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Abstract: Australia has suffered devastating wildfires recently, and is predisposed to them due to
several factors, including topography, meteorology, vegetation, and ignition sources. This study
utilized a geographic information system (GIS) technique to analyze and understand the factors
that regulate the spatial distribution of wildfire incidents and machine learning to predict wildfire
susceptibility in Sydney. Wildfire inventory data were constructed by combining the fire perimeter
through field surveys and fire occurrence data gathered from the visible infrared imaging radiometer
suite (VIIRS)-Suomi thermal anomalies product between 2011 and 2020 for the Sydney area. Sixteen
wildfire-related factors were acquired to assess the potential of machine learning based on support
vector regression (SVR) and various metaheuristic approaches (GWO and PSO) for wildfire suscep-
tibility mapping in Sydney. In addition, the 2019–2020 “Black Summer” fire acted as a validation
dataset to assess the predictive capability of the developed model. Furthermore, the information
gain ratio (IGR) method showed that driving factors such as land use, forest type, and slope degree
have a large impact on wildfire susceptibility in the study area, and the frequency ratio (FR) method
represented how the factors influence wildfire occurrence. Model evaluation based on area under
the curve (AUC) and root average square error (RMSE) were used, and the outputs showed that the
hybrid-based SVR-PSO (AUC = 0.882, RMSE = 0.006) model performed better than the standalone
SVR (AUC = 0.837, RMSE = 0.097) and SVR-GWO (AUC = 0.873, RMSE = 0.080) models. Thus,
optimizing SVR with metaheuristics improved the accuracy of wildfire susceptibility modeling in
the study area. The proposed framework can be an alternative to the modeling approach and can be
adapted for any research related to the susceptibility of different disturbances.

Keywords: wildfire; Sydney; VIIR; support vector regression; susceptibility map

1. Introduction

Wildfires are a natural, complex, and important part of the Australian environment [1].
Wildfires can be triggered by natural causes, such as lightning strikes, or by humans
(intentionally or unintentionally), and weather and fuel conditions also play a role in their
creation [2,3]. Small branches, leaf litter, twigs and bark, shrubs, and grasses can provide
material to burn for wildfires. How much the material that is available to burn, its type,
and how moist or dry it is will influence wildfire conditions. Windy, hot, and dry weather
can contribute to the fire hazard. Throughout the year, some regions in Australia are
vulnerable to wildfires. In northern Australia, the dry season is the peak wildfire period,
which generally occurs in spring and winter. As for southern Australia, the peak of wildfire
season is in the fall and summer. Although these are the traditional peaks of the wildfire
season, local conditions may trigger wildfire hazard activity at any time [4].
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Wildfires cause significant damage to the environment, ecology, economy, and threaten
human life and assets [5]. During the "Black Saturday" wildfire, 173 lives were lost, and
4500 km2 of area was burned in Australia in 2009 [6]. In 2013, 248 buildings were destroyed
by wildfires across New South Wales (NSW) [6]. The “Black Summer” fire season in the
summer of 2019/2020 saw the most destructive wildfire, which burned about 34 million
hectares, over 3000 houses, and caused economic losses of over AU$ 100 billion [7–9].
Sydney, the city with the highest population in Australia, is located in the southeast of
the country, where these fires are the most widely spread [10]. Radiant heat and smoke
emission are other impacts of wildfires [11]. Radiant heat can be felt more than 100 m away
from a large wildfire and can potentially damage objects, such as vehicles and structures.
Toxic fumes and thick smoke produced from wildfires can interfere with vision and affect
the air quality and make breathing difficult [12]. Burning embers can fly and spread
several kilometers from the site of a large wildfire, causing small hotspots to break out.
Due to the unpredictable and fast-spreading nature of wildfires, people are advised to
evacuate from their homes as quickly as possible to ensure their safety. Despite efforts to
increase the allocation of resources and strategic planning for fire suppression in recent
years, extensive human activities and climate change have increasingly been determined as
important factors that drive the trend of more wildfires, resulting in larger burned areas
globally [3,13,14]. It is estimated that the severity, burnt area, and number of wildfires
will escalate in the future due to climate change [15,16]. Prolonged dry seasons and high
temperatures might result in unexpected wildfire activities [15]. According to the state
temperature dataset in Australia, the warmest year on record was 2019, with the annual
national average temperature 1.52 ◦C above average. The driest year on record in Australia
was also in 2019, with notable heatwaves in January and December. However, a recent
study in California showed that human activities might be a significant factor rather than
natural circumstances with regard to wildfire ignition [3]. Therefore, it is necessary to
model wildfires to identify areas with a high possibility of wildfire events for establishing
better wildfire risk management to decrease the negative impacts of wildfires on humans
and the environment [5,17–19].

