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Abstract: Negative air ions (NAIs), which are known as the “air vitamin”, have been widely used
as a measure of air cleanness. Field observation provides an alternative way to record site-level
NAIs. However, these observations fail to capture the regional distribution of NAIs due to the
limited number of sites. In this study, satellite-based bio-geophysical parameters from the climate,
topography, air quality, vegetation, and anthropogenic intensity were used to estimate the daily NAIs
with the Random Forest model (RF). In situ NAI observations over Zhejiang Province, China were
incorporated into the model. Daily NAIs were averaged to capture the spatio-temporal distribution.
The results showed that (1) the RF algorithm performed better than traditional regression analysis
and the common BP neural network to generate regional NAIs at a spatial scale of 500 m over the
larger scale, with an RMSE of 258.62, R2 of 0.878 for model training, and R2 of 0.732 for model testing;
(2) in the variable importance measures (VIM) analysis, 87.96% of the NAI variance was caused by the
elevation, aspect, slope, surface temperature, solar-induced chlorophyll fluorescence (SIF), relative
humidity (RH), and the concentration of carbon monoxide (CO), while path analysis indicated that
SIF was one of the most important factors affecting NAI concentration across the whole region;
(3) NAI concentrations in 87.16% of the region were classified above grade III (>500 ions cm−3), which
was able to meet the needs of human health maintenance; (4) the highest NAI concentration was
distributed over the southwest of the Zhejiang Province, where forest land dominates. The lowest
NAI concentration was mostly found in the northeast regions, where urban areas are well-developed;
and (5) among different land types, the NAI concentrations were ranked as forest land > water bodies
> barren > grassland > croplands > urban and built-up. Among different seasons, summer and
winter have the highest and lowest NAIs, respectively. Our study provided a substantial reference
for ecosystem services assessment in Zhejiang Province.

Keywords: negative air ions; Random Forest; bio-geophysical parameters; spatial–temporal
distributions; multivariate remote sensing data

1. Introduction

Negative air ions (NAIs) are known as the air “vitamin”. High concentrations of NAIs
will profoundly reduce air pollutants and defend against the physical illnesses caused by
air pollution [1–3]. Thus, NAIs have been working as a key indicator in ecosystem services
assessment during the past decades in China [4–6]. In previous studies, the dynamics
and predictions of NAIs had been extensively investigated in order to realize accurate
ecosystem services assessment [3,7,8].
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Site-based NAI observations provide the most accurate way to record NAIs in a limited
range within the core location of the site [2,9,10]. However, scarce monitoring sites have
limited its regional application. Thus, more and more studies have tried to build up models
to predict their spatio-temporal dynamics [5,6].

At the site scale, data-driven empirical models were the first attempts to predict
NAI dynamics in the past decades [11–13]. Among the numerous influencing factors,
climatic factors (such as air temperature, air moisture, radiation, wind speed, etc.) and air
quality (such as PM2.5, PM10, SO2, NO2, etc.) are the most investigated [2,8,9]. In these
studies, multi-parameter regression models were used to model the temporal dynamics
of NAIs [10,14]. However, considering the limited site monitoring, the spatial distribu-
tion of NAIs is hard to predict [15]. At the regional scale, satellite-based bio-geophysical
parameters such as the Normalized Difference Vegetation Index (NDVI), Gross Primary
Productivity (GPP), Digital Elevation Model (DEM), air humidity, etc., were used to ap-
proach NAI regional distribution [16]. In these studies, simple regression models and
semi-variogram models were adopted to predict the NAI spatial distribution with instanta-
neous NAI measurements [7,15,17]. In some other studies, these instantaneous data were
also expanded via a geostatistical scheme, such as the variogram and Kriging method, to
provide regional-scale NAIs according to the geostationary spatial variation [7,15,18]. Even
though these site and regional scale models provide substantial reference for ecosystem
services assessment [17,18], some drawbacks still needed to be solved.

Firstly, the data used to build NAI inversion models need to be refined [15]. Presently,
studies with large amounts of long-term NAI monitoring data are still lacking. Even though
a vast number of instantaneous point measurements might make up for the deficiency
of site numbers, the lack of synchronization and temporal extensibility of these data
perturb the feasibility of NAI modeling [11,15,17]. In addition, with more and more
knowledge on NAI formation, plant functional traits such as transpiration, GPP, vegetation
coverage, etc., have been progressively introduced into the NAI inversion [7,9,11]. However,
these traits are alleged to indirectly interrupt NAI dynamics, which leads to weak NAI
predictions [14]. Recently, photoelectric progress was argued to directly participate in
NAI formations [10,14,17]. For example, NAIs were considered to be highly correlated to
solar-induced chlorophyll fluorescence intensity (SIF), especially under higher PAR levels
when vegetation photosynthesis was fully activated [10]. However, the spatial significance
of the photosynthetic contribution to the regional NAI dynamics has been less assessed.

