afterward,
the multi-temporal feature map is channel-concatenated with the smaller-size feature map
whose size is increased by the transposed convolution operation and then performs two
3 × 3 convolutions. For the feature map of the smallest size, since there is no smaller
feature map, we directly concatenate the feature maps of the two phases on the channel.
Finally, a 1 × 1 convolution operation is used to obtain the probability distribution, and
SoftMax is used to obtain the final segmentation result.

2.3.4. Experimental Details

In this paper, we employed two different strategies using U-NET to process mono-
temporal and multi-temporal images. Mono-temporal images were fed directly into the
U-NET (the experimental flow is shown in Figure 6), while multi-temporal images were fed
into the U-NET after channel concatenation (the experimental flow is shown in Figure 7).
For DBFU and DBDU, the images of the two time-phases were input to the corresponding
two processing branches (the experimental flow is shown in Figure 8).
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All experiments in this paper consist of two steps: model training and model predic-
tion. In the model training step, all of the convolutional neural networks in this paper used
the same scheme, which includes the model weight initialization method, the number of
training epochs, the learning rate decay approach, and the model optimizer, among other
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things. No pretrained weights from other tasks were used during model training, and all
models were trained from scratch. We trained for 40 epochs after freezing the encoder
(named Freeze Training), the initial learning rate was set at 0.0001 during the Freeze Train-
ing step, and the learning rate was adjusted to 0.96 times after each epoch of training. After
Freeze Training, we unfroze the encoder and continued training for 60 epochs, the initial
learning rate was set to 0.00001; after each epoch of training, the learning rate was updated
to 0.96 times. Considering the actual configuration of the computer GPU, the batch size
was set to 8. We adopted the ADAM optimizer to reduce the loss, and then the model
with the lowest loss on the validation dataset was saved during training [78]. All model
hyperparameters are listed in Table 1.

Table 1. Model hyperparameters for four experiments.

Batch Size Epochs of Freeze
Training

Initial
Learning Rate

Epochs of Unfreeze
Training

Initial
Learning Rate

Ratio of Learning
Rate Decay

U-NET 8 1–40 0.0001 41–100 0.00001 0.96
U-NET

(Multi-temporal) 8 1–40 0.0001 41–100 0.00001 0.96

DBDU 8 1–40 0.0001 41–100 0.00001 0.96
DBFU 8 1–40 0.0001 41–100 0.00001 0.96

In the model prediction step, we took the model that performed the best on the
validation set, fed the test dataset into the model to obtain the prediction result and
combined the ground truth with the prediction result of the model to obtain the model
performance.

2.4. Loss Function

After each iteration of training, the loss function is used to evaluate the model predic-
tion results, and the evaluation results drive the deep learning model to update parameters
in the process of backpropagation to optimize the model. Therefore, choosing an appropri-
ate loss function is very important for deep learning tasks. In the semantic segmentation
task, the commonly used loss function is the cross-entropy loss function [79]. The expression
of the cross-entropy loss function is shown in Equation (1):

CEloss = −
Npixels

∑
i=1

li log(pi) + (1 − li) log(1 − pi) (1)

where Npixels represents the number of pixels, li represents the probability that the ith pixel
belongs to a certain category in the ground truth, and pi represents the corresponding
predicted probability.

In addition to the cross-entropy loss function, other loss functions were gradually
designed to suit different task requirements, such as the focal loss function [80] and a series
of loss functions based on dice coefficients [81–83]. Considering the imbalance between the
foreground and background in the image, we also considered the Dice loss function. Since
our task is a binary classification task, the expression for calculating the Dice loss is:

DICEloss = 1 − ∑
Npixels
i=1 yi ŷi

∑
Npixels
i=1 yi + ∑

Npixels
i=1 ŷi

(2)

where Npixels represents the number of pixels, yi and ŷi represent the pixel value of the ith
pixel in the prediction result and the true value, respectively.

In the actual training process, the loss is given by

LOSS = CEloss + DICEloss (3)
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2.5. Evaluation Metrics

As a typical semantic segmentation task, we adopted some accuracy metrics that are
often used in semantic segmentation tasks, including overall accuracy (OA), Precision,
Recall, F1-Score (comprehensive consideration of Precision and Recall), and Intersection
over Union (IOU) [84]. All accuracy calculations are based on the following confusion
matrix (Table 2).

Table 2. Confusion matrix for accuracy evaluation.

Ground Truth
Prediction Tree Background

Tree TP FP
Background FN TN

TP: true positive. FP: false positive. FN: false negative. TN: true negative.