The improvement of remote sensing technologies has advanced wildfire monitoring
and management across the globe. With the improved 375 m spatial resolution data that
complements the MODIS fire observation, the visible infrared imaging radiometer suite
(VIIRS) data provides better fire sensitivity over relatively small areas and has improved
nighttime performance [20]. Fire susceptibility modeling uses various techniques that usu-
ally utilize the geographic information system (GIS) method and remote sensing (RS) data.
Well known methods with wide applications include logistic regression [21], the analytical
hierarchy process (AHP) [22], fuzzy systems [23,24], weight of evidence (WOE) [25], artifi-
cial neural networks (ANN) [13], the evidential belief function [26], and decision trees [27].
However, the selection of parameters has a significant influence on the learning phase,
determining the results of predictions, and has the potential to lead to various problems
such as overfitting or underfitting. The use of a precise parameter estimation approach is
an important part of the success of modeling efforts, especially regarding machine learn-
ing models. The disadvantage of conventional parameter computation approaches is the
utilization of a complicated seeking process to identify the optimal values of the parame-
ter [28]. For instance, the gradient descent learning [29] and evolutionary learning [30,31]
methods often used for adjusting the SVR algorithm require long processing times and
decrease the effectiveness of the model. The metaheuristic optimization approach can be
utilized to overcome the ineffective slow parameter estimation process of the models [32].
Therefore, there is no need for trial and error tests by using the automatic computation
through metaheuristic algorithms to determine optimal parameters [33]. The GWO and
PSO algorithms have proven to be useful for various susceptibility mapping, such as for
landslides [28,34], groundwater [35] and floods [36], and therefore have been evaluated for
use in SVR model tests.
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In previous studies, Sulova and Arsanjani (2020) [19] applied three different machine
learning algorithms at the continental level using random forest, naïve Bayes and regression
tree models, and Hosseini and Lim (2022) [5] mapped at the state level using eight methods.
This study aims to create wildfire susceptibility prediction at the regional level using
VIIRS Suomi data and hybrid models based on the metaheuristic optimization of powerful
machine learning models. The standalone SVR model and its metaheuristic optimized
versions, SVR-GWO and SVR-PSO, were used to create wildfire susceptibility maps in
Sydney and surrounding areas in southeastern Australia. As a matter of convenience,
Table 1 represents the nomenclature of this paper.

Table 1. This table represents the nomenclature of this paper.

Nomenclature

MODIS moderate resolution imaging spectroradiometer H training dataset
VIIRS visible infrared imaging radiometer suite RF related factors
GIS geographic information system FR frequency ratio
RS remote sensing n number of data points or samples

AHP analytical hierarchy process yi output values
ANN artificial neural network xi input data
WOE weight of evidence wT the transpose value of weight factor
SVR support vector regression b bias vectors

GWO grey wolf optimization ϕ(x) nonlinear function
PSO particle swarm optimization C penalty factor

FIRMS fire information for resource management system ξi loose variables or distance between boundary
RMSE root mean square error ξi* targets
ROC the receiver operating characteristic ε insensitive loss function
AUC area under ROC curve αi Lagrange multipliers
NSW New South Wales k(x,xi) the kernel function
Cfa humid subtropical climate

→
Xi particle location

S-NPP Suomi-national polar-orbiting partnership
→
Vi particle velocity

GPS global positioning system t iteration number
NDVI normalized difference vegetation index w inertial weight
DEM digital elevation model Pi the best position of particle i

ABARES Australian bureau of agricultural and resource economics and sciences G the fittest position of the entire swarm
PDSI Palmer drought severity index c1 cognitive acceleration constant

ACLUMP Australian collaborative land use management program c2 social acceleration coefficient
IGR information gain ratio r random coefficients range from 0 to 1
TOL tolerance p predicted value
VIF variance inflation factor o actual value

2. Materials and Methods

The methodology of this study is outlined in a graphical illustration in Figure 1. The
first step was producing a wildfire database using the FIRMS dataset from the VIIRS-Suomi
satellite. The 2011–2018 wildfire location data were then divided into training (70%) and
testing (30%) datasets using a random function. Afterward, a spatial database consisting of
wildfire-related factors was constructed and assessed using spatial relationship analysis
using the training set and layers of related factors. Using GWO and PSO metaheuristic
optimization algorithms, the optimal hyperparameters of SVR were then identified, and
the susceptibility models were created. At last, the resulting maps were validated utilizing
the 2019–2020 Black Summer Fire datasets using RMSE and AUC analysis.

2.1. Study Area

The study area is Sydney and the surrounding county in the eastern part of New
South Wales, Australia, as shown in Figure 2. Sydney is home to 5,259,764 people, or
approximately 20.20% of the Australian population [37]. The New South Wales (NSW)
National Park and Wildlife Service contains 50 parks (national, conservation, reserve, etc.)
with Wollemi National Park as the largest announced wilderness area in NSW [38]. For
simplicity, the study area is denoted as Sydney. Sydney has an area of 48,121 km2, and
its elevation ranges from 0 to 1356 m. About 72% of the area has slope degrees from
0 (flat) to 150, with the highest slope inclination of 81 degrees. The urban areas are mostly
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located in low-lying areas near the coast. The climate of Sydney is humid subtropical
(Koppen: cfa) [39], with mild winters and warm summers. The land cover types of the
study area include conservation and natural environment areas (45.31%), production areas
from relatively natural environments (24.85%), dryland agriculture (17.02%), wetland
agriculture (0.64%), and urban areas (10.37%). The forestry area of Sydney is dominated by
eucalyptus (52%), followed by other native forests (2.28%), and Casuarina (1.91%).
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2.2. Historical Fire Location

Creating an inventory map is mandatory before the construction of wildfire suscepti-
bility maps [40]. The wildfire inventory in Sydney was collected from the Fire Information
for Resource Management System (FIRMS) acquired from the VIIRS instrument attached to
the Suomi-National Polar-orbiting Partnership (S-NPP) satellite from 2011 to 2018. Each
pixel of VIIRS active thermal/fire hotspot location depicts the center of a 375 m resolution.
These data files include the latitude, longitude, acquisition time and date, and confidence
level (low, normal, and high). Only high confidence level data were used as true fire
hotspots for the wildfire inventory database to provide more certain and accurate fire
location information. From 2011–2018, 26,258 samples were acquired. The data were then
compared with fire perimeters generated by the Australian government and sourced fire
datasets from the NSW Rural Fire Service and Forestry Corporation of NSW. The dataset
was derived from hand digitizing fire scars from aerial photography and GPS coordinates.
Finally, a combination of Suomi data and fire perimeters provided 16,462 samples for the
fire inventory.

