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Abstract: Agricultural intensification has resulted in the depletion of groundwater resources in many
regions of the world. A prime example is Saudi Arabia, which witnessed dramatic agricultural
expansion since the 1970s. To explore the influence of policy interventions aimed to better manage
water resources, accurate information on the changes in the number and acreage of center-pivot fields
is required. To quantify these metrics, we apply a hybrid machine learning framework, consisting
of Density-Based Spatial Clustering of Applications with Noise, Convolutional Neural Networks,
and Spectral Clustering, to the annual maximum Normalized Differential Vegetation Index maps
obtained from Landsat imagery collected between 1990 to 2021. When evaluated against more than
28,000 manually delineated fields, the approach demonstrated producer’s accuracies ranging from
83.7% to 94.8% and user’s accuracies ranging from 90.2% to 97.9%. The coefficient of determination
(R2) between framework-delineated and manually delineated fields was higher than 0.97. Nationally,
we found that most fields pre-dated 1990 (covering 8841 km2 in that year) and were primarily located
within the central regions covering Hail, Qassim, Riyadh, and Wadi ad-Dawasir. A small decreasing
trend in field acreage was observed for the period 1990–2010. However, by 2015, the acreage had
increased to approximately 33,000 fields covering 9310 km2. While a maximum extent was achieved
in 2016, recent decreases have seen levels return to pre-1990 levels. The gradual decrease between
1990 to 2010 was related to policy initiatives designed to phase-out wheat, while increases between
2010 to 2015 were linked to fodder crop expansion. There is evidence of an agricultural uptick starting
in 2021, which is likely in response to global influences such as the COVID-19 pandemic or the
conflict in Ukraine. Overall, this work offers the first detailed assessment of long-term agricultural
development in Saudi Arabia, and provides important insights related to production metrics such as
crop types, crop water consumption, and crop phenology and the overarching impacts of agricultural
policy interventions.

Keywords: agroinformatics; center-pivot field; machine learning; field delineation; social-political
drivers; multi-temporal dynamics

1. Introduction

At the global scale, agricultural irrigation is responsible for up to 70% of freshwater
withdrawals [1]. An even larger proportion is often required in arid countries to meet food
production needs. Indeed, it was estimated that the agricultural sector consumes around
88% of freshwater withdrawals in Saudi Arabia, most of which are derived from non-
renewable fossil groundwater that has remained sealed in an aquifer for tens of thousands
of years or more due to changes in the surrounding geology [2,3]. Much of this unsustain-
able water use was the unintended consequence of a series of agricultural development
plans (released every 5 years since the 1970s) that aimed to increase food self-sufficiency,
improve individual livelihoods, diversify sources of national income, and reduce the depen-
dence on oil. As a result of these sector-based initiatives, the area of irrigated agriculture
in Saudi Arabia increased from less than 4000 km2 before the 1970s to more than double
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that amount in the early 1990s [4]. An unfortunate but direct impact of these policies was
the 60% decline in non-renewable water over the 25 years from 1979 to 2004 (The Eighth
Development Plan 2005–2009) [5]. In later years, several policies were initiated to reduce
the unsustainable water consumption, particularly via the reduction in subsidies related
to the purchase price of wheat (The Fourth Development Plan 1985–1990) [6], reducing
the wheat production by 6.9% annually from 1990 to 1995 (The Fifth Development Plan
1990–1995) [7], limiting wheat production so as not to exceed local consumption, and en-
couraging the production of high-value crops requiring less water (The Sixth Development
Plan 1995–2000) [8]. Specifically, The Eighth Development Plan 2005–2009 [5] emphasized
that high levels of self-sufficiency would no longer be a strategic objective. Consequently,
the expansion of agricultural lands was suspended for five years in 2003, the export of
wheat was banned, and the export of vegetables cultivated on open fields was prevented
for five years (Council of Ministers Resolution No.335 of 2007). However, with farmers
replacing wheat with alfalfa, the water management objective was not fully realized [9].
Additional policy initiatives were implemented since 2010 to seek a more sustainable
way to balance the challenging water- and food-security issues, exemplified through the
“National Water Strategy 2030” [10]. Examples include promoting the cultivation of fruit
trees that are suited for the Kingdom’s environment, such as olive trees in Al Jawf (The
Ninth Development Plan 2010–2014) [11], and reducing the non-renewable groundwater
consumption in the agricultural sector from 17 billion m3 in 2016 to 9 billion m3 in 2020
(Saudi Vision 2030) [12].

The agricultural expansion witnessed during the 1990s resulted from the construction
of vast numbers of center-pivot systems, which were irrigating two-thirds of the agricul-
tural land in Saudi Arabia by the early 2000s [13,14]. Given the predominance of this
system, mapping the patterns of field growth and decline is required to provide insights
into the agricultural development in Saudi Arabia, especially for quantifying crop water
consumption [15]. Interestingly, although there were considerable policy interventions and
other changes occurring throughout the agricultural sector over the last three decades, no
study has yet cataloged the most direct measures of sector productivity: the field number
and extent. Satellite imagery has proven to be an optimal solution for large scale agricul-
tural mapping, as it often represents the only viable data source for retrospective detection
in this region [16–19].

There are three main methodologies for center-pivot field detection using satellite
imagery. First, the manual interpretation of imagery—whereby individual field masks are
identified and mapped—is favoured for small regions, but is limited due to the intensive
labor requirement [20–22]. Second, the development of image segmentation methods
allowed for the semi-automated delineation of agricultural fields for larger regions, mak-
ing it a popular methodology [23–26]. Some image segmentation methods used for field
delineation included (a) edge-based techniques that detect pixels on the field boundaries,
e.g., Canny detection [27]; (b) regional-based techniques in which objects are obtained by
grouping pixels based on the homogeneity criterion, among which watershed segmentation
and multi-resolution segmentation are the most frequently employed methods [28,29]; and
(c) shaped-based techniques utilizing the shape information for image segmentation, e.g.,
the Hough transformation [30,31]. Finally, and most recently, machine learning, especially
deep learning techniques, has become the state of the art for identifying and delineating
field boundaries [32–34], with convolutional neural networks (CNNs) [35] becoming the
predominant tool for this task.

From the machine learning perspective, Zhang et al. [36] first explored the implemen-
tation of CNNs for center-pivot field detection using three techniques, LeNet, Alexnet,
and VGGnet [37–39], and used these to detect the central location of fields successfully.
Since then, more advanced CNNs were utilized to mask the extent or identify the boundary
of center-pivot fields, including fully convolutional networks (e.g., U-net) [40–42] and instance
segmentation methods such as Mask-RCNNs that utilize region-based CNNs [16,43,44]. How-
ever, implementing a single machine learning technique often has limitations, including
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an inability to segment satellite imagery into individual field objects and the considerable
burden of producing or obtaining suitable training data. Such limitations can be overcome
by applying a hybrid framework consisting of multiple machine learning algorithms or by
combining machine learning algorithms with other segmentation methods [45,46]. As an
example, Li et al. [47] proposed a hybrid framework consisting of three machine learning
techniques, the Density-Based Spatial Clustering of Applications with Noise (DBSCAN),
CNNs, and spectral clustering, to delineate fields in an agricultural region in the north
of Saudi Arabia. The framework achieved high accuracies when evaluated against more
than 4000 manually delineated fields: 97 and 98% of the object-based producer’s and user’s
accuracies, respectively. However, in that case, the evaluation was performed within a
single agricultural region in Saudi Arabia, with the performance in other regions and
periods not considered.