Secondly, the widely adopted simple empirical model fails to include multi-factor
interactions [19]. The drawbacks of the statistical models mentioned above encourage
the use of advanced data-driven machine-learning models, such as Random Forest and
ANN models, which have special characteristics to simulate the unknown relationships
among different parameters [7,13,20,21]. Machine-learning models can numerically for-
mulate NAIs nonlinearly, solely based on historical data without requiring knowledge
of the underlying physical processes. The continuous advancement of machine-learning
methods over the last two decades demonstrates their suitability for object variables with
an acceptable rate of outperforming conventional approaches [22].

In this study, the Random Forest (RF) machine-learning model was adopted to generate
an NAI model based on site-based NAIs and observation multi-parameters. Furthermore,
with the development of space technology, satellite-based models have been recorded as a
possible way to model specific variables at a larger spatial scale [7,8,23,24]. Thus, the spatial
information was also considered to realize the NAI inversion in this study. Furthermore,
according to previous studies, meteorological factors such as radiation, water vapor, etc.,
and vegetation photosynthesis-related parameters provided the sources and energy for
NAI formation [15,17]. Human activities and air pollutants are potentially quenching the
existence of NAIs [2,7]. Topographic factors indirectly influence the NAIs via changing the
vegetation and meteorological factors [17]. Thus, these five categories are incorporated into
our NAI model.
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As an important part of the large urban agglomeration in China [19], in the past
decades, Zhejiang Province has experienced rapid urbanization and industrialization
with economic growth, which has led to a large number of air-pollution-related health
problems [25,26]. The rising demands for clean air have stimulated the need for NAI-related
ecosystem services assessment. In this study, we used a large number of site-based NAI
data that were continuously monitored to build the NAI inversion model. Meanwhile,
satellite-based SIF was introduced in the model as an alternative to plant photoelectric
progress. With the help of geographic information technologies, our study will realize the
spatial–temporal modeling of regional NAI dynamics with higher resolutions in Zhejiang
Province. We aimed to (1) evaluate the sensitivity of the bio-geophysical parameters to
NAI dynamics, (2) generate satellite-based NAI estimation based on the RF model, and (3)
explore the NAI dynamics across the Zhejiang Province, China.

2. Materials and Methods
2.1. Study Area

This study was conducted in Zhejiang Province, on the southeast coast of China
(27.120–31.310◦N, 118.010–123.100◦E). It is one part of the Yangtze River Delta Economic
Belt with a fast and high level of urbanization (Figure 1). A subtropical monsoon climate is
dominant in this region, with a mean annual temperature of 15~18 ◦C and a mean annual
precipitation of 1000~2000 mm. Seventy percent of the land surface is covered with hills
and mountains. Forest and urban areas are distributed in the southwest and northeast of
the study area (Figure 1).
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Figure 1. The distribution of 107 stable monitored NAI sites and the land-use types across Zhe-
jiang province.

2.2. Data Resources
2.2.1. Station-Based NAI Observations

Station-based NAI observations were collected from the Zhejiang Fresh Air Release
System (http://223.4.64.202/zjqxkqfb/index, accessed on 4 January 2021). It provides NAI
observations every 5 min over Zhejiang Province at 270 stations, among which 107 stations
(including 76 sites in forests, 20 sites in urban and built-up areas, 9 sites in cropland, 1 site
in wetland, and 1 site in grassland) with high-quality data collection during 2018–2020
were selected (Figure 1).

2.2.2. Remote Sensing Data

Five types of remote sensing data during 2018–2020 (including vegetation, topography,
meteorological, human activity intensity, and air quality) were downloaded from the NAI
observing sites (Table 1).

http://223.4.64.202/zjqxkqfb/index
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Table 1. Data overview of the driving factors on NAI dynamics.

Data Sources Factors Temporal
Resolution Spatial Resolution Unit Classification

AgERA5

T Daily 0.1◦ K

Meteorological factors

RH Real-time 0.1◦ /
W Daily 0.1◦ m s−1

RS Daily 0.1◦ J m−2 d−1

VP Daily 0.1◦ hPa
CC Daily 0.1◦ /

DEWT Daily 0.1◦ K

MODIS

MYD16A2 ET Eight-day 500 m kg m−2 d−1

MCD15A2H FPAR Eight-day 500 m /

MCD15A2H LAI Eight-day 500 m /

MYD17A2H GPP Eight-day 500 m kg C m−2
Vegetation factor

GOSIF SIF Eight-day 0.05◦ W m−2 µm−1 sr−1

SRTM
DEM / 90 m m

Topographic factorSlope / 90 m ◦

Aspect / 90 m ◦

NPP/VIIRS Lit Monthly 1000 m / Intensity of human activity

China Environmental
Monitoring Station

AQI Hourly / /

Air quality factor

PM2.5 Hourly / µg m−3

PM10 Hourly / µg m−3

SO2 Hourly / µg m−3

NO2 Hourly / µg m−3

CO Hourly / mg m−3

O3 Hourly / µg m−3

(1) Vegetation datasets

In this study, photoelectric-related vegetation factors including the SIF, leaf area index
(LAI), and gross primary productivity (GPP), were collected from the GOSIF and MODIS
datasets, respectively (Table 1).