In machine learning processing, the construction of a wildfire susceptibility model was
conducted as a binary classification, which required data from fire and without fire areas.
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An equal number of nonwildfire location data (16,462 points) were picked using the random
point function by identifying the region outside previous wildfire history and having very
low possibility areas determined using a frequency ratio approach. This approach was an
effective strategy to help the interpretation of the area, and provides a more precise wildfire
inventory. The wildfire and nonwildfire data were split into training (70%) and testing
(30%) datasets because this ratio was found in many studies in which this integration was
appropriate to predict wildfire susceptibility maps [5,41,42]. The 70% training datasets for
wildfire-occurrence and nonwildfire-incident locations were then combined to produce
wildfire susceptibility maps, and 30% of the test data from the two datasets were combined
for validation of the model’s performance.
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2.3. Additional Fire Data for Validation

To evaluate the predictive capability, we considered using 2019–2020 fire data during
the Black Summer wildfire. The validation data constituted a total of 32 wildfires that
took place from October 2019 to May 2020. The smallest area of wildfire was 109 hectares,
namely the Spring Gully Fire, which occurred on 9 January 2020. The largest wildfire was
the Gospers Mountain fire, which burned 479.513 hectares from 25 October 2019 until 9
February 2020. The wildfire data were also collected from VIIRS-Suomi data integrated
with the fire perimeter from the Australian government. Therefore, we collected 61,838
samples that act as a validation dataset for wildfire susceptibility models.

2.4. Wildfire-Related Factors

The selection of independent variables, which are also called as predisposing, pre-
dictors, conditioning, or driving variables, is essential in susceptibility modeling. Table 2
shows 16 variables related to wildfire susceptibility that were selected according to data
availability and prior studies in Australia [5,19]. The variables were categorized into
four categories including the topographical, environmental, meteorological, and anthropo-
logical. The topographical-related factors included altitude, aspect, plan curvature, and
slope; the meteorological-related factors include windspeed, maximum temperature, and
precipitation; the environmental-related factors include soil moisture, distance to rivers,
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drought index, forest type, and the normalized difference vegetation index (NDVI); and
the anthropological-related factors include distance to recreational areas, land use, distance
to roads, and distance to human settlements. Figures 3–6 show the 16 factors utilized for
the wildfire susceptibility assessment. All factors were arranged into a spatial database
and were resampled to 30 m spatial resolution. Using the quantile method, numeric or
continuous data were reclassified into five classes to determine and analyze the effect of
wildfires in each class.

Table 2. Information on wildfire driving factors.

Category Variable Name Resolution Source of Data Ref.

Topographical

Altitude

30 m Copernicus DEM

[43]
Aspect [44]

Plan curvature [13]
Slope [45]

Meteorological
Precipitation

4 km Terra climate
[46]

Maximum temperature [18]
Windspeed 50 m Global Wind Atlas [42]

Environmental

Dist. to rivers 50 m ABARES [47]
Drought index

4 km Terra climate
[48]

Soil moisture [19]
Forest type 100 m ABARES [49]

NDVI 375 m MODIS [50]

Anthropological

Land use

50 m ABARES

[51]
Dist. to recreational areas [52]

Dist. to roads [53]
Dist. to human settlements [21]

2.4.1. Topographical

Topography-related factors have an essential effect on wildfire occurrence, distribu-
tion, severity of vegetation, human accessibility, and local climate [17]. Topographic factors
(Figure 3) include altitude, aspect, plan curvature, and slope, which are derived from the
Copernicus DEM (30 meter spatial resolution). Altitude influences the severity and spread
of a wildfire and is related with plant composition and distribution and conditions of the lo-
cal climate [54]. Escalating the slope degree can intensify the speed of fire distribution. Fires
can distribute less quickly in less steep zones and faster in steep zones. The aspect indicates
the direction the surface is facing and influences how much sunlight is received [25].

2.4.2. Meteorological

Meteorological-related factors (Figure 4) include the average values of maximum
temperature, precipitation, and windspeed data. Meteorological factors regulate the cycle
life of vegetation, which provides drying leaves for ignition, fuel production, or spreading
wildfires [43]. Precipitation and maximum temperature data were gathered through the
Terra Climate 2011–2018 dataset (4 km spatial resolution). This monthly data uses the
interpolated time-varying anomalies from CRU Ts4.0/JRA55 to produce a dataset that
covers a larger temporal record [19]. Precipitation influences the plants pattern, and
moisture levels affect the rate of fire spread. The higher the temperature, the higher the
likelihood that a fire will ignite or keep on burning. The reason for this is that at high
temperatures, the fuel becomes closer to its ignition point, and preheated fuel burns faster.
Windspeed data was collected from the Global Wind Atlas (50 m spatial resolution). Strong
winds blow the flames and cause a fire to spread quickly across the landscape. Strong winds
can also take carry fire embers a long way, which can trigger spot fires many kilometers
ahead of the main fire front. The raster was derived from data acquired from 2011 to 2018
by applying the average statistical tools.
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2.4.3. Environmental

Environmental-related factors (Figure 5) include distance to rivers, the drought in-
dex, soil moisture level, forest type, and NDVI data. River- and forest-type data were
acquired from the Australian Bureau of Agricultural and Resource Economics and Sciences
(ABARES) [55]. The distance to rivers is related to the condition of the forest with the
river that serves as a water source. The soil moisture level and drought index data were
gathered through the Terra Climate data from 2011 to 2018. The drought index data esti-
mates landscape drought and surface water balance. This data was based on the Palmer
drought severity index (PDSI) approach [56]. Soil moisture affects the dryness degree
and water balance of fuels and influences the dead plants lying on the surface [14]. The
forest-type data is essential for the assessment of wildfires in Sydney since it serves as
information about the plant distribution and characteristics of the study area [57]. This
information helped in identifying which type of vegetation had to be maintained and
prioritized since flammability may vary according to the type of vegetation. The NDVI
data was gathered from the MODIS/Terra satellite (375 m). The NDVI data were calculated
using the median function from 2011 to 2018 to avoid bias caused by the loss of greenness
after wildfires. The NDVI represents the condition, health, and moisture of vegetation [21].
A decrease in the NDVI shows that dry vegetation influences water stress and increases the
likelihood of wildfire.
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Figure 4. Meteorological-related factors: (a) precipitation, (b) maximum temperature, and (c) windspeed.