The overall objectives of this paper focus on efforts to (1) implement the hybrid frame-
work proposed in Li et al. [47] and evaluate its performance to other agricultural regions
across Saudi Arabia and (2) apply the approach to delineate the center-pivot fields in the
main agricultural regions in Saudi Arabia using a three-decades-long time series of Landsat
data, i.e., from 1990 to 2021. A key motivation of this work was not only to obtain the
boundary of the center-pivot fields, but also to quantify the agricultural dynamics and pro-
vide the baseline information needed for parallel agricultural-related investigations. The
agricultural dynamics included the variation in the total number and extent, the size distri-
bution, and the first and last detection year of the center-pivot fields from 1990 to 2021. The
field acreage dynamics can provide a straightforward indicator of where and when farmers
and agricultural companies implemented the government policy initiatives. The analysis
can also be used to infer the variations in the groundwater use across the agricultural
sector, because fields are mainly irrigated using non-renewable groundwater [2]. With the
foundation provided by this work, higher-level studies can be launched using these data,
with examples including the crop type discrimination and crop yield estimation [48,49],
crop phenology description [50], and crop water consumption estimation [15,51].

2. Study Site and Data Description
2.1. Study Site: The Main Agricultural Regions in Saudi Arabia

Located between latitudes 15◦22′N and 32◦09′N and longitudes 34◦50′E and 55◦50′E,
Saudi Arabia occupies around 80% of the Arabian Peninsula. With annual rainfalls averag-
ing 100–120 mm/year (mainly from October to May) and daily maximum temperatures
exceeding 45 ◦C during the summer months, Saudi Arabia is one of the driest regions world-
wide [52]. Johansen et al. [53] determined that there were 11,555 km2 of center-pivot fields
distributed across Saudi Arabia in 2015, the majority with sizes ranging from 200 to 500 m
in radius. That study focused on the main agricultural regions of Al Jawf, Tabuk, Ha’il,
Al Qassim, Riyadh, Wadi ad-Dawasir, and the Eastern Province [53]. The dominant crops
reported in the statistical yearbook 2019 were foraged crops (mainly alfalfa), cereals (mainly
wheat, barley, and broom-corn), vegetables (mainly watermelon, potato, and tomato), and
fruits (mainly dates, citrus, and grapes) [54]. In this study, the abovementioned adminis-
trative units were grouped into three major geographical regions: the north region (Tabuk
and Al Jawf), the central region (Ha’il, Al Qassim, Riyadh, and Wadi ad-Dawasir), and the
east region (agricultural regions within the Eastern Province) (Figure 1). Spatial variations
between different regions were observed, including larger fields and more uniformity in
the north and east regions and more variability in the field area and shapes in the central
region [53]. Given the predominance of center-pivot systems (both circular and fan-shaped)
operating within the agricultural fields of the Kingdom, these were the primary focus
of analysis herein. That decision was also made in part due to the limitations of 30 m
resolution Landsat pixels being able to accurately capture field boundaries. Furthermore,
it is noted that the term “center-pivot fields” is often used interchangeably with “fields”
throughout the text.
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Figure 1. The study site showing the north, central, and east regions. The region boundaries were
obtained by resampling a mask of maximum annual NDVI values higher than 0.25 to a resolution of
0.1◦, followed by smoothing with a circular kernel. The black rectangles on the globe with digits 1, 2,
and 3 indicate the three selected Landsat tiles (path/row) 168/42, 166/46, and 165/41, respectively,
used to create a ground-truth dataset to evaluate the framework’s performance. The colors of the
regional outlines correspond to the colors on the global map.

2.2. Landsat Data

Level-2 surface reflectance data from Landsat-4/5 Thematic Mapper, Landsat-7 En-
hanced Thematic Mapper (ETM+), and Landsat-8 Operational Land Imager (OLI) for the
period 1990 to 2021 were processed using the Google Earth Engine, a cloud-based platform
capable of processing large amounts of geospatial data including the entire catalog of
Landsat images [55]. Table 1 shows the total number of scenes processed per year for each
of the three regions, representing a total of 14,695 images for the entire study. While Landsat
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data were only collected every five years prior to 2015 (to match the cycle of government
development plans), they were analyzed every year since 2015 to capture the impacts of
several recent policy instruments on the agricultural sector.

In line with earlier methodologies [47], the field delineation framework takes the
annual maximum normalized difference vegetation index (NDVI) map as the base map,
which was obtained from the maximum NDVI values of each pixel from up to 23 Landsat
images in each target year. Without the large number of images wrmithin a single year,
many fields would be omitted, as some fields are only active in use for short periods every
year. NDVI was computed as

NDVI =
NIR− red
NIR + red

(1)

where NIR and red represent the surface reflectance of the near-infrared and red bands,
respectively. Areas within the Landsat images contaminated with cloud cover and cloud
shadows produced low NDVI values and hence did not impact the generation of the
annual maximum NDVI maps used in the machine learning framework. The maximum
NDVI images were processed by the Google Earth Engine and then downloaded to a local
machine for further processing.

Table 1. The number of Landsat scenes utilized for each study year and region. L4/5/7/8 indicates
Landsat 4/5/7/8, respectively.

Agricultural Region
North Central East

Year L4 L5 L7 L8 L4 L5 L7 L8 L4 L5 L7 L8

1990 23 211 36 421 34 234
1995 232 488 286
2000 236 91 540 181 280 119
2005 155 166 47 392 244
2010 185 126 41 294 184
2015 318 654 374
2016 320 667 382
2017 315 670 378
2018 314 662 384
2019 316 653 374
2020 308 638 362
2021 317 661 382

2.3. Ground-Truth Data

Because the Li et al. [47] field delineation framework was only evaluated against
ground-truth data from one region (Al Jawf), this study required further adaptation and
evaluation for the other regions. Three Landsat tiles were selected to perform manual
delineations, comprising paths/rows 165/41, 166/46, and 168/42. The location of the three
tiles is shown in Figure 1 as numbered black rectangles. The manual delineation of fields
on these three tiles was performed with the help of the annual maximum NDVI maps for
the years 2000, 2010, and 2015. Landsat-8 was utilized for 2015, Landsat-7 for 2010, and
both Landsat-7 and -5 for 2000. First, polygons masking each field on the annual maximum
NDVI map were created. Then, fields with a median NDVI value less than 0.25 were
eliminated from the ground-truth dataset, as they likely represent previously cultivated
fields that were then left fallow. Table 2 shows the number of scenes utilized to perform
the manual delineation. It is necessary to select the high number of manually delineated
fields for validation, due to the large variation of field sizes, shapes, and density of the
fields as well as surrounding landscape characteristics, varying management practices;
seasonal and annual variation in growth patterns and crop types; and to include regions
where fields have overlapping field edges. Given the span of Landsat platforms used, the
field delineation framework’s performance when using different input data sources could
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also be evaluated, especially for the case of Landsat-7, which was impacted by the failure
of the Scan Line Corrector from 31 May 2003, resulting in 22% of the data missing [56,57].