Overall accuracy means the ratio of the number of correctly predicted samples to
the total number of samples in the test sample; Precision calculates the ratio of correctly
predicted positive samples to all predicted positive samples; Recall is the ratio of predicted
correct positive samples to all positive samples; F1-Score is a comprehensive consideration
of Precision and Recall; IOU is the ratio of the intersection and union between the predicted
results and the ground truth. Since we pay more attention to the effect of canopy mapping,
the IOU calculation formula used in this study is shown in Equation (8).

OA =
TP + TN

TP + TN + FP + FN
(4)

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

F1Score =
2 × Precison × Recall

Precision + Recall
(7)

IOU =
TP

TP + FP + FN
(8)

3. Experiments and Results

In this section, the specific situation of the experiment is introduced, including the
entire experimental process, the experimental running software and hardware environment,
the hyperparameters of the model, etc., and the specific results of the experiment are
compared and analyzed.

3.1. Comparison of Monotemporal Images and Multi-Temporal Images

We conducted two independent experiments to explore the role of multi-temporal
satellite images for urban tree canopy mapping tasks. The first experiment input the single-
phase GF2 remote sensing image on 28 May 2021, into the U-NET model (named U-NET),
and the experimental flow is shown in Figure 6. The second experiment fed two-phase
GF-2 satellite images from 28 May 2021 and 23 September 2021 into the U-NET model
after concatenation at the channel level (named 2DATA U-NET). The experimental flow is
shown in Figure 7.

3.1.1. Comparison of Validation Loss

During the model training process, the loss function evaluates the performance of
the model by quantifying the degree of difference between the model prediction and the
truth. Compared with the training loss, the validation loss can better demonstrate the
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performance of the model during the actual application. We captured and visualized the
validation loss at each epoch during model training, as shown in Figure 9. In the second half
of the training process, the validation loss of the 2DATA U-NET was lower in most epochs,
and the minimum validation loss of the 2DATA U-NET during the whole training process
was also lower than the minimum validation loss of the U-NET. Thus, for urban tree canopy
mapping tasks, multi-temporal images can provide higher accuracy than mono-temporal
images with the help of the phenological information contained.
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3.1.2. Comparison of Accuracy Metrics for Classification Results

We calculated evaluation metrics, including OA, Precision, Recall, F1-Score, and IOU
to quantitatively evaluate the performance of multi-temporal images and mono-temporal
images in the urban tree mapping task and focused more on F1-Score and IOU, which can
comprehensively evaluate the classification results. From the experimental results (Table 3),
all evaluation metrics of multi-temporal images were higher than those of mono-temporal
images. Overall, the classification results obtained using multi-temporal images were better
than those of mono-temporal images.

Table 3. Comparison of the accuracy of mono-temporal images and multi-temporal images.

Methods OA Precision Recall F1-Score IOU

U-NET
(Mono-temporal) 95.1% 85.7% 88.3% 87.0% 76.9%

2DATA U-NET
(Multi-temporal) 95.3% 85.9% 88.9% 87.4% 77.5%

3.1.3. Visual Analysis of Classification Results

We input the test dataset into the model that performed best during the training
process to obtain urban tree canopy mapping results, and the classification results are
shown in Figure 10. It can be observed from the areas A, B and C selected with the
yellow box in the Figure 10c,d that the results of mono-temporal images suffer from
more errors in classifying other features as urban tree canopies. Thus, we can conclude
that the phenological information provided by multi-temporal images can effectively
reduce the misclassification between the urban tree canopy and other similar features such
as grassland.
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Although there is an improvement in the accuracy of multi-temporal data compared to
mono-temporal data in terms of both our calculated accuracy metrics and visualization of
classification results, the improvement is not significant. We need a more effective method
to explore the phenological information in multi-temporal data.

3.2. Performance of Double-Branch U-NET Based on Feature Fusion Strategy

We input two-phase GF-2 satellite images from 28 May 2021 and 23 September 2021
into DBFU to obtain urban tree canopy mapping results (named DBFU). The experimental
flow is shown in Figure 8. We compared the DBFU classification results with the U-NET
and 2DATA U-NET in Section 3.2 to explore the performance of DBFU.