2.4.4. Anthropological

Anthropological-related factors (Figure 6) include land use, distance to recreational
areas, roads, and settlements, which were collected from ABARES (50 m) [58]. Updated
in December 2020, this product consists of national compilation data from the Australian
Collaborative Land Use Management Program (ACLUMP). Land use depicts the landscape
pattern, composition, and characteristics of the study area. These features may influence
the triggering and distribution of fires. The distance to recreational areas, roads, and human
settlements quantify the accessibility to forest areas and wildfire areas and, in many cases,
human activity is responsible for the triggering of wildfires.

2.5. Spatial Correlation Analysis

Feature selection approaches can be used to determine and eliminate noisy, irrelevant,
or redundant data that may deteriorate model accuracy. Here, multicollinearity, Pearson
correlation, and information gain ratio (IGR) approaches were applied to assess the spatial
correlation between several wildfire-driving factors. Multicollinearity examination can be
utilized to identify the existence of correlated wildfire-driving factors.
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Figure 5. Environmental-related factors: (a) distance to rivers, (b) drought index, (c) soil moisture
precipitation, (d) forest type, and (e) NDVI.
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Figure 6. Anthropological-related factors: (a) land use, (b) distance to recreational areas, (c) distance
to roads, and (d) distances to settlements.

Multicollinearity may occur among some factors if they are not accurately selected,
and the factors should be removed [41]. The methods are tolerance (TOL) and the variance
inflation factor (VIF), which are two common indexes for indicating multicollinearity. If
a TOL score is less than 0.1, or a VIF score is greater than 10, this suggests the existence
of multicollinearity [59]. A Pearson’s correlation coefficient calculation was conducted to
determine the strength and direction of correlation among wildfire-driving variables to
support the multicollinearity test. The results scores range between −1 and +1. Scores
near −1 imply a strong negative correlation, while scores near +1 denote that there is a
strong positive relationship between two driving variables. Scores equal to 0 indicate no
correlation between the two factors. Prior studies have considered the scores −0.7 and
0.7 to be the critical score, implying that scores above these critical scores may lead to a
multicollinearity problem [17,60,61].

Furthermore, the IGR analysis has also been utilized by other studies [17,62] to choose
the appropriate driving factors for wildfire susceptibility maps. The concept of IGR is an
entropy-based feature selection approach, and it is employed to provide information from
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the feature items and to identify the total entropy reduction of the database [63]. A high
score on the IGR represents a better predictive ability of a driving factor [64].

IGR (H, RF) =
Entropy(H)− Entropy(H, RF)

Split Entropy(H)
(1)

where H represents the training dataset, RF represents the related factors, and Entropy(H, RF)
is the information gathered by dividing the training data (H) and related factors (RF).

The frequency ratio (FR) method was employed to calculate and analyze the spatial
correlations between the wildfire locations (11,523 points) and classes of each wildfire-
driving factor. The method started with classifying the continuous (numeric) factors into
five classes in ArcGIS 10.4. The FR score can be obtained by measuring the ratio between
the number of pixel fire incidents with the number of pixel areas in each class. A particular
class of the related variable has a high probability of wildfire occurrence if the class acquired
an FR score larger than 1 and will have a significant effect on wildfire modeling. The FR
score was used to create wildfire susceptibility models using the hybrid machine learning
algorithms SVR-GWO and SVR-PSO, and SVR alone.

2.6. Support Vector Regression (SVR)

SVR is a derivative of the SVM method for a regression problem. Using a few samples,
SVR finds a solution to nonlinear issues with high dimensionality based on structural risk
minimization [65]. SVR performs faster convergence compared with other methods and
finds a solution more efficiently in multidimensional estimation issues due to its ability
to identify the relationship among input and output data [66]. For a set of wildfire data
{xi, yi}n

i , where n is the number of data points, yi are output values, and xi are input data.
The relationship between input and output can be calculated based on a nonlinear function
[f (x)] as follows:

y = f (xi) = wT ϕ(xi) + b (2)

where wT denotes the transpose value of the weight factor and b represents the bias vectors.
ϕ(x), as a nonlinear function, is utilized to map xi. The controllable coefficients w and b are
computed using Equations (4) and (5), as follows:

Minimize :

[
1
2
||w||2 + C

n

∑
i=1

ξi + ξ∗i

]
(3)

With the constrain :


yi −

(
wT ϕ(xi) + bi

)
≤ ε + ξi(

wT ϕ(xi) + bi
)
− yi ≤ ε + ξ∗i

ξi, ξ∗i ≥ 0 i = 1, 2, . . . , n

(4)

where C is a penalty factor or the trade-off the generalization capability and training error,
ξi and ξi* represent loose variables or distance between boundary and targets, and ε is
an insensitive loss function [65]. Lastly, the Lagrange equation can be used to solve the
optimization issue, and the SVR function is expressed as:

f (x) =
n

∑
i=1

(αi − α∗i )k(x, xi) + b (5)

where αi and αi* are Lagrange multipliers, and k(x,xi) = 〈ϕ(x),ϕ(xi)〉 is called the kernel
function. Accurately identifying the optimal value for the kernel function, ε and C hy-
perparameters in the SVR are important to accomplishing the maximum accuracy of the
model. Therefore, we used metaheuristic algorithms, including metaheuristic optimization
algorithms including GWO and PSO, to tune and optimize the SVR hyperparameters.
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2.7. Metaheuristic Optimization Approaches
2.7.1. Grey Wolf Optimization (GWO)

A GWO algorithm imitating the authority ranking and hunting operations of grey
wolves (Canis lupus) was developed [67]. It is designed to identify the best solution for
optimization problems. The three phases of hunting are start with searching for prey by
defining the problems mathematically and identifying the basic parameters. The alpha
(α) is regarded as the highest- and best-fitted solution, and β, δ, and ω represent the
second, third and fourth best solution. The second step is the initialization of the pack
randomly surrounding the entire space. The last step is attacking the prey when the prey
is surrounded by the pack. The hunting operation is finished when an attack occurs and
reaches scores between −1 and 1 [34].