Table 2. The number of Landsat scenes and the Landsat satellite platform (in round brackets) used
for each study year and region to perform manual delineation. L4/5/7/8 indicates Landsat 4/5/7/8,
respectively. In total, more than 28,000 fields covering 7461 km2 were manually delineated in Landsat
tiles 165/41, 166/46, and 168/42 for years 2000, 2010, and 2015. The location of the tiles is shown in
Figure 1.

Tile (Path/Row) 2000 2010 2015

Number of images (satellite platform) 19 (L5); 8 (L7) 12 (L7) 23 (L8)
165/41 Number of fields 793 1142 2052

Acreage of fields (km2) 256 310 519
Number of images (satellite platform) 17 (L5); 8 (L7) 10 (L7) 22 (L8)

166/46 Number of fields 2863 3443 4405
Acreage of fields (km2) 992 1100 1465

Number of images (satellite platform) 22 (L5); 6 (L7) 11 (L7) 23 (L8)
168/42 Number of fields 4603 4161 5307

Acreage of fields (km2) 994 810 1015

3. Field Delineation Framework
3.1. Framework Description

As the study by Li et al. [47] performed well when using different satellite data and
produced a high object-based producer’s accuracy of 97% and user’s accuracy of 98% when
assessed against 4000 manually identified fields, that framework was further explored
herein. Revisiting that approach, three machine learning techniques, i.e., DBSCAN [58],
CNNs classification [37], and spectral clustering [59] were operated in sequence herein
to identify and delineate the center-pivot fields, with the schematic showing in Figure 2.
The following provides a brief overview of the technique, with the reader directed to Li
et al. [47] for a more detailed description of the hybrid machine learning framework. As
a first step, the annual maximum NDVI map was obtained using NDVI maps calculated
from Landsat Level-2 surface reflectance imagery for each target year. A thresholded NDVI
map was obtained by eliminating pixels with NDVI values below a threshold value, i.e.,
0.25 herein, which were mainly bare soil background pixels. Then, pixels from annual
maximum NDVI maps were segmented into potential field objects using DBSCAN. The
type of the field objects was further classified into six categories by a classic CNN approach,
i.e., AlexNet, including circular center-pivot field (CPF), fan-shaped CPF, non-CPF (fields
presenting rectangle shapes), multiple non-CPFs, merged fields, and noise. Next, the
merged fields and multiple non-CPFs were re-clustered into individual fields by spectral
clustering. The CNN classification and spectral clustering can be run up to seven iterations
to cluster the multiple fields into individual fields or until no field object was identified as
merged fields. Finally, polygons were created for each cluster representing individual field
masks. We group both circular and fan-shaped fields as one in the final result because the
shape of the field was not of interest in this study.

DBSCAN is an unsupervised classification method that clusters a dataset based on the
density of data points. A benefit of DBSCAN is that it does not require the user to specify
the number of clusters. Data points are classified as the core, border, and noise points
according to two global parameters: the radius (Eps) for a point to search for its neighbors
and the number of neighbors (MinPts) within Eps [60]. A cluster is defined as a set of
data points such that the density of points within the cluster is higher than the density of
points outside the cluster (a maximal set of density-connected points) [61]. DBSCAN was
applied for tree crown segmentation [62], and woody component identification of trees [61]
using LiDAR data. Its ability to segment agricultural fields was demonstrated recently by
Li et al. [47].



Remote Sens. 2023, 15, 731 7 of 30

Figure 2. Flowchart showing the individual steps in the field delineation framework, including the
thresholding of the annual maximum NDVI maps, DBSCAN clustering, CNN classification and
spectral clustering.

CNN is an artificial neural network inspired by biological neural networks [63]. The
nodes in the input layer, hidden layers, and output layer are connected by modeled weights,
which are updated iteratively during the training stage to minimize the error between
actual and predicted outputs [64]. AlexNet is one of the most classic and straightforward
CNNs successfully applied to identify center-pivot fields using satellite imagery [36]. In
this study, we used the AlexNet model detailed by Li et al. [47], which was trained using
Landsat-8 images of Al Jawf (upper image in Figure 1) from 2018.

Spectral clustering is widely used for image segmentation [65,66]. It clusters data by
a similarity graph, which is constructed by vertices representing data points, the edges
between the vertices, and the weight of the edges [67]. In this study, weights were formed
by the Gaussian kernel function of the difference in NDVI values from two adjacent pixels
and were set to 0 for nonadjacent pixels [68]. The target of spectral clustering was to
find the k smallest eigenvalues of eigenvectors for a Laplacian matrix formed by a degree
matrix and weight matrix, where k is the number of clusters (Nclu) set by the user. Spectral
clustering was run using a set of Nclu values. Finally, the Calinski-Harabasz index [69],
which combines cohesion and separation of clustering results, was used to select the optimal
Nclu value. More detailed information of the hybrid machine learning framework was
described in Li et al. [47].

3.2. Evaluation Metrics

The framework’s performance was evaluated using the same metrics employed by
Li et al. [47]. Herein, “framework-delineated fields” refers to fields that are delineated
using the machine learning framework presented in Section 3.1, whereas “ground-truth
fields” were manually delineated. Pixels with NDVI values of less than 0.25 were excluded
from calculating these indices and when calculating the field acreage because we only
focused on those with vegetation growth. A pixel with an annual maximum NDVI value of
less than 0.25 was unlikely to be covered by vegetation during the year. This low NDVI
filtering was required to exclude fallow areas within a field that result from certain irrigation
application configurations (e.g., irrigating using only the outer sections of the pivot, which
results in a donut shape). The evaluation metrics included the producer’s and user’s
accuracies calculated on both object and pixel basis; the over- and under-segmentation
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error and intersection over union error (Sover, Sunder and IoU error, respectively) on a
pixel basis, which provide values ranging from 0 to 100%, with a value of 0 indicating a
perfect delineation result and a value of 100% indicating a high degree of over- or under-
segmentation error, and an incorrect delineation result, respectively; and the coefficient of
determination (R2), the mean absolute error (MAE), and the relative mean bias deviation
(rMBD) of the acreages between the framework-delineated fields and ground-truth fields.
The number of ground-truth fields and framework-delineated fields was referred to as
Ntrue and Nesti, respectively (see Table 3). A framework-delineated field was defined as
a correctly detected field (Table 3; Nesti(c)) if (1) the field was identified as a CPF by the
CNN and (2) both the Sover and Sunder values did not exceed 40%. For a correctly detected
field, it was defined as an over-segmented field if the Sover value was higher than 40%,
and an under-segmented field if the Sunder value was higher than 40%. The number of
over-segmented and under-segmented fields was referred to as Noverseg and Nunderseg in
Table 3. A field was delineated correctly if both Sover and Sunder values did not exceed 40%,
the number of which was computed as:

Ndeli(c) = Nesti(c) − Noverseg − Nunderseg (2)

The producer’s and user’s accuracy on the object basis (referred to as AccuProdobj and
AccuUserobj) was thus calculated as:

AccuProdobj = Ndeli(c)/Ntrue (3)

AccuUserobj = Ndeli(c)/Nesti (4)

The pixel-basis producer’s and user’s accuracy (referred to as AccuProdpxl and
AccuUserpxl) was obtained as:

AccuProdpxl =
pixels o f correctly delineated f ields

pixels o f ground-truth f ields (5)

AccuUserpxl =
pixels o f correctly delineated f ields

pixels o f f ramework-delineated f ields (6)

The number of fields that failed to be detected as CPFs was also counted, including
CPFs detected as non-CPFs representing rectangle shapes (Table 3; NCPF2nonCPF) and
undetected CPFs (Table 3; Nomit) defined as a union of CPFs (1) being identified as noise by
the CNN, and thus excluded by the framework, (2) not intersected with any framework-
delineated fields, or (3) with both the Sover and Sunder values higher than 40%, under which
circumstances the framework-delineated field and ground-truth field were treated as two
different fields. Nomit was equivalent to:

Nomit = Ntrue − Nesti(c) − NCPF2nonCPF (7)
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Table 3. The accuracy of center-pivot field (CPF) delineations evaluated against ground truth data
for three Landsat tiles (paths/rows 165/41, 166/46, and 168/42) for 2000, 2010, and 2015. Ntrue

and Nesti indicated the number of CPFs on the ground truth map and framework-delineated map.
A CPF was correctly detected (row 3; Nesti(c)) if it was classified as a CPF by the CNN and both
Sover and Sunder values <= 40%. For a correctly detected field, it was classified as being incorrectly
delineated due to high over- or under-segmentation values (Sover or Sunder > 40%), with Noverseg and
Nunderseg indicating the number of over-segmented and under-segmented CPFs. The number of
correctly delineated CPFs (row 6; Ndeli(c)) was calculated as Equation (2). NCPF2nonCPF indicated the
number of CPFs being detected as non-CPFs (i.e., fields showing rectangle shapes). The undetected
CPFs (row 8; Nomit) were defined as a union of CPFs (1) being identified as noise by CNN, and thus
excluded by the framework, (2) not intersected with any framework-delineated fields, or (3) with
both the Sover and Sunder values > 40%, under which circumstances the framework-delineated field
and ground-truth field were treated as two different fields. Nomit was calculated as Equation (7).
AccuProdobj and AccuUserobj indicated the producer’s and user’s accuracy at the object level, and
AccuProdpxl and AccuUserpxl indicated the producer’s and user’s accuracy at the pixel level, which
were calculated using Equations (3)–(6).

Tile (Path/Row) 165/41 166/46 168/42
Year 2000 2010 2015 2000 2010 2015 2000 2010 2015

(1) Ntrue 793 1142 2052 2863 3443 4405 4603 4161 5307
(2) Nesti 735 1071 1964 2788 3340 4357 4272 3794 5060
(3) Nesti(c) 734 1058 1955 2783 3311 4334 4202 3808 4958

(4) Noverseg
(% of (1))

5
(0.6%)

12
(1.1%)

10
(0.5%)

25
(0.9%)

45
(1.3%)

39
(0.9%)

62
(1.3%)

51
(1.2%)

72
(1.4%)

(5) Nunderseg
(% of (1))

18
(2.3%)

15
(1.3%)

22
(1.1%)

53
(1.9%)

83
(2.4%)

118
(2.7%)

287
(6.2%)

230
(5.5%)

282
(5.3%)

(6) Ndeli(c) 711 1031 1923 2705 3183 4177 3853 3527 4604

(7) NCPF2nonCPF
(% of (1))

17
(2.1%)

31
(2.7%)

26
(1.3%)

34
(1.2%)

30
(0.9%)

7
(0.2%)

152
(3.3%)

103
(2.5%)

70
(1.3%)

(8) Nomit
(% of (1))

42
(5.3%)

53
(4.6%)

71
(3.5%)

46
(1.6%)

102
(3.0%)

64
(1.5%)

249
(5.4%)

250
(6.0%)

279
(4.3%)

(9) AccuProdobj 89.7% 90.3% 93.7% 94.5% 92.4% 94.8% 83.7% 84.8% 86.8%
(10) AccuUserobj 96.7% 96.3% 97.9% 97.0% 95.3% 95.9% 90.2% 93.0% 91.0%
(11) AccuProdpxl 94.8% 93.4% 93.8% 94.9% 94.3% 95.7% 90.4% 90.0% 88.4%
(12) AccuUserpxl 95.8% 95.8% 95.7% 96.3% 95.9% 96.6% 90.3% 92.3% 90.0%

4. Results

The results of this study focused on two aspects, i.e., an evaluation of the field delin-
eation framework against the ground-truth dataset (Section 4.1) and retrospective analysis
of the field dynamics on a national scale in Saudi Arabia since 1990 (Section 4.2). The frame-
work was assessed at both the object and pixel levels (Section 4.1.1), with potential causes
of errors presented in Section 4.1.2. The field dynamics analysis focused on the changes in
the field numbers and acreage in Section 4.2.1, the dynamics of the field size distribution in
Section 4.2.2, and the field expansion and contraction dynamics in Section 4.2.3.

4.1. Evaluation of the Hybrid Machine Learning Framework Using Three Landsat Tiles
4.1.1. Accuracy of the Field Delineation Framework

The delineation results evaluated against the ground-truth data are shown in Figure 3
for the year 2015. Generally, the framework performed well across all of the three Landsat
tiles from the different regions in Saudi Arabia (Figure 1). The producer’s and user’s
accuracies at an object-level for 2015 were 93.7 and 97.9% for tile 165/41, 94.8 and 95.9%
for tile 166/46, and 86.8 and 91.0% for tile 168/42, respectively (Table 3; rows 9 and
10). Three main types of delineation error were identified. The first type was the over-
and under-segmentation of some fields (Table 3; rows 4 and 5, respectively). The under-
segmentation occurred for some groups of multiple fields when the CNN incorrectly
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classified merged fields as a single field and when the spectral clustering approach failed
to further segment “merged fields” that were correctly classified by the CNN. More fields
in tile 168/42 were under-segmented than in the other two tiles (i.e., 5.3, 1.1, and 2.7%
for tiles 168/42, 165/41, and 166/46, respectively), resulting in a lower accuracy for tile
168/42 (Table 3; rows 9 and 10). A second type of error was when the CNN misclassified a
field as a non-center pivot, which occurred in up to 2.7% of the ground-truth center-pivot
fields (Table 3; row 7). A third type was that some fields on the ground-truth map were not
presented on the framework-delineated map (Table 3; row 8), which was up to 5.3% in 2015
and even higher in 2000 and 2010, resulting in lower accuracies for those years.