LAI, the fraction of absorbed photosynthetic active radiation (FPAR), and GPP datasets
are available from MCD15A2H, MYD16A2, and MYD17A2H on NASA’s LAADSDAAC
official website (https://ladsweb.modaps.eosdis.nasa.gov, accessed on 4 January 2021).
These datasets have a spatial resolution of 500 m and a temporal resolution of 8 days. Only
high-quality data were used based on the quality assurance (QA) layers in the MODIS
datasets. Since these datasets may have unavoidable gaps caused by the cloud, GLASS
products were used here to fill these gaps in the MODIS datasets.

The widely used GOSIF product was selected to provide regional-scale SIF (with a
spatial resolution of 0.05◦). These datasets were produced based on OCO-2, MODIS, and
MERRA-2 datasets and were updated in December 2020. The GOSIF version 2 product was
downloaded from the Global Ecology Data Repository (https://globalecology.unh.edu/
data/GOSIF.html, accessed on 4 January 2021).

(2) Meteorological datasets

Meteorological factors consist of evapotranspiration (ET), air temperature (T), relative
humidity (RH), wind speed (W), solar radiation flux (RS), vapor pressure deficit (VPD),
cloud cover (CC), and dew point temperature (DEWT). These parameters were collected
from the AgERA5 datasets. The data can be obtained from the Copernicus Climate Change
Service (https://cds.climate.copernicus.eu/, accessed on 4 January 2021). The AgERA5 is
meteorological re-analysis data based on hourly ECMWFERA5 surface data. Firstly, these
datasets were aggregated to a daily temporal scale and resampled from 0.1◦ to 500 m.

(3) Topographic datasets

https://ladsweb.modaps.eosdis.nasa.gov
https://globalecology.unh.edu/data/GOSIF.html
https://globalecology.unh.edu/data/GOSIF.html
https://cds.climate.copernicus.eu/
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Topographic parameters include the digital elevation model (DEM), slope, and aspect.
These data were collected from the SRTM datasets, which were produced by the cooperation
between NASA, the Department of Defense’s National Mapping Agency (NIMA), and
space agencies in Germany and Italy. The DEM datasets were downloaded from the
Geospatial Data Cloud Platform of the Computer Network Information Center of the
Chinese Academy of Sciences (http://www.gscloud.cn, accessed on 4 January 2021).

(4) Human activity intensity

Human activity intensity is represented by nighttime light radiation intensity (Lit).
The Lit data were collected from the NPP/VIIRS datasets. NPP/VIIRS is the nighttime
light data obtained by the visible light infrared imaging radiometer carried by the US
National Polar Orbiting Cooperation Satellite. Since nighttime lights do not change much
in a short period of time, this study uses monthly nighttime light data from 2020 with a
spatial resolution of 1000 m, which are downloaded from the official website of the Earth
Observation Group (EOG) (https://payneinstitute.mines.edu/eog/, accessed on 4 January
2021). Negative values were removed to improve the data quantity. In this paper, the
mask-denoising method was used to preprocess the raw data. Firstly, negative values in
the original data were replaced with 0 values. Secondly, the stable light data of DMSP
in 2013, which was the closest to the date of the NPP/VIIRS data, was selected to form a
mask (pixels with DN values greater than 0 in the DMSP image were assigned a value of
1). Finally, the mask data were multiplied by NPP /VIIRS data to achieve the purpose of
denoising.

(5) Air quality data

Air quality includes air quality index (AQI) and pollutant (PM2.5, PM10, SO2, NO2,
CO, O3) concentrations. These data were collected from China Environmental Moni-
toring Station. The air quality data selected in this paper can be downloaded from
https://quotsoft.net/air/ (accessed on 4 December 2020). To match with the monitor-
ing data of the NAI stations, the data were interpolated into raster data by using the Kernel
Interpolation with Barriers (KIB) method. In this paper, 62 sites in Zhejiang Province
and 108 surrounding sites were selected to obtain accurate interpolation results (Figure 1).
Outliers were removed from the original site data, and the hourly data were calculated as
daily averages.