2.7.2. Particle Swarm Optimization (PSO)

PSO is a method that duplicates the intelligence of a swarm of insects, birds, or
fish [68]. This method utilizes population fitness data to discover the best solution to a
given issue. Each insect is considered a particle and is represented with a velocity and
position vector. Every particle has its own intelligence and searches around in dimensional
space to identify the best solution. After every iteration, each particle arranges its location
by discovering the best location that it has ever visited and having the optimal proximity
to its neighbor. For N-dimensional optimization problems, two vectors are considered for

each particle, the i-th particle location ((
→
Xi) = {Xi1, Xi2, . . . , XiN}), and the particle velocity

((
→
Vi) = {Vi1, Vi2, . . . , ViN}), respectively. The location and velocity vectors are updated in

each iteration as follows [69]:

→
Vi(t + 1) = w

→
Vi(t) + c1r1 ×

[ →
XPi −

→
Xi(t)

]
+ c2r2 ×

[ →
XGi −

→
Xi(t)

]
(6)

→
Xi(t + 1) =

→
Xi(t) +

→
Vi(t + 1) (7)

where t is the iteration number, w represents the inertial weight, Pi refers to the best
position of particle i-th, and Gi represents the fittest position of the entire swarm. c1 is
the cognitive acceleration constant, while c2 is the learning factor or social acceleration
coefficient. r1 and r2 are two separate random coefficients ranging from 0 to 1 that are used
to diversify the population.

2.8. Performance Evaluation

The evaluation step is a mandatory phase in analyzing the model prediction accuracy
and performance to aid the scientific reliability of this study [70]. This study employed the
root average squared error (RMSE) method as a cost function and as an evaluation metric
for optimizing SVR hyperparameters, as follows:

RMSE =

√
1
n ∑n

i=1(pi − oi)
2 (8)

where n indicates the number of samples and p and o represent the predicted and actual
values of the wildfire inventory, respectively. Metaheuristic approaches were utilized to
find the lowest RMSE scores through the optimization of SVR model hyperparameters.

This study also utilized the area under the receiver operating characteristic (ROC)
curve (AUC) that has been employed to evaluate and validate global model assessment in
machine learning and modeling research [71,72]. The AUC acts as an accurate indicator
that reflects the performance, compression, and evaluation of model predictions. This
calculation result ranges between 0.5 and 1, with scores close to 1 implying near-perfect
performance and scores close to 0.5 indicating very weak predictive ability. We employed
this approach using the testing dataset from wildfire inventory data, which was not utilized
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in the training phase. The higher the AUC score and the closer it is to 1, the higher the
performance of the wildfire prediction model.

3. Results
3.1. Correlation between Wildfire and Driving Factors

According to the Pearson correlation coefficient scores in Figure 7, the highest correla-
tion score was calculated between forest type and land use (0.69). The diagonal unit in dark
brown is the correlation between each factor and itself. Consequently, their score is equal to
1 [73]. The figure also shows that all of the correlation scores between every driving factor
were outside of the critical values. This finding implied that there is no necessity to remove
any driving factors and that all factors used in this study will not become a source of error
or interference in the modeling phase.
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Table 3 shows the results of a multicollinearity approach that was conducted to assess
the correlation between wildfire occurrence with wildfire-driving factors. All 16 wildfire-
driving factors had TOL results higher than 0.1 and VIF results lower than 10. The ranges
of TOL and VIF scores were within the critical threshold. The highest VIF score was 3.86 for
land use, and the lowest TOL score was 0.26 for land use. The range of TOL was between
0.26 to 0.99. The results suggested that no multicollinearities were monitored between the
driving factors, thus avoiding the risk of decreasing model accuracy.

According to the assessment results of the IGR techniques, all 16 driving factors
examined in this study had an impact on the wildfire occurrence and spread, and had
predictive capabilities for wildfire modeling (IGR > 0), as shown in Table 3. Forest type
factor was the highest IGR score (IGR = 0.85); thus, forest type was the most effective
driving factor, followed by land use and slope degree with IGR scores of 0.78 and 054,
respectively. These results were in agreement with the finding of prior studies that forest
type, land use, and slope degree had the highest predictive power for wildfire susceptibility
mapping [17,22,74]. Furthermore, this aspect was observed to have the lowest IGR score of
0.01. Considering that all Pearson correlation analysis, multicollinearity, and IGR scores
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were within the safe threshold, all of the driving factors could be utilized for producing
wildfire susceptibility modeling in this study.

Table 3. TOL, VIF, and IGR scores of wildfire-driving factors.

Factor
Multicollinearity Scores

IGR
TOL VIF

Altitude 0.61 1.65 0.24
Aspect 0.99 1.00 0.01

Plan curvature 0.64 1.55 0.25
Slope 0.37 2.72 0.54

Precipitation 0.74 1.35 0.17
Tmax 0.53 1.90 0.19

Windspeed 0.45 2.21 0.32
Dist. to rivers 0.87 1.15 0.04
Drought index 0.44 2.27 0.40
Soil moisture 0.31 3.24 0.34
Forest type 0.31 3.22 0.85