The delineation results were also assessed at the pixel level. The producer’s accuracy
at the pixel level was generally higher than at the object level (Table 3) due to delineation
errors being more likely to occur for small fields, resulting in a smaller proportion of pixels
than the number of fields being identified incorrectly. The boxplots of the Sover, Sunder,
and IoU error values for the three evaluation tiles are shown in Figure 4. In general, the
delineation results showed low over- and under-segmentation errors. The median values of
Sover, Sunder, and IoU error were less than 2.1, 0.9, and 5% for all the correctly detected fields
(fields in Table 3; row 3). While the under-segmentation errors at the object level were higher
than the over-segmentation errors, these indicated the number of fields with Sover or Sunder
values exceeding 40% (Table 3; rows 4 and 5). In contrast, the over-segmentation errors
at the pixel level were higher than the under-segmentation errors (Figure 4), suggesting
that a framework-delineated field was more likely to be smaller instead of larger than
the ground-truth field. The difference between the mean and median values of Sunder
was higher than that of Sover, due to a larger number and magnitude of outliers for the
Sunder values, i.e., more fields were being under-segmented, which was consistent with the
object-based analysis. Tile 168/42 showed more segmentation errors than the other two
tiles, which can be explained by the more complex agricultural parcel distributions in this
region compared to the other two tiles, i.e., the central region contains a larger number of
smaller, irregularly-shaped fields, with less spacing between them (Figure 3). Johansen
et al. [53] also reported lower accuracies in this region compared to other regions in Saudi
Arabia, albeit using a different object-based image analysis technique. Indeed, the complex
field conditions played a more significant role than the data source, e.g., the data striping
in Landsat-7 did not result in more fields being over-segmented in tile 168/42 in 2010
compared to 2015 (Figure 4 and Table 3).

The comparison of the acreage of individual ground-truth fields and framework-
delineated fields is shown in Figure 5. The coefficient of determination (R2) ranged from
0.60 to 0.93 for different tiles and years when all the fields correctly detected by the frame-
work were included (fields in Table 3; row 3). After eliminating the incorrectly delineated
fields on the basis of being over- and under-segmented (Sover > 40% or Sunder > 40%), i.e.,
keeping only fields in row (6) of Table 3, the R2 values increased to a range from 0.97 to 0.99.
Considering that the outliers represented less than 8% (tile 168/42) of the fields, the overall
framework performed well. The scatterplots also show that more outliers were caused by
under-segmented fields, resulting in the framework-delineated fields overestimating the
field acreage (i.e., more outliers in the upper left corner of the scatterplots). However, after
removing the outliers, the rMBD values were generally negative, which indicated that the
framework tends to underestimate field acreage. That result suggests over-segmentation,
which can be caused by either the presence of lower NDVI values (which were ignored
by the framework and thus created false boundaries within a field) or by low NDVI pixel
values along the real field boundary, thus shifting the real field boundary inwards.
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Figure 3. Maximum annual NDVI maps (framework input) and associated center-pivot field (CPF)
delineation results for the three evaluation tiles (paths/rows 165/41, 166/46, and 168/42) in 2015.
Non-CPFs indicated fields showing rectangle shapes.
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Figure 4. Boxplots of Sover, Sunder, and IoU error for three evaluation tiles for all correctly detected
fields (Table 3; row 3).
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Figure 5. Comparison of the acreage of the ground-truth fields (x-axis) and framework-delineated
fields (y-axis) for the three evaluation tiles and in 2000, 2010 and 2015. The color indicates whether
the center-pivot field was delineated correctly (black) or identified as an outlier (orange), based on
either the Sover or the Sunder metric being over 40%. The transparency of each color (e.g., from black
to gray) represents a change in the density of data points from high to low. The figure also shows
some correlation metrics using all the data (black and orange) and using only the correctly delineated
fields (black), corresponding to the number within round brackets. R2, MAE, and rMBD represent
the coefficient of determination, the mean absolute error, and the relative mean bias deviation,
respectively, and n indicates the number of center-pivot fields included in the scatterplot. The red
lines indicate the x = y (1:1) line.

4.1.2. Error Interpretations

Some examples of delineation errors are shown in Figure 6. Two main issues caused the
under-segmentation error: a field object which consisted of multiple fields was (1) classified
by the CNN as a merged field, and (2) wrongly classified by the CNN as a single CPF.
In the first case, the CNN approach classified the merged objects correctly. However, the
framework showed limitations when segmenting these merged objects. Increasing the
spatial resolution of the input satellite data, e.g., using Sentinel-2 imagery with a 10 m
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spatial resolution might reduce such errors. In the second case, the CNN approach classified
the field objects into the wrong class, i.e., field objects that should have been classified as
merged objects were instead classified as a single center-pivot field object. Thus, further
re-clustering processing was not implemented. An example of this error is shown in the
dashed red rectangle in Figure 6a, where two fan-shaped fields were close to each other.
The outline of the two fields was similar to a circle and was identified as one circular field,
resulting in an under-segmentation error. Another two under-segmentation error examples
are shown in the dashed red rectangles in Figure 6b, where a field object that was classified
as a single field consisted of a large field and a small field within the ground-truth map.

One of the causes of the over-segmentation error was the use of a larger cluster number
to implement the spectral clustering on a field object consisting of multiple fields. The
framework searched for the optimal cluster number within a list of candidates, which
was computed based on the number of pixels forming a field with a diameter of 800 m.
Although flexible upper and lower constraints were used to set the candidates, these may
not work for fields with extremely small or large diameters. Another cause of the over-
segmentation was that the CNN step classified a single field as multiple fields, and thus
further re-clustering procedures were implemented to segment the field into several small
sub-parts. In addition to these limitations, the striping pattern in the Landsat-7 images
(due to the Scan Line Corrector failure) is likely another cause for the over-segmentation.
For example, the five fields in Figure 6c (two examples are highlighted in the dashed
red rectangles) were over-segmented due to the visible stripes in the annual maximum
NDVI map, which resulted in a high NDVI gradient for the pixels affected by the data
stripes. Thus, the fields were arranged into two clusters by either the DBSCAN or spectral
clustering. Because Landsat-7 was the only data source in 2010 (Table 2), this might be the
main reason why more fields were over-segmented in 2010 than in 2000 and 2015 for tiles
165/41 and 166/46 (Table 3). The effect of Landsat-7 image striping was offset by the use of
Landsat-5 in 2000.