3.2.1. Comparison of Validation Loss

We obtained and visualized the validation loss of U-NET, 2DATA U-NET and DBFU
in 100 training epochs, and the results are shown in Figure 11. The red line representing the
validation loss of DBFU was at the bottom of the three lines in almost all epochs, and, more
specifically, DBFU had the smallest validation loss in 95 out of 100 epochs. Not only the
validation loss in each epoch but also the minimum validation loss that DBFU can achieve
during the whole training process were smaller than that of U-NET and 2DATA U-NET.
Thus, from the validation loss that reflects the model performance, we can tentatively
conclude that DBFU performs better than 2DATA U-NET and U-NET.
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3.2.2. Comparison of Accuracy Metrics for Classification Results

After feeding the test dataset into the model with minimal validation loss during
training, we obtained the urban tree canopy mapping results. To quantify the accuracy of
DBFU, U-NET and 2DATA U-NET for urban tree canopy mapping tasks, we calculated
OA, Precision, Recall, F1-Score and IOU (Table 4). From the F1-Score and IOU, which were
more comprehensive for evaluating the classification results, the results of the DBFU we
developed were the best. The F1-Score was ranked from large to small: DBFU (88.3%) >
2DATA U-NET (87.4) > U-NET (87.0), and the ranking of IOU from large to small was
consistent with the F1-Score: DBFU (79.2%) > 2DATA U-NET (77.5%) > U-NET (76.9%).The
F1-Score of the DBFU was 88.3%, and the IOU was 79.2%, with accuracy improvements of
0.9% (F1-Score) and 1.7% (IOU) compared to 2DATA U-NET and 1.3% (F1-Score) and 2.3%
(IOU) compared to U-NET which had the best overall performance in the current study.
For the urban tree canopy mapping task, DBFU was the best classifier approach from a
quantitative point of view.

Table 4. Comparison of the accuracy of U-NET, 2DATA U-NET and DBFU.

Methods OA Precision Recall F1-Score IOU

U-NET 95.1% 85.7% 88.3% 87.0% 76.9%
2DATA U-NET 95.3% 85.9% 88.9% 87.4% 77.5%

DBFU 95.8% 88.3% 88.5% 88.3% 79.2%

3.2.3. Visual Analysis of Classification Results

We visualized the classification results of the three methods and present the results
in Figure 12.Overall, DBFU could effectively reduce the error of classifying other green
features as tree canopies. In areas A, B and D, U-NET and 2DATA U-NET misclassify large
areas of grassland as tree canopy, and the corresponding misclassification area of DBFU is
the smallest. DBFU can extract the tree canopy features most effectively, and the canopy
gaps in the F region were only successfully identified by DBFU, while the canopy was
identified as continuous distribution in both the U-NET and 2DATA U-NET classification
results. It could be observed from the classification results in regions E and G that the
canopy edges of DBFU were more consistent with the ground truth. We also found that
DBFU had better classification results for both fragmented canopies in regions C and H
and continuous canopies in regions E and G.
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Figure 12. Comparison of classification results of DBFU, U-NET and 2DATA U-NET: (a) original
images in false color, (b) original images in real color, (c) ground truth, (d) classification results of
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Considering the quantitative classification accuracy evaluation metrics and the vi-
sualization results of the classification results, we found that the accuracy of DBFU for
urban tree canopy mapping was much better than that of U-NET and 2DATA U-NET. We
concluded in Section 3.1 that multi-temporal data containing phenological information can
improve the accuracy of urban tree canopy mapping tasks. In this section, DBFU performed
better than 2DATA U-NET, which shows that DBFU can make full use of the phenological
information contained in the multi-temporal data compared to U-NET. We believe that
the best performance of the double-branch U-NET based on the feature fusion strategy is
due to the fact that the double-branch U-NET based on the feature fusion strategy not only
deeply extracts the plant features contained in the single-temporal images but also makes
fuller use of the variation patterns of plant features in multiple-temporal images. Thus, the
accuracy improvement of DBFU over U-NET was based on the improved model structure
and the potential of multi-temporal data. The DBFU not only provides a highly accurate
method for urban tree canopy mapping, but it also provides a direction for improvement
that takes into account not only the model structure but also the data potential.

4. Discussion
4.1. Comparison of Different Data Fusion Strategies for Processing Multi-Temporal Images

Three independent experiments were designed to explore the effect of different data
fusion strategies on the accuracy of urban tree canopy mapping. The first experiment
adopts the same experimental design as 2DATA U-NET in Section 3.1 to represent the early
fusion strategy. The second experiment fed the GF2 satellite images of the two phases
of 28 May 2021 and 23 September 2021 into DBDU to represent the strategy of decision
fusion. The experimental flow is shown in Figure 8 (named DBDU). The last experiment
was consistent with DBFU in Section 3.2 to represent the feature fusion strategy.