NDVI 0.43 2.34 0.49
Land use 0.26 3.86 0.78

Dist. to recreational 0.40 2.53 0.35
Dist. to roads 0.52 1.92 0.27

Dist. to human settlements 0.30 3.28 0.52

The spatial association between the historical location of wildfire incidents and classes
of each driving factor using the FR method are shown in Table 4. The areas of 154–367 and
367–590 m altitude had higher FR scores of 1.54 and 1.66, respectively, implying that low-
lands were predominantly prone to wildfire incidents, and 64% of all wildfires happened in
the study area. The slope aspect showed that wildfire locations were generally distributed
in all classes and were occurred more in the northern, northeastern, southwestern, and
southern portions of Sydney. The north-facing aspects receive extra sun radiation that
intensifies the temperature of fuel and the low level of fuel moisture in the Southern Hemi-
sphere, which leads to fires. The plan curvature with convex and concave shapes was
correlated with a high incidence of wildfires. These results agree with other studies that
indicated that the likelihood of fire incidents may be higher on concave slopes and lower
on flat terrain [13,17]. The two slope classes, 9.54–17.18 and 17.18–81.15, had FR scores of
1.51 and 2.00, respectively, suggesting that a high degree of inclination caused wildfires to
spread faster to steep areas. The further distance to roads indicated a higher possibility of
fire incidents, with the class 1663–12,385 having the highest FR score of 2.14. The further
the distance from the road, the more troublesome it is for firetrucks to reach and put out
the wildfire. High NDVI classes, namely, 0.69–0.76 and 0.76–0.89, had FR scores of 2.30 and
1.50, respectively, indicating wildfire incidents in areas with high greenness and fuel avail-
ability. Great wildfires occurred in relatively high classes of maximum temperature, namely,
30.09–31.19 and 31.19–32.77, with FR scores of 1.60 and 1.22, respectively. The highest
class of distance to rivers (1294–7708) had an FR score of 1.46. The higher distances to
recreational locations, namely, 11,473–17,920 and 17,920–41,130, had FR scores of 1.25 and
1.95, respectively. In addition to the distance to settlements, the higher class scores, namely,
2589–5319 and 5319–21,784, had higher FR scores of 1.12 and 2.63, respectively. For land
use and forest-type factors, conservation and natural environmental areas experienced the
highest wildfire occurrence, with Casuarina, Melaleuca, and Eucalypt forest types serving
as fuel for wildfires.

The opposite patterns were found for the drought index, with the lower classes
exhibiting higher FR scores of 1.44 and 1.67 for classes of −5.75–−5.50 and −5.50–−5.29,
respectively. Lower windspeed classes, namely 0.54–3.65, 3.65–4.22, and 4.22–4.78, had
higher FR scores of 1.37, 1.11, and 1.05, respectively. Soil moisture classes of 4.2–7.1 and 7.1–
10.2 had FR scores of 1.26 and 1.9, respectively. The wildfire incidents for the precipitation
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factor tended to be high in most classes. Topographical- and anthropological-related factors
might diminish the effects of soil moisture level, precipitation, and windspeed, since none
of them showed any spatial trend that was strongly correlated with the appearance or
absence of wildfire incidents.

Table 4. Frequency ratio score.

Variable Name Class Total % Event % FR Score

Altitude (m) 0–154 19.83 6.02 0.30
154–367 20.42 31.38 1.54
367–590 20.22 33.60 1.66
590–792 20.12 16.98 0.84

792–1356 19.41 12.02 0.62

Aspect Flat 0.35 0.02 0.07
North 12.51 13.73 1.10

Northeast 12.78 13.34 1.04
East 13.89 13.19 0.95

Southeast 12.24 12.02 0.98
South 10.69 11.39 1.07

Southwest 11.24 11.36 1.01
West 13.23 12.06 0.91

Northwest 13.08 12.88 0.98

Plan curvature Concave 18.66 27.22 1.46
Flat 45.59 27.13 0.60

Convex 35.75 45.65 1.28

Slope (degree) 0–2.22 17.71 4.05 0.23
2.22–4.77 20.99 8.65 0.41
4.77–9.54 20.87 16.91 0.81

9.54–17.18 20.26 30.54 1.51
17.18–81.15 19.96 39.85 2.00

Precipitation (mm) 48.19–62.76 19.67 7.84 0.40
62.76–69.35 20.64 21.99 1.07
69.35–75.94 19.82 20.13 1.02
75.94–84.27 20.21 24.08 1.19

84.27–136.64 19.67 26.00 1.32

Tmax (◦C) 25.54–28.63 19.09 16.66 0.87
28.63–30.09 21.06 17.50 0.83
30.09–31.19 22.02 35.12 1.60
31.19–32.77 19.45 23.70 1.22
32.77–35.90 18.38 7.01 0.38

Windspeed (m/s) 0.54–3.65 20.00 27.43 1.37
3.65–4.22 20.00 22.13 1.11
4.22–4.78 20.00 20.90 1.05
4.78–5.45 20.00 16.83 0.84

5.45–12.71 20.00 12.70 0.64

Distance to rivers (m) 30–180 22.80 21.77 0.95
180–421 21.99 19.15 0.87
421–752 19.03 15.58 0.82

752–1294 18.91 18.22 0.96
1294–7708 17.27 25.28 1.46

Drought index −6.75–−5.75 19.10 12.20 0.64
−5.75–−5.50 20.57 29.59 1.44
−5.50–−5.29 28.36 47.30 1.67
−5.29–−5.09 20.78 8.62 0.41
−5.09–−4.30 11.19 2.31 0.21

Soil moisture (mm) 1.85–4.20 20.21 7.41 0.37
4.20–7.10 20.36 25.67 1.26

7.10–10.20 21.96 41.81 1.90
10.20–15.70 19.49 13.49 0.69
15.70–69.40 17.98 11.62 0.65
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Table 4. Cont.