One key initial step within the framework was the accurate detection of fields (Table 3;
row 8) with low NDVI values (see Figure 6b–d, an example was highlighted in the solid
red rectangle in Figure 6b), which might cause an underestimation of the acreage of the
fields with active crop production. The framework uses a thresholded NDVI value of
0.25 to filter the annual maximum NDVI map at the beginning of the processing, which is
designed to exclude the pixels covering bare soil. Thus, if a field contained a significant
fraction of low NDVI values, then the shape of the field could be misclassified (e.g., as a
non-center-pivot field showing a rectangle shape), or the entire field could be classified
as noise and excluded from the results entirely. Figure 7 suggests that approximately 60%
of the NDVI values of the pixels within the center-pivot fields that were not detected-or
detected as non-center-pivot fields by the framework-were smaller than 0.3. Another factor
contributing to the center-pivot fields being identified as non-center-pivot fields was the
field’s size, especially for the fan-shaped structures (light seagreen polygons in Figure 6b,d).
Approximately 60% of the center-pivot fields detected as non-center-pivot fields were
smaller than 10 ha (approximately 110 Landsat pixels, Figure 6c), which were significantly
smaller than the majority of the fields that typically had diameters of around 500 m (or
around 20 ha in area). As such, the 30 m spatial resolution of the Landsat imagery represents
a limitation in correctly representing the shape of small fields. Multiple small center-pivot
fields presenting fan shapes might be grouped and identified as a non-center-pivot field
(dashed red rectangle in Figure 6d). On the other hand, the framework identified some of
the non-center-pivot fields as center-pivot fields (Figure 6d; label “CPFs not in the ground
truth map”) due to the classification errors made by the CNN.
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Figure 6. Examples of field delineation errors. The dashed red rectangles in (a,b) show center-
pivot fields (CPFs) merged together and being under-segmented. The solid red rectangle in (b)
shows CPFs not present on the delineated-map. The dashed red rectangles in (c,d) show CPFs
being over-segmented and CPFs being detected as non-CPFs (i.e., fields showing rectangle shapes),
respectively.
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Figure 7. Distributions of (a) NDVI values for center-pivot fields (CPFs) not detected by the frame-
work (fields in Table 3; row 8) and CPFs mislabeled as non-CPFs (mislabeled, fields in Table 3; row 7),
and (b) field acreages of mislabeled CPFs being detected as non-CPFs. Non-CPFs indicated fields
showing rectangle shapes.

4.2. Retrospective Center-Pivot Field Dynamics on a National Scale in Saudi Arabia since 1990

As detailed above, the framework generally performed well in delineating most of
the fields. However, for some agricultural regions, where fields with irregular shapes were
observed (e.g., Landsat tile 168/42), under-segmentation errors occurred. The majority of
these under-segmented fields could be readily identified because some were classified as
merged field objects while others were generally large objects on the field delineation maps.
These field polygons were manually corrected to ensure high-accuracy delineation results
at the national scale. As such, the retrospective results explored in this section included a
small amount of manual correction, accounting for an average of 4.5% of the total fields.

4.2.1. Multiple-Temporal Dynamics of Field Number and Acreage

The number and acreage of fields from 1990 to 2021 are shown in Figure 8. In 1990,
more than 27,000 fields were detected covering a total area of 8841 km2. That period was
followed by a decreasing trend until 2010, with an average extent of 8011 km2 from 1990 to
2010. A major increase was observed from 2010 to 2015 with approximately 33,000 fields
(representing 9310 km2) being detected in 2015. The peak of the retrospective analysis was
detected one year later in 2016, with 33,961 fields representing an area of 9408 km2. Since
that time, the field acreage progressively decreased at an average rate of 6.9% (595 km2)
per year until 2020, with steep declines identified between 2018 and 2019, resulting in the
field acreage reaching its lowest extent in 2020 (approximately 28,080 fields representing
7028 km2). While 2021 saw a slight increase, the acreage for that year was still lower than
the 1990 value. Overall, the largest expansion was observed from 2010 to 2015, when the
number and acreage of the fields increased by 26.5 and 27.5%, respectively. On the other
hand, the largest five-year reduction was observed from 2016 to 2020, when the number
and acreage of fields decreased by 17.3 and 25.3%, respectively.

The central region (location shown in Figure 1) represented the hub of the agricultural
development at the start of the study period, with 92% of the fields located within this
region in 1990. That percentage decreased during the next two decades, although the
central region still represented the majority with at least 68 and 56% in the number and
acreage of the fields located therein in both 2017 and 2018. The trends in the northern and
eastern regions were opposite to the central region for the first two decades (1990–2010),
with those areas seeing an increasing number of fields and total acreage. The year 2016
represented a key point in the multi-decadal trends. As observed for the national estimates,
both the north and east regions reached a maximum extent of fields. For the central region,
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2016 also represented a local maximum extent of 5419 km2 (23,330 fields) following the
previous decreasing trend: although this was still much lower than the 1990 values, which
comprised approximately 25,017 fields covering 7974 km2. More generally, the dynamics
over the 6 years from 2015 to 2021 were similar for all the regions, witnessing a sharp
decrease in agricultural development, with the largest change occurring from 2018 to 2019
as highlighted for the national estimates.

Figure 8. The acreage (left y-axis related to bars) and number (right y-axis related to dashed lines) of
center-pivot fields from 1990 to 2021 at the national scale of Saudi Arabia and for the three sub-regions
(i.e., the central, north, and east regions as shown in Figure 1).

The hybrid machine learning framework for field delineation [47] offers additional
insights related to the pattern of agricultural developments (Figure 9). For example,
although the net change in the field acreage from 1990 to 1995 (−271 km2) represented just
a 3% decrease in fields, this was a consequence of 4098 km2 of new fields and 4369 km2 of
older fields being removed. The newly created and removed field acreage accounted for
46.4 and 49.4% of the field acreage in 1990, which indicated that around 50% of the fields in
Saudi Arabia were replaced from 1990 to 1995. With the denser record of Landsat imagery,
that dynamic is shown yearly after 2015 (Figure 9). From these data, it can be observed
that the numbers of newly created and removed fields were similar in 2016, 2017, and 2018,
while significantly more fields were removed than created in 2019 and 2020.

4.2.2. Multiple-Temporal Dynamics of Field Size Distribution

Figure 10 shows the distribution of the field acreage, with the width of the violins
indicating the relative portion of the fields in each range of acreage. Nationally, the size of
the fields in Saudi Arabia ranged from less than 10 ha to larger than 80 ha, with the most
dominant size being 20 ha (representing a center-pivot irrigation system with an arm of
500 m in diameter). Regionally, there were some evident field size differences. Most of the
fields in the north region were larger than the other two regions, e.g., around 50 ha (800 m
in diameter), whereas most of the fields in the central and east regions had sizes of around
20 ha. The largest CPFs (e.g., 80 ha or more) were mainly observed in the north region, and
were installed mostly between 2000 and 2005. In the central region, most of the large fields
were phased out from 1990 to 2005.