4.1.1. Comparison of Validation Loss

Considering that the validation loss during the training process can reflect the per-
formance of the model, we obtained and visualized the validation loss of 2DATA U-NET,
DBDU and DBFU during the training process to preliminarily judge the performance of
multi-temporal images with different fusion strategies. We can observe from Figure 13 that
the validation loss of DBFU is lower than that of 2DATA U-NET and DBDU in almost all
epochs, which indicates that the double-branch U-NET constructed based on the feature
fusion strategy can process multi-temporal images more efficiently compared to the deci-
sion fusion strategy and early fusion strategy. The validation loss of DBDU is higher than
that of DBFU in most epochs but lower than that of 2DATA U-NET, which indicates that
the decision fusion strategy outperforms the early fusion strategy in the task of processing
multi-temporal images.
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4.1.2. Comparison of Accuracy Metrics for Classification Results

To quantitatively compare the accuracy performance of the three strategies for urban
tree canopy mapping with multi-temporal data, we calculated the evaluation metrics
described in Section 2.5, and the results are shown in Table 5. The IOU was ranked from
large to small: 88.3% (DBFU) > 87.5% (DBDU) > 87.4% (2DATA U-NET). For the F1-Score,
which integrates Precision and Recall, the order from large to small was consistent with
IOU as 79.2% (DBFU) > 77.8%(DBDU) > 77.5% (2DATA U-NET). Overall, the double-branch
U-NET conducted based on the feature fusion strategy achieved the best comprehensive
performance, while the early fusion strategy obtained the worst results for multi-temporal
images. The performance of the decision fusion strategy is between the feature fusion
strategy and the early fusion strategy.

Table 5. Comparison of accuracy of 2DATA U-NET, DBDU and DBFU.

Methods OA Precision Recall F1-Score IOU

2DATA U-NET 95.3% 85.9% 88.9% 87.4% 77.5%
DBDU 95.4% 87.7% 87.3% 87.5% 77.8%
DBFU 95.8% 88.3% 88.5% 88.3% 79.2%

4.1.3. Visual Analysis of Classification Results

The urban tree canopy mapping results were obtained after feeding the test dataset into
the model that performed best during the training process and are presented in Figure 14.
By comparing the canopy mapping results for areas A, B, C, D, E, F, G and H, DBFU had
the least area of misclassification of other features as urban tree canopy, and 2DATA U-NET
had the most area of misclassification. By comparing the classification results of the F
and H regions, we found that DBFU can maintain the morphological features of the tree
canopy most effectively, and the sparse canopies in the F regions were only successfully
identified in the classification results of DBFU, while the gaps between the canopies were
not identified in the classification results of DBDU and 2DATA U-NET. In summary, the
double-branch U-NET based on the feature fusion strategy can most effectively mine the
phenological information contained in the multi-temporal images to reduce the error of
classifying other ground objects as urban tree canopies, and the tree canopy edges in the
classification results are also more detailed and more consistent with the ground truth.

Combining the obtained multiple evaluation metrics and the visualized classification
results, we concluded that the double-branch U-NET based on the feature fusion strategy
can process the multi-temporal data most effectively and obtain the highest accuracy.
The double-branch U-NET based on the feature fusion strategy can fully mine and more
effectively utilize the phenological information in multi-temporal images and thus greatly
improve the accuracy of the urban tree canopy mapping task. The double-branch U-NET
based on the decision fusion strategy performed worse than the double-branch U-NET
based on the feature fusion strategy, and the multi-temporal data processed using the early
fusion strategy performed the worst.

4.2. Comparison of Different Seasonal Combinations of Images

Two independent experiments were designed to investigate the effect of different
seasonal combinations of input data on the accuracy of urban tree canopy mapping. Both
experiments adopted the DBFU model, and the experimental flow is shown in Figure 8.
The first experiment adopted a combination of the GF2 satellite image captured on 28 May
2021, representing summer, and the GF2 satellite image captured on 23 September 2021,
representing autumn (named DBFU (Summer and Autumn)). The combination of the GF2
satellite image taken on 28 May 2021, representing summer, and the satellite image taken
on 30 December 2021, representing winter, was used in the second experiment (named
DBFU (Summer and Winter)).
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Figure 14. Comparison of classification results of 2DATA U-NET, DBDU, DBFU: (a) original images
in false color, (b) original images in real color, (c) ground truth, (d) classification results of 2DATA
U-NET, (e) classification results of DBDU, (f) classification results of DBFU.
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4.2.1. Comparison of Validation Loss