In addition, we also downloaded the data product MCD12Q1 (2019) with a spatial
resolution of 500 m to better analyze NAI concentration differences under different land-use
types. The LC_Typel dataset of MCD12Q1 refers to the International Geosphere-Biosphere
Programme (IGBP) global vegetation classification method to classify land cover. Referring
to the National Classification Standard of Land Use Status (GB/T 2101-2017), this paper
further combined the land-use types of Zhejiang Province into forests, urban and built-up
areas, cropland, wetland, barren, and grassland.

Since multivariate remote sensing datasets have different spatial and temporal reso-
lutions, we resampled the data to 500 m to unify the spatial resolution. In order to match
NAI site data (daily mean data), the hourly air quality data with outliers removed were
calculated as daily mean data. Since vegetation, terrain, and human activity intensity
usually are stable in a short period of time, data from corresponding periods were directly
used to simulate NAI concentrations.

2.3. Modelling
2.3.1. Random Forest

The Random Forest algorithm combines a series of independent regression trees by
selecting random samples and features [27]. By generating a set of weak learners based on a
bootstrap of the data, the algorithm converges to an optimal solution while avoiding issues
related to CARTs and parametric statistics. In this paper, the Random Forest algorithm
in the Matlab environment (v2016) was used to model the relationship between the 23
environmental variables and site-specific NAI measurements across the Zhejiang Province.

http://www.gscloud.cn
https://payneinstitute.mines.edu/eog/
https://quotsoft.net/air/
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Ninety percent of these data were used for model training, and the rest were used for
model testing.

In the training procedure, each tree was built on a random subset of the original data
(with replacements). Three parameters were optimized and named Ntrees, Mtry, and Minleaf.
The first parameter presented the number of trees in the forest. Mtry is the number of feature
variables selected randomly for each decision split, and it was always set to one-third of the
total number of variables for regression by default. As for Minleaf, it defined the minimum
number of observations per tree leaf and its default value was 5.

The modeling workflow is exhibited in Figure 2. During the training process, Ntrees
were identified according to the change in OOB.Error, and values of Minleaf and Mtry were
ensured and combined with the grid search according to the determination coefficient
(R2), root mean square error (RMSE), and bias obtained by ten-fold cross-validation. The
model error decreased when Ntrees increased to a certain level, and Minleaf and Mtry were
influenced mutually. Considering the training time, the optimal parameter combination
was chosen based on the training samples, and the model of validation samples and test
samples were evaluated.
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The relevant calculation formulas are as follows:

RC =

∣∣∣∣Xn − Xn−1

Xn−1

∣∣∣∣ (1)

where RC represents the rate of change in the OOB.Error, X is OOB.Error, and n is the
number of trees.

R2 = ∑n
i=1(ŷi − yi)

2/ ∑n
i=1(yi − yi)

2 (2)

RMSE =

√
1
n ∑n

i=1(ŷi − yi)
2 (3)

Bias = ŷi − yi (4)

where ŷ is the predicted value, y is the measured value, ŷ is the mean of the predicted value,
y is the mean of the measured value, and n is the number of samples in the validation set.

Variable importance measures (VIM) performed from the RF algorithm made it pos-
sible to explore the weight of each input variable. For any variable, feature importance
measures the increase in prediction error. The VIM metric is computed for each tree, then
averaged and divided by the standard deviation of the entire ensemble. In this paper, 23
feature variables are ranked based on their feature importance score.

2.3.2. Path Analysis

In our study, path analysis was performed to determine the influence of multiple
factors on NAI variations. Based on the pre-ranking of all the 23 feature variables mentioned
above, the most related ten variables were extracted to conduct the path analysis. We
assumed that the terrain factors are mainly applied to the NAI variation via disturbing
the environmental heterogeneity spatially, which further shifts the NAIs. We used path
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analysis to determine the significant direct and indirect pathways through which the factors
affected the NAIs. The path analysis was performed using the software package AMOS
v21.0.

2.3.3. Spatio-Temporal Variation Analysis

Like other geographic phenomena, the spatial distribution of NAI concentrations is
spatially correlated. In this paper, the spatial autocorrelation analysis of NAI was carried
out by the global Moran’s index (Moran’s I) and local Moran’s I. The global Moran’s I is
generally between−1 and 1. The local Moran’s index is used to identify the regional spatial
auto-correlation of NAI. The calculations are shown below:

Global Moran′s I =
∑n

i=1 ∑n
j=1 Wij

(
NAIi −NAI

)(
NAIj −NAI

)
S2 ∑n

i=1 ∑n
j=1 Wij

(5)

Local Moran′s I =

(
NAIi −NAI

)
S2 ∑n

j=1 Wij
(
NAIj −NAI

)
(6)

where NAIi and NAIj are the NAI concentrations at i and j over the region, NAI and S2 are
the mean and variance of NAI concentrations, Wij is the spatial weight matrix, and n is the
sample size.