4.2.3. Field Expansion and Contraction Dynamics

The framework is also able to generate important spatiotemporal information such
as field expansion and contraction maps (Figures 11 and 12) and associated field acreage
changes (Figure 13).These maps—generated at the pixel level—show the time at which
a field was first detected and the year for which a field was last detected, respectively.
Nationally, most of the fields were already installed by 1990 and were mostly within the
central region (green color in Figure 11), with a total acreage of 8841 km2 (Figure 13). A
second expansive period was observed from 1991 to 1995, during which approximately
4095 km2 of fields were added. In the north region-particularly in Al Jawf-the period from
2000 to 2010 also saw a significant expansion for field development, representing 1487
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km2 and accounting for 40% of the total expanding acreage after 1990 (Figure 11-N1 and
Figure 13). Within the east region, the expansion of the fields occurred more sporadically
over time (Figure 11-E1 and E2, and Figure 13). By contrast, most of the field phasing-out
activities occurred after 2015 for all the regions (Figures 12 and 13).

Figure 9. The change (added/removed) in total fields acreage (left y-axis related to bars) and the
number of fields (∆N; right y-axis related to dashed lines) compared to the previous study year:
every 5 years from 1990 to 2015 (top panel), and every year from 2016 to 2021 (bottom panel), at
the national scale (left) and for each of the three regions (i.e., the central, north, and east regions as
shown in Figure 1).

Figure 10. The violin plots showing the field acreage distribution every five years from 1990 to 2020
at the national scale of Saudi Arabia and for the three sub-regions (i.e., the central, north, and east
regions as shown in Figure 1). The dashed lines represented quartiles.
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Figure 11. Center-pivot field expansion map. The map was generated by identifying the year that the framework first detected each pixel within a field. The national
scale map (left) was resampled to 0.05◦ resolution using the mode resampling method for visualization purposes, while the regional maps (right) show the data at
30 m resolution, with the scale bar shown in the lower right corner.
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Figure 12. Center-pivot field contraction map. The map was generated by identifying the year the framework last detected each pixel within a field (before 2021).
The national-scale map (left) was resampled to 0.05◦ resolution using the mode resampling method for visualization purposes, while the regional maps (right) show
the data at 30 m resolution, with the scale bar shown in the lower right corner.
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There were some interesting temporal trends related to field contraction. For example,
around 2235 km2 of of the fields that were detected in 1990 were no longer detected in all
the ubsequent years (Figure 13), with the majority of such cases observed in the central
region (green color in Figure 12). Such field contraction showed a decreasing trend with
338 km2 of field acreage removed on average every five years until 2015 before peaking
from 2016 to 2020, when around 4641 km2 of the fields were abandoned at a national scale.
A similar trend in the field contraction values was observed within the central region,
which was not surprising, as it covers a significantly larger area (68 to 92% of the total
field acreage) relative to the other regions. The field contraction trends were similar in
the north and east regions, with relatively low contraction values prior to 2015, and large
values after 2015, resulting in 1052 and 725 km2 of eliminated fields between 2015 and 2020,
respectively (Figure 13).

Figure 13. The histogram of field acreage calculated from the year of the first detection (upper
row) and the last detection before 2021 (lower row) of each pixel identified as a center-pivot field
(CPF) pixel in successive 5-year periods. The pixels detected as CPFs in 2021 were not shown in the
contraction map because they were still in use. The upper and lower rows correspond to Figures 11
and 12, respectively.

5. Discussion

Based on an application of a hybrid machine learning framework [47] that allowed for
the accurate delineation of individual fields, the first multi-decadal assessment in terms
of the number and acreage of center-pivot fields across Saudi Arabia was undertaken. In
Section 5.1 we discuss how our results compare with the field acreage and accounting
reported in the study of Johansen et al. [53], as well as against the Global Food Security-
support Analysis Data (GFSAD) cropland extent map, one of the leading global agricultural
mapping products. We also explore some of the implications and underlying drivers behind
the development of these temporal patterns (Section 5.2), and identify some needed future
work that may assist with the further interpretation and planning of the agricultural sector
in Saudi Arabia and elsewhere (Section 5.3).

5.1. Intercomparison with Other Crop Mapping Products

The acreage and number of center-pivot fields presented here for the year 2015 were
smaller than the national estimate reported in Johansen et al. [53] (11,555 km2 against the
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9310 km2 estimated in this study). Other than methodological differences (an object-based
image analysis versus a hybrid machine learning framework), the atmospheric method
applied to Landsat-8 images presents as another likely reason for the discrepancy. The
surface reflectance data used in this study were generated from the Land Surface Reflectance
Code algorithm [70] (LSRC), while Johansen et al. [53] used the Second Simulation of the
Satellite Signal in the Solar Spectrum (6SV) radiative transfer model [71]. In addition,
the method proposed by Houborg and McCabe [72] was applied in Johansen et al. [53]
to perform a regionally specific optimization that considered adjacency effects and non-
spherical desert dust particles. As a result of the different atmosphere correction methods,
the values of the annual maximum NDVI maps used as base maps in Johansen et al. [53]
were higher than those herein. Moreover, Johansen et al. [53] used an NDVI threshold of
0.20 as opposed to the 0.25 threshold employed here, resulting in more pixels being counted
when calculating the field acreage in Johansen et al. [53].

To verify the impact of the atmospheric correction, the framework was run using
the annual maximum NDVI maps for three evaluation tiles (Figure 1) corrected by the
6SV method and with the regional optimization of the adjacency effect. A preliminary
intercomparison between the resulting field delineation products was undertaken by
comparing the distribution of the NDVI values for the pixels that were identified as fields
using the 6SV correction but not with the LSRC correction (Figure A1). The distributions are
skewed toward NDVI values lower than 0.3 within the LSRC-corrected base maps but show
higher NDVI values within the 6SV-corrected maps. Because both delineation methods
performed an initial filtering process based on a low NDVI threshold (0.25 for this study),
this results in three pathways for a lower number of fields being detected in this study. First,
fields with the majority of maximum annual NDVI values (using LSRC) of less than 0.25
were filtered at the start of the process in this study. Second, lower NDVI pixels along the
boundaries of the fields were also not contributing to the total acreage. Finally, the shape of
some fields was misclassified due to the presence of some low NDVI pixels, and thus these
center-pivot fields were ultimately classified as non-center-pivot fields or eliminated as
noise. Overall, while the LSRC-corrected maps resulted in fewer fields relative to Johansen
et al. [53], they provide a significant advantage due to their availability on the Google Earth
Engine, which served as an efficient tool for the multi-annual, large-scale dataset processing
explored in this study.

An additional comparison (Figure A2) was made between our delineation result and
that produced from the Global Food Security-support Analysis Data (GFSAD) cropland
extent map (30 m spatial resolution) for the year 2015 [73]. The GFSAD is produced from
multi-sensor remote sensing data using a random forest model [74]. The GFSAD map
significantly overestimated (e.g., by approximately 56% in the Al Jawf region alone) the
crop extent in Saudi Arabia relative to the present study, likely because the soil background
pixels surrounded by fields were identified as crop pixels (green mask in Figure A2). In
this case, our framework-delineated field map outperformed the GFSAD map in terms of
accurately discriminating the agricultural extent from the soil background and providing
individual field masks. However, the intent and purpose of the GFSAD is different in both
scope and scale (i.e., it is a global product), and the complexity of our framework can also
be considered a potential limitation for broad-scale application. Of course, the performance
of our framework in regions other than Saudi Arabia remains to be explored, but it serves
as a useful and needed exercise to compare local-to-regional-scale studies with available
global datasets.