After feeding the image combination of summer and autumn and the image combina-
tion of summer and winter into DBFU separately, we obtained the loss on the validation
dataset during the training process of 100 epochs (Figure 15). In 93 out of 100 epochs, the
validation loss of DBFU using the combination of summer and autumn images was lower
than that of DBFU using the combination of summer and winter images, and the minimum
validation loss of DBFU using the combination of summer and autumn images was much
lower than that of DBFU using the combination of summer and winter images. Therefore,
we could tentatively determine from the validation loss during training that the accuracy
of urban tree canopy mapping using the combination of summer and autumn images is
much higher than that of the combination of summer and winter images.
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4.2.2. Comparison of Accuracy Metrics for Classification Results

After feeding the test dataset into the best-performing model during experimental
training, we obtained classification results for two different combinations of seasonal
images. We obtained five evaluation indicators, including the IOU and F1-Score, and
the results are shown in Table 6. Among them, we were most concerned about the F1-
Score and IOU, which can comprehensively evaluate the classification results. We found
that the F1-Score obtained by the DBFU using the combination of summer and autumn
images reached 88.3%, and the corresponding F1-Score obtained by the DBFU using the
combination of summer and winter images was 85.7%, with a difference of 2.6%. The
IOU of the two methods were 79.2% and 75.0%, respectively, with a larger gap of 4.2%.
Therefore, through these calculated accuracy indicators, we conclude that the performance
of using the combination of summer and autumn images is much higher than that of using
the combination of summer and winter.

Table 6. Comparison of accuracy of different seasonal combinations of images.

Methods OA Precision Recall F1-Score IOU

DBFU
(Summer and Autumn) 95.8% 88.3% 88.5% 88.3% 79.2%

DBFU
(Summer and Winter) 94.5% 82.3% 89.5% 85.7% 75.0%

4.2.3. Visual Analysis of Classification Results

By comparing the classification results in the same area (Figure 16), we found that
the combination of summer and autumn images can effectively reduce the error of clas-
sifying other features as tree canopies by mining the phenological information, while the
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combination of summer and winter images into DBFU increases the error of classifying
other features as tree canopies. In Region A, DBFU using the combination of summer
and winter images classified a large number of other features as urban tree canopies, and
the classification errors were not only more than those of DBFU using the combination of
summer and autumn images but even more than those of U-NET using mono-temporal
images. The combination of images in summer and winter negatively affects the extrac-
tion of tree canopy boundaries. In regions B and C, it can be clearly seen that the tree
canopy boundaries extracted using the combination of summer and winter images are less
consistent with the ground truth than those when using the combination of summer and
autumn images.
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Considering the validation loss during the training process, the visualization of the
model results and the computed accuracy evaluation metrics, we conclude that the com-
bination of summer and winter images performs much worse than the combination of
summer and autumn images. The reason for this is that our selected study area has a typical
temperate continental climate with large areas of warm temperate deciduous broad-leaved
woods, and the canopy of deciduous broad-leaved woods undergoes great morphological
changes due to leaf drop in winter. Therefore, it is crucial for us to select the right combina-
tion of seasonal images according to the actual situation when using multi-temporal data
for urban tree canopy mapping tasks.

5. Conclusions

For high-precision urban tree canopy mapping, we established a deep learning clas-
sification method based on the double-branch U-NET of feature fusion strategy, which
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could make full use of multi-temporal images containing phenological information. Our
method achieved an IOU of 79.2%, which was significantly higher than that of existing
studies. We also found that the double-branch U-NET based on the feature fusion strategy
acquired better accuracy in processing multi-temporal images for urban tree canopy map-
ping than the method based on the early fusion strategy and the double-branch U-NET
based on the decision fusion strategy, which shows that double-branch U-NET based on
the feature fusion strategy can be more effective in mining phenological information in
multi-temporal data. Based on the high-precision method we constructed, we found that
the multi-temporal images of different seasonal combinations greatly affect the accuracy of
urban tree canopy mapping, and we need to select the appropriate multi-temporal image
combinations according to the actual situation.

Our study provides a more accurate method for performing urban canopy mapping
tasks and, moreover, provides a direction to improve the accuracy of urban tree canopy
mapping tasks, not only from the model structure, but also by considering the potential of
data application.

Although we have provided a comprehensive and adequate discussion of combining
multi-temporal images and double-branch networks for urban canopy mapping tasks in
this paper, there are still some areas that deserve further investigation and improvement.
First, although we performed strict image registration on the multi-temporal images, we
could not completely guarantee the perfect spatial coincidence of the images taken at
multiple times, and it would be worthwhile in future studies to make the images acquired
at multiple times more spatially consistent. Considering the different characteristics of the
urban tree canopy in images of different seasons, we believe that the channel attention
module can be added to the double-branch neural network to set different weights for
images of different seasons to obtain phenological information more effectively.
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