3. Results
3.1. Model Performance

As shown in Figure 3, OOB.Error decreased rapidly with increased Ntrees. When Ntrees
increased to 63, the OOB.Error started to be stable. Thus, Ntrees was set to 63, and values of
Minleaf and Mtry were located at 1~3 and 6~23, respectively. According to the following grid
search (Figure 4), when Minleaf = 1 and Mtry = 10, the average R2 obtained from ten-fold
cross-validation was the largest (0.901) and the average RMSE was the smallest (279.456)
(Figure 4).

Remote Sens. 2023, 15, x FOR PEER REVIEW 8 of 19 
 

 

 

Figure 3. Relationship between Ntrees and OOB.Error. 

 

Figure 4. R2 (a) and RMSE (b) for different combinations of Minleaf and Mtry. 

Models were built based on “optimal” parameters and training samples, and model 

training and validation were also performed (Figure 5). In the model training process, R2, 

RMSE, and bias for the model were 0.986, 109.039, ions cm−3, and 0.815 ions cm−3, respec-

tively. In the validation process, R2 = 0.878, RMSE = 258.617 ions cm−3, and bias = 14.973 

ions cm−3, respectively. The efficiency of the model was evaluated for NAI > 4000 ions 

cm−3, and the R2 and bias reached 0.68 and 321.90 respectively. These results proved an 

excellent model performance to be applied regionally.  

 

Figure 3. Relationship between Ntrees and OOB.Error.



Remote Sens. 2023, 15, 738 8 of 18

Remote Sens. 2023, 15, x FOR PEER REVIEW 8 of 19 
 

 

 

Figure 3. Relationship between Ntrees and OOB.Error. 

 

Figure 4. R2 (a) and RMSE (b) for different combinations of Minleaf and Mtry. 

Models were built based on “optimal” parameters and training samples, and model 

training and validation were also performed (Figure 5). In the model training process, R2, 

RMSE, and bias for the model were 0.986, 109.039, ions cm−3, and 0.815 ions cm−3, respec-

tively. In the validation process, R2 = 0.878, RMSE = 258.617 ions cm−3, and bias = 14.973 

ions cm−3, respectively. The efficiency of the model was evaluated for NAI > 4000 ions 

cm−3, and the R2 and bias reached 0.68 and 321.90 respectively. These results proved an 

excellent model performance to be applied regionally.  

 

Figure 4. R2 (a) and RMSE (b) for different combinations of Minleaf and Mtry.

Models were built based on “optimal” parameters and training samples, and model
training and validation were also performed (Figure 5). In the model training process,
R2, RMSE, and bias for the model were 0.986, 109.039, ions cm−3, and 0.815 ions cm−3,
respectively. In the validation process, R2 = 0.878, RMSE = 258.617 ions cm−3, and
bias = 14.973 ions cm−3, respectively. The efficiency of the model was evaluated for NAI
> 4000 ions cm−3, and the R2 and bias reached 0.68 and 321.90 respectively. These results
proved an excellent model performance to be applied regionally.
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3.2. Driving Factors Determination

Ten featured variables with the greatest impact had been ranked in the RF model
(Figure 6). These variables included topographic factors (DEM, aspect, slope), meteoro-
logical factors (T, Rh, VP), vegetation factors (SIF), and air quality factors (CO, NO2, SO2),
among which the importance of SIF followed the DEM, aspect, slope, and T (Figure 6),
which indicated the necessity to incorporate vegetation photosynthesis into the NAI model
spatio-temporally.

In the path analysis, when all land types were considered, the path model for the NAI
values explained 77.65% of their variance (df = 9, F = 18.57, RMSE = 0.054) (Figure 7a1).
The positive effects of T and SIF and the adverse effects of CO on the NAIs were the
combinations of direct and indirect effects. The indirect effects of DEM on the NAI were
mediated by SIF and T, which led to the positive effects of DEM on the NAIs (Figure 7a2).
The indirect effects of slope and aspect on the NAIs were mediated by SIF, which also led
to positive effects on the NAIs (Figure 7a2).
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Figure 7. Path analysis diagram illustrating relationships among terrain (DEM, aspect, slope),
environmental factors (T, CO, RH), plant photosynthesis (SIF), and NAIs and the total effects of the
drivers on NAIs for all land types (a1,a2), forest land (b1,b2), urban and built-up lands (c1,c2), and
cropland (d1,d2).

Similar to all land types, the model under forest land, urban and built-up land, and
cropland also presented a good prediction with 84.23%, 71.23%, and 75.57% explanation
for NAI variances. Furthermore, the direct and indirect effects of terrain features were
quite similar to that of all land types for forest land (Figure 7b1), which also produced a
positive effect on NAIs. The direct and indirect effects for urban and building land and
cropland tended to be different from that under all land types, especially for cropland,
whose DEM influenced the NAI via the mediation of T and SIF, producing negative effects
(Figure 7d1,d2). Meanwhile, slope had extraordinarily higher contributions to NAIs on
cropland than the other land types (Figure 7d2).
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Figure 7. Path analysis diagram illustrating relationships among terrain (DEM, aspect, slope),
environmental factors (T, CO, RH), plant photosynthesis (SIF), and NAIs and the total effects of the
drivers on NAIs for all land types (a1,a2), forest land (b1,b2), urban and built-up lands (c1,c2), and
cropland (d1,d2).