5.2. Socio-Political Drivers of Center-Pivot Field Dynamics
5.2.1. Agricultural Initialization Stage before 1990

Agricultural programs were initiated in Saudi Arabia with the First Development Plan
of 1970–1975 [75]. Since then, development plans were released every five years until 2016,
when the Saudi Vision 2030 [12] was proposed. Prior to 1990, agricultural development
mainly occurred within the central region (Figures 8 and 11). Via the introduction of
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financial incentives such as a 50% discount on fertilizer and a guaranteed purchase price of
3.5 SAR/kg of wheat (The Third Development Plan 1980–1985) [76], the Kingdom achieved
wheat self-sufficiency in the mid-1980s, and had even started to export wheat to other
countries [77]. The Fifth Development Plan 1990–1995 [7] reported that the acreage of
wheat fields reached 6020 km2 in 1988, accounting for 53% of the total cropped area in that
year. Given this, it can be inferred that most of the fields observed in the central region
were likely to be growing wheat around 1990. However, as a consequence of the rapid
agricultural development, the groundwater supplies suffered severe depletion. The Fourth
Development Plan 1985–1990) [6] raised the issue of the impact of the increased agricultural
output, especially wheat, on the rapid depletion of non-renewable water resources. As a
solution, the objective of achieving a satisfactory rate of increase in farm output at minimum
cost was proposed, and the incentive purchase price of wheat was reduced to 2 SAR/kg.
Due to a lack of sufficient satellite data to undertake this analysis prior to 1990, our analysis
did not capture the increase and potential decrease in fields prior to 1990. However, the
decreasing trend of field acreage in the central region after 1990 (Figure 8) indeed reflected
the expected outcome of the implemented initiatives.

5.2.2. Agricultural Contraction Stage from 1990 to 2010

An important turning point occurred during the Seventh and Eighth Development
Plans [5,78], where self-sufficiency was no longer a strategic objective, but instead, the
sustainable development of the agricultural sector became a focus. That had an immediate
feedback on addressing the dramatic decline of non-renewable groundwater stock (by 60%)
from 1979 to 2004 due to agriculture land expansion. By removing subsidies on the purchase
price of wheat (Council of Ministers Resolution 264 of 2003), farmers were discouraged
from growing wheat and encouraged to increase the diversity of crops. The wheat acreage
subsequently decreased by 32.6% from 1994 to 1999, from 5820 to 3920 km2 (The Seventh
Development Plan 2000–2004) [78], which aligns with our results, when a sharp decrease
of 1208 km2 was observed in 2000 (Figure 8). However, our results only suggested a 14%
reduction, possibly due to our research focus, which was limited to center-pivot fields,
while the development plans considered all types of irrigated fields. Reports have shown
that center-pivot systems were used to irrigate 67% of all fields in 2004 (Council of Ministers
Resolution 217 of 2004). In addition, the increase in other crop types such as vegetables
(e.g., tomatoes, melons, and dry onions) and fruit (e.g., dates and grapes) (increased from
2520 to 3180 km2 from 1994 to 1999) could offset part of the acreage reduction by wheat
because the government encouraged a diversified production of fruits and vegetables
since the 1970s. Wheat production further decreased from 1999 to 2004, resulting in the
wheat self-sufficiency ratio decreasing from 112.2 to 100% (The Eighth Development Plan
2005–2009) [5]. As such, it is reasonable to assume that most of the fields removed before
2010 (purple and green colors Figure 12) were mainly wheat fields. However, our results
suggested an increase in the field number and acreage from 2000 to 2005. That might be a
result of the policy initiative aimed at helping small farmers to make use of government
support for center-pivot fields (Council of Ministers Resolution 217 of 2004), which resulted
in more center-pivot fields being installed during 2004 to 2005. Thus, although the total
irrigated acreage was expected to decrease, the acreage of center-pivot fields (the focus
herein) increased from 2000 to 2005. Another decrease was observed from 2005 to 2010
(Figure 8), which might be a consequence of the five-year (2003–2008) suspension of the
agricultural land distribution (The Eighth Development Plan 2005–2009) [5].

5.2.3. Agricultural Expansion Stage from 2010 to 2016

A policy was also initiated in the Eighth Development Plan to provide information
and conduct research to assess the most competitive agricultural activities. No clear
replacement crops were presented to the farmers when phasing out wheat. Without specific
guidance, farmers started to grow alfalfa and other fodder crops to support a growing
dairy industry [9]. Wheat’s share of the total crop acreage dropped from 29.7 to 14.4%
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from 2010 to 2015, while the share of fodder crops increased from 25.0 to 59.1% for the
same period [79–84]. As a result, alfalfa became one of the most planted field crops from
2010, which is reflected in the significant increase in the field acreage observed in 2015
(Figures 8 and 9). As such, the newly created fields from 2005 to 2015 in Figure 11 were
likely alfalfa fields and mainly distributed in the north and east regions of the country.
Unfortunately, alfalfa tends to be irrigated all year round and can consume up to five
times the amount of water required by wheat. Thus, unregulated crop replacement did not
achieve the goal of saving water. Given the observed impact of growing fodder crops on
groundwater resources, a policy of banning the cultivation of green fodder was introduced
in 2015 [85]. Furthermore, the non-renewable groundwater consumption in the agricultural
sector was expected to decrease by 47% from 17 billion m3 in 2016 to 9 billion m3 in 2020 as
proposed by the National Water Strategy 2030 [10], which resulted in a consistent decrease
in fields after 2016 (Figures 8 and 9). As such, the eliminated fields from 2016 to 2020
observed in Figure 12 were most likely alfalfa fields. On the other hand, a clear policy was
initiated to promote the cultivation of fruit trees best suited to the Kingdom’s environment,
such as olive trees in Al Jawf, tropical fruits in Jazan, and citruses in Najran (The Ninth
Development Plan 2010–2014) [11]. That was in agreement with the results in Li et al. [47],
which showed a significant increase in olive orchards in the Al Jawf region since 2010.
However, it remains a question whether growing olives can save more water than wheat
or alfalfa production given the high water footprint of olive (3015 m3/ton) compared to
fodder crops (1887 m3/ton) and wheat (1868 m3/ton) [86,87].

5.2.4. Agricultural Contraction Stage since 2016

The annual analysis of the recent past seven years (2015–2021) indicated a clear
overall decrease in the number of center-pivot fields from the peak levels in 2016 in
subsequent years, particularly between 2018 and 2019. However, the change from 2020 to
2021 (Figures 8 and 9), as well as a preliminary analysis of the current year (2022) which is
still ongoing, indicate a more recent uptick in fields under active production, in contrast to
the previously observed declines. A