Variable Name Class Total % Event % FR Score

Forest type Acacia 0.04 0.01 0.32
Callitris 0.19 0.05 0.25

Casuarina 1.91 2.25 1.18
Eucalypt 52.29 93.08 1.78

Mangrove 0.02 0.00 0.00
Melaleuca 0.07 0.11 1.67

Mixed species 0.00 0.00 0.00
Non-forest 38.33 1.01 0.03

Unallocated type 0.17 0.13 0.78
Other native forests 4.42 2.28 0.52

Rainforest 0.93 0.41 0.45
Softwood plantation 1.59 0.66 0.41

Hardwood plantation 0.03 0.00 0.00

NDVI 0–0.55 20.01 0.27 0.01
0.55–0.62 20.00 5.42 0.27
0.62–0.69 20.00 18.38 0.92
0.69–0.76 20.00 45.95 2.30
0.76–0.89 19.99 29.98 1.50

Land use Nature conservation 45.31 91.71 2.02
Grazing native forest 24.85 6.33 0.25
Dryland agriculture 17.02 0.44 0.03
Irrigated agriculture 0.64 0.00 0.00

Intensive uses 10.37 1.24 0.12
Open water 1.81 0.28 0.15

Dist. to recreational areas
(m)

30–2447 19.83 8.31 0.42
2447–6638 20.72 14.44 0.70

6638–11,473 20.63 15.47 0.75
11,473–17,920 19.78 24.67 1.25
17,920–41,130 19.05 37.11 1.95

Dist. to
roads (m)

30–150 25.22 14.35 0.57
150–402 18.99 14.09 0.74
402–823 18.57 14.92 0.80

823–1663 18.55 16.72 0.90
1663–12,385 18.67 39.91 2.14

Dist. to human
settlements (m)

30–456 18.92 4.49 0.24
456–1309 22.00 9.68 0.44

1309–2589 20.15 13.36 0.66
2589–5319 19.85 22.28 1.12

5319–21,784 19.08 50.19 2.63

3.2. Susceptibility Map

Figure 8 shows the results of wildfire susceptibility maps created employing the SVR
alone and the hybrid metaheuristic optimized algorithms SVR-GWO and SVR-PSO. Wild-
fire susceptibility indices were generated for all pixels in the study area, where each pixel
was assigned a unique susceptibility index. For visual inspection of wildfire susceptibility
prediction, the quantile classification method was applied to categorize the pixel value
with adjacent indexes into the same class and avoid the effect of subjective equal-interval
classification [75,76]. Based on the modeling results and quantile method, each map was
split into five predicted classes of very high, high, moderate, low, and very low wildfire
susceptibility classes. All generated maps had almost identical outcomes in terms of the
spatial extent of the very low and low susceptibility classes. Visually, the spatial pattern
and distribution of wildfire susceptibility in the study area were strongly influenced by the
slope (Figure 3d) and forest type (Figure 5d). Notable differences can be seen in Figure 8a,
where middle areas were predicted as having moderate to high susceptibility. In Figure 8b,c,
the areas were indicated as high to very high susceptibility to wildfire occurrence.
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Figure 9 shows the percentage of pixel distribution in every wildfire susceptibility map
examined. The locations of very low and low class are similar in all maps and areas prone
to wildfire incidents, particularly in the middle part of the study area and expanding to
the south part, meaning that Sydney is surrounded by wildfire hotspot regions. Generally,
approximately 40% of the study area has a low to very low wildfire susceptibility and is
located in areas with low degrees of slope and low altitude; areas with moderate wildfire
susceptibility were slightly different in the three models, and around 40% have a high
and very high probability of wildfire incident because they are located at a high degree of
slope. The distribution of pixels of SVR alone and hybrid metaheuristic optimized SVR-
GWO maps showed similar results compared with the SVR-PSO map. The SVR-PSO map
exhibited the greatest percentage of the high wildfire susceptibility class and the smallest
percentage of the very high wildfire susceptibility class.
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3.3. Model Evaluation

The model performance was validated, evaluated, and compared using testing data
set to assess the liability of the maps created by each proposed algorithm. The RMSE results
showed that in the testing step applying the SVR model, the score of RMSE was 0.097. In
SVR-PSO and SVR-GWO, the RMSE scores were 0.006 and 0.080, respectively. Furthermore,
AUC score analysis was also used to validate the performance of the wildfire susceptibility
models through model evaluation using 30% of the total dataset (testing dataset). Figure 10
shows the ROC curve analysis results that revealed the ROC of SVR (blue line), SVR-GWO
(red line), and SVR-PSO (green line). The ROC curve graph shows the sensitivity (i.e., on
the y-axis is true-positive) versus specificity (i.e., on the x-axis is false-positive). Figure 10
also shows that SVR has an AUC score of 0.837, SVR-GWO has an AUC score of 0.873, and
SVR-PSO has an AUC score of 0.882. Given the higher scores of AUC and the lower scores
of RMSE in the testing step, the accuracy and predictive capacity of the SVR-PSO model
outperformed the SVR-GWO and standalone SVR models. This result is consistent with
the findings from other studies [77].
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4. Discussion

Susceptibility mapping with an appropriate assessment technique is a vital component
for preventing and reducing wildfire damage. Wildfire inventory databases are essential
for precise wildfire susceptibility construction. The remote sensing imagery from the Suomi
NPP satellite using VIIRS is suitable for acquiring data inventories of wildfire incidents due
to their availability, cost and time efficiency, independence from fieldwork, day and night
daily data, and better coherent fire identification. Integrated with the fire perimeter from
ABARES, a more accurate inventory dataset delineating the burned area after wildfires was
acquired for training, testing, and evaluating the wildfire susceptibility models.