Similar to all land types, the model under forest land, urban and built-up land, and
cropland also presented a good prediction with 84.23%, 71.23%, and 75.57% explanation
for NAI variances. Furthermore, the direct and indirect effects of terrain features were
quite similar to that of all land types for forest land (Figure 7b1), which also produced a
positive effect on NAIs. The direct and indirect effects for urban and building land and
cropland tended to be different from that under all land types, especially for cropland,
whose DEM influenced the NAI via the mediation of T and SIF, producing negative effects
(Figure 7d1,d2). Meanwhile, slope had extraordinarily higher contributions to NAIs on
cropland than the other land types (Figure 7d2).

SIF was one of the most important factors affecting NAI concentration (except for
urban and built-up land). In forest land and cropland, the total contribution of SIF to
NAIs was 0.126 and 0.115, respectively. CO was another important factor affecting NAI
concentration, which was mainly negatively correlated with NAIs, while T, SIF, and RH
affected NAIs through CO. In all land types, the direct effect of RH on NAI was not
significant. In addition, on construction land, the total contribution of T and CO to the NAI
concentration was the largest (0.043 and, −0.033, respectively), and SIF was not the main
factor affecting NAIs.

3.3. Characteristics of the NAI Temporal and Spatial Distribution

In this study, an RF model was developed to estimate the spatio-temporal distribution
of NAIs in Zhejiang Province during 2020. The mean NAI concentration in Zhejiang
Province in 2020 was 1550 ions cm−3, which ranged from the lowest value of 296 ions cm−3

to the highest of 9046 ions cm−3. According to a previous study, NAI concentrations were
classified into four grades based on their benefits to human beings (Table 2). Overall, few
regions in Zhejiang Province were classified as grade IV (0.04%), and most were classified
as grade II (54.65%). NAI concentrations in cities and towns were mostly classified as grade
III (32.51%), which basically meets the needs of human health maintenance.

Table 2. The relationship between NAI concentration level standards and human health.

NAI Concentrations
(ions cm−3) Air Freshness Relationship with Human Body Grades of NAI

≤500 Not fresh Induces various diseases or
physical disorders IV

500~1000 Generally Maintains health III
1000~2000 Fresh Improves immunity II

>2000 Very fresh Prevents or cures diseases I
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The spatial–temporal distribution of NAI concentration in Zhejiang Province in 2020
was achieved (Figure 8). Spatially, the NAI concentration in Zhejiang Province decreased
from southwest to northeast (Figure 8). Higher NAI concentrations were found in south-
western Zhejiang, where human activities are quite weak and vegetation is widely dis-
tributed. Low values of NAIs were mainly observed in northern and middle Zhejiang,
where cities and arable land are dominant with strong human activity.
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The global Moran’s I of NAIs showed a strong positive spatial correlation (0.566,
p < 0.005). The LISA aggregation map indicated that the H–H accumulation areas of NAI
concentrations were mainly distributed in woodlands, especially in southwestern Zhejiang
(Figure 9). The L–L accumulation areas of NAI concentrations were mainly distributed in
the northeastern plains of Zhejiang, the Central Basin, and the southeastern coastal areas,
which have experienced intensified human interference (Figure 9).
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Figure 9. LISA aggregation map of NAI concentrations in Zhejiang in 2020.

Temporally, the NAI concentration varied from the lowest in winter to the highest
in summer in a unimodal curve (Figure 8). Specifically, the highest and lowest NAI
concentrations were found in August and December (Figures 8 and 10). This temporal
pattern was comparable for different land types (Figure 10). The highest value of NAIs in
August was favored by high air humidity and vigorous vegetation photosynthesis.
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Among these land types, NAIs in woodlands were much higher than in the other land
types, indicating the critical role of vegetation in promoting NAI formation (Figure 10). The
NAI concentrations of water bodies followed woodlands, by providing abundant water
vapor for NAI formation. Comparably, arable land and urban and built-up land had the
lowest NAI concentrations.

4. Discussion
4.1. Spatial–Temporal Determinations of NAIs

Previously, based on site measurements, the environmental factors (such as RH, T)
and air quality (such as PM2.5, CO, NO2, etc.) were mostly related to NAI dynamics [15,16].
However, the conclusion had never been validated spatially across different sites. In this
study, with a large amount of site-based NAI measurements, spatial variation in NAI was
found mostly related to topographic factors, such as DEM, slope, and aspect (Figure 6).
The contribution of environmental factors and air quality followed behind topography
(Figure 6). Path analysis indicated that the determining role of topography came from the
integrated effects of multiple factors, among which SIF had the greatest direct effects on
the NAI dynamics (Figure 7a1,a2).