A wide variety of driving factors for wildfire prediction was identified and acquired
according to prior studies and data availability. It was also important to conduct a three-
step phase applying the multicollinearity test, the Pearson correlation analysis, and the
IGR approach to eliminate inconsequent variables/factors, avoid possible bias, obtain a
higher prediction quality, and identify important factors. The results showed that there
was no notable multicollinearity and that all related factors utilized in this study possessed
a significant influence on wildfire susceptibility in Sydney. The FR method was utilized,
and the results revealed that the spatial relationship between each factor and wildfire
occurrence was not spread randomly across Sydney. Regions with a high possibility of
wildfires were related to slope, land use, and forest type. These results are in line with
many studies [17]. Land use determines the type, amount, structure, and continuity of
vegetation, with fuel characteristics and fuel continuity being variables that predispose the
characteristics of wildfires, such as the probability, distribution, severity, and frequency, by
supplying different fuel amounts and conditions for different times. Moreover, land uses
such as urban areas, cultivation areas, wetlands, and open water in Sydney may stop the
spread of wildfires due to the insufficient sustainable vegetation for them to spread. The
forest type in Sydney has a significant effect on wildfires, particularly in eucalypt and areas
exhibiting the highest FR score and wildfire occurrence, followed by the Melaleuca and
Casuarina areas. Furthermore, the nature conservation areas with eucalypt forests had a
high to very high possibility of wildfires in the created prediction maps. The fuel load is
described as the forest type, such as the amount of leaf litter, small branches, and fallen
bark that gathers in the landscape. Generally, the more abundant the fuel load is, the hotter
and more intense the wildfire. Concentrated but loosely compacted fuel will burn quicker
than highly dense or dispersed fuel sources. Smaller fuels, such as branches, twigs, and
leaf litter, burn fast, especially if they are dry and untidy, and will burn faster in front of
a fire. The eucalypt trees produce a natural oil that increases the combustion of fuel [78].
Wildfires spread faster when traveling uphill and decelerate when traveling downhill. The
inclination of the slope plays a significant part in the speed of fire distribution. The rate of
a fire front’s spread doubles with every 10 degree increase in incline compared to a fire on
a flat landscape. As the fire grows faster, it becomes more intense and more dangerous.
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We presented SVR and hybrid machine learning algorithms, namely SVR-GWO and
SVR-PSO, for modeling and identifying areas susceptible to wildfire in Sydney, Australia.
All resulting models from this proposed framework exhibited good results with AUC
scores greater than 0.8. The performance of SVR-PSO was the best, with AUC = 0.882,
followed by SVR-GWO (AUC = 0.873) and standalone SVR (AUC = 0.837). The hybrid
models achieved higher performance than the standalone models. The AUC values of the
hybrid models were also better than those of a previous study in a similar area using SVM
and SVMFR, which had AUC values of about 0.781 and 0.753. The hyperparameter tuning
of the SVR algorithm utilizing a metaheuristic optimization algorithm affects the prediction
and accuracy of the model. Thus, hybrid models are essential methods for enhancing the
prediction capability of basic regression to decrease bias and prevent the issue of under-
fitting and overfitting. Moreover, from the literature reviews, PSO algorithms generate
an arbitrary solution and then find an accurate solution with an incremental optimum
fitness attribute [79]. This type of approach has been used primarily for backpropagation
(BP) genetic algorithms because of its easy installation efficiency, predictive accuracy, and
fast response. It also indicates dominance in the resolution of complex practices, and was
originally performed in a machine learning context. The best function of the PSO algorithm
is to integrate various interconnected particles to achieve an optimal position. The same
technique shows the highest position, velocity, and accuracy of each particle, which is
determined by the basic concepts used to refine the problem. Particularly compared to
other optimization techniques, the benefit of the PSO algorithm is that the PSO technique
includes an important and fast search mechanism, is easy to use, and can identify the global
optimal method that is closest to the best solution [79].

Figure 11 shows the SVR-PSO model, which performed better, compared with the
2019–2020 Black Summer fire season. One of the Black Summer fires was the Gospers
Mountain Fire, which was caused by lightning and burned 479.513 ha before being put out
after 107 days [80]. The RMSE score for the wildfire susceptibility map from the SVR-PSO
model with the Black Summer fire season was 0.568, which was lower than that of the
SVR-GWO (0.607) and standalone SVR models (0.608). The Black Summer fire season
occurred in very high and high susceptible areas. Therefore, the hybrid model has better
predictive capability in detecting future wildfires.
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5. Conclusions

The application of machine learning based on SVR models with metaheuristic op-
timization algorithms (GWO and PSO) integrated with VIIRS-Suomi data has been in-
vestigated for the spatial prediction of wildfire susceptibility for the first time in Sydney,
Australia. The models were developed by establishing the correlation between 16 driv-
ing factors and 8 years of fire history from Suomi VIIRS data. Three model architectures
appropriate for the prediction of wildfire susceptibility were proposed, and the SVR hyper-
parameters were optimized to enhance the prediction accuracy. Finally, the performances
of the proposed models were compared using ROC curves and AUCs. Hybrid models
with metaheuristic optimization algorithms will have important practical applications for
wildfire mitigation programs in any area. The wildfire susceptibility results quantitively
reveal which areas are susceptible to wildfire occurrence and provide information on
wildfire status for regional management in Sydney. In addition, the spatial correlation
analysis provides guidance for the determination of the strong factors influencing wildfires
in the study area, such as land use, forest type, and slope degree, while the factors of
aspect and distance to river have relatively small impacts on the models. This study has
limitations. The precipitation, maximum temperature, drought index, and soil moisture
datasets were collected from Terra Climate satellites with poor resolution; hence, the actual
climate conditions and changes are not represented well, especially in regional level studies,
causing uncertainty in making maps of wildfire susceptibility. Since this study makes
some assumptions, such as the effect of the slope degree on the speed of fire spread, fuel
conditions, and low resolution data, future research should provide field data from the
study area on factors related to wildfires to provide more accurate data. Based on the
proposed SVR model that optimized the hyperparameters by metaheuristic algorithms,
we acquired higher prediction accuracy results of wildfire susceptibility, which serves as
a reference for subsequent regional wildfire hazard assessment. The hybrid model based
on machine learning with metaheuristic optimization algorithms has the potential to be
applied to different natural hazards to create susceptibility maps.
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