The significance of NAIs was also presented by site-based studies where forest canopy
SIF accurately captured the dynamic changes in NAI concentrations [10,16,24]. These results
once again proved the opinion that plant photosynthesis plays a vital role in regulating
NAI concentrations [15,20]. It is noted that the contribution of SIF tended to be varied
among different land-use types: forest land tended to have larger SIF contributions than
croplands, while urban regions had quite weak SIF contributions (Figure 7b1,b2–d1,d2). In
other words, the higher the vegetation coverage, the more important the SIF. These results
imply that ignoring SIF in NAI inversion would lead to dramatic uncertainties, especially
in regions with high vegetation coverage [15,17,20].

Even though plant photosynthesis was proven to be crucial for NAI inversion, the
other indicators such as GPP, NPP, ET, etc., had weak relation to NAI variations (Figure 7).
These factors were reported to be highly related to NAI variations from the site-based
studies [15,20]. The decoupling between SIF and plant productivity should be responsible
for their weak correlation. Many studies have argued that plants’ photoelectric effect in the
photosynthesis process was actually the direct source of NAI formation [28–30]. Meanwhile,
as a direct product of the plant photoelectric process, the SIF was not always closely related
to GPP, NPP, etc., and sometimes, negative relations could also be observed in the GPP–SIF
relations [31]. Thus, inaccurate predictions of NAI would be expected when GPP, NPP, ET,
etc., were incorporated into the model. Evidence could be found in the weak correlation
between GPP, NPP, and ET with the NAI in the summer of 2020 (p > 0.05), when heat waves
frequently occurred in Zhejiang Province [32].

4.2. Spatio-Temporal Modeling of NAIs

Previously, since complex interactions existed among different factors, and plant
photosynthesis was usually ignored, traditional regression analysis failed to detect the NAI
dynamics in the specific study area [10,17]. In this study, when traditional regression models
were used, poor predictions of NAI were achieved when plant-photosynthesis-related
factors were excluded (R2 = 0.07). In this study, as an alternative to plant photosynthesis, SIF
was innovatively incorporated into the NAI inversion model. Meanwhile, an RF algorithm
capable of both classification and regression was adopted to realize a spatially generalized
NAI inversion model. The spatial distribution of NAIs was successfully depicted with an
R2 of 0.82 and 0.88 in the model training and verification (Figure 5). Our results once again
proved the advantages of RF algorithms in explaining NAI with complex causes [19,24].

However, there was still room for improvement in the interpretation of NAIs consider-
ing the 88% accuracy in the model verification (Figure 5). One of the possibilities could be
attributed to the differences within the vegetation itself. For example, plants with sharp
leaves (such as needle and lanceolate leaves) tend to produce more NAIs [20]. Further-



Remote Sens. 2023, 15, 738 14 of 18

more, even though the remote-sensing-based SIF and other environmental factors well
predicted the regional NAI, their vertical distribution was usually ignored, especially in
forest land [33,34], which led to the NAI uncertainties across the canopy profile. However,
these uncertainties could not be captured dependent on either the remote sensing data
or the single-point site measurements. Secondly, even though the RF model successfully
predicted the NAI distribution, its strong dependence on the data that were used in the
NAI inversion could lead to overfitting [35], which weakens the applicability of the inverse
model. All in all, more studies are still required to improve the accuracy of NAI modeling.

4.3. Spatio Distribution of NAIs in Zhejiang Province

With the modeling of NAI distribution, we succeeded in evaluating the spatial and
temporal distribution of NAI in the Zhejiang Province of China (Figure 9). NAIs were
mostly centered in the hilly southern regions where plants are most abundant, which was
consistent with the terrain and SIF-determined NAI dynamics in the variable importance
measures (Figure 7). The global Moran’s I of NAIs showed a strong positive spatial
correlation (0.566, p < 0.005). The H–H accumulation areas of NAI concentrations were
mainly distributed in woodlands. By contrast, the L–L accumulation areas were mostly
observed in the middle and northern regions with vast basins and plains.

The topography was the dominant reason for these spatial patterns of NAIs. The
terrain of Zhejiang Province slopes from the southwest toward the northeast [19]. Due to the
vast hilly mountains, vegetation is well protected in the southern regions [36]. The luxuriant
vegetation provides abundant water vapor and strong SIF flux for NAI formation [10].
Furthermore, benefiting from weak human activity [19], the passive effect of air pollution
is minimized. On the contrary, vast croplands, cities, and towns are distributed in the
middle basins and northern plains, where natural vegetation is severely damaged [19,36].
Meanwhile, increased impermeable ground and the urban island effect reduce the water
vapor concentrations. In addition, the northern regions are close to the cities of Shanghai
and Jiangsu, one of the most urbanized regions in China. Consequently, the surrounding
pollutants have potentially quenched the presence of NAIs [19].

Furthermore, previous studies have conducted numerous site-based observations to
reveal the NAI evolution across the whole year [9,13,15]. However, the seasonal dynamics
of NAIs on a regional scale had never been achieved. In our study, based on the Fresh Air
Network, we proved that the highest NAI concentration was found in summer (Figure 10),
when forest productivity also peaked, revealing the regulation of plant photosynthesis on
NAIs [10,20]. The lowest NAI concentration was observed in the winter. These results were
consistent with previous site-based studies [10,13,37].

It is noted that the seasonal evolution pattern was consistent among different land-use
types (Figure 10). Similar seasonal changes were also observed for open spaces and forests
in another site-based study [13]. The coordinated variation in the driving factors across
the whole year might contribute to this consistent pattern (i.e., highest in the summer and
lowest in the winter) under different land types. As shown above (Figure 7), SIF, T, RH,
and CO were the most important variables determining NAI variations (except topography,
which was constant temporally). In the winter and autumn, cold temperatures, short
photoperiods, and weak illumination intensity go against NAI formation and the rate and
time of plant photosynthesis, which in turn decreases the NAIs. Meanwhile, higher air
pollution in winter also has negative effects on NAI [19,38]. Meanwhile, in the summer
and spring, higher temperature and humidity, stronger photosynthesis capacity, and more
fresh air substantially elevate NAI concentrations [10,15]. The synchronous evolution of
the driving factors co-exists in different land types.

Among the six land types, forests have the highest NAI concentrations, benefiting from
the positive relationship with topography, humidity, and SIF, and the passive relationship
with air pollution (Figure 8). NAI concentrations in water bodies followed forest lands.
They might benefit from high water vapor and the surrounding forest lands (Figure 1),
since NAIs have obvious H-H aggregation (Figure 11). It was noted that barren land had
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significantly higher NAI concentrations than grasslands, urban and built-up land, and
cropland, while many previous studies argued that barren land usually has the lowest
NAI concentrations among different land types due to the lack of vegetation [9,39]. We
conceived that the higher NAI for the barren land in our study might come from the
NAIs from its surroundings since it is mostly distributed in mountains with high elevation
(Table 3). These regions are usually surrounded by vegetation and water vapor, which
favor NAI formation. As for the grasslands and cropland, lower land coverage and simple
structures are not favorable for NAI formation [40,41].
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Table 3. The mean DEM and slope of each land type in Zhejiang Province.

OBJECTID DEM (m) SLOPE (◦)

Barren 440.02 17.12
Built-up 54.52 3.20

Water 48.72 4.56
Grassland 344.07 16.39

Forest 413.30 18.44
Cropland 107.09 5.73

In general, the fresh air resources in Zhejiang Province have reached the threshold
of maintaining human health, since most regions were ranked as grade II across the
whole year (Figure 8), even though the annual NAIs per capita were unevenly distributed
across the entire province (Figure 11). The middle basins, northern plains, and southeast
coastal regions with the highest population density had the lowest annual NAIs per capita
(Figure 11). Meanwhile, NAI concentrations in most of these regions were only ranked
grade III, which barely reach the margin of health maintenance. Considering the main
driving factors of NAI dynamics, future work should focus on increasing urban greening
and reducing pollution emissions. Meanwhile, cross-regional tourism between the northern
cities and the southern mountains should be strengthened in the future.

5. Conclusions

Due to the limited NAI observation sites, regional NAIs have seldom been modeled. In
this study, based on the 107 NAI stations from the Fresh Air Network, we realized the spatio-
temporal modeling of NAI using an RF model when SIF was incorporated. Meanwhile, we
verified the contributions of different driving factors of NAI dynamics. We also inversed
the spatio-temporal distribution of NAIs in Zhejiang Province. We concluded that:
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(1) Topography dominated the spatial difference of NAIs in different regions, mostly
indirectly, by controlling vegetation, climate, air quality, etc., among which the SIF
was most related to the NAI dynamics;

(2) The RF model succeeded in modeling the spatio-temporal differences in NAI among
different sites, while limitations still existed;

(3) Due to the dominance of topography, the NAI concentration in Zhejiang Province
declined from the southwest to the northeast, and summer and winter have the
highest and lowest NAI concentrations, respectively, for all land-use types.

Even though the mean NAI concentration in Zhejiang province reaches the threshold
for maintaining basic human health, NAIs per capita were quite unevenly distributed,
which dramatically increases the risk of sub-health for people living in the northern and
coastal regions with the highest population density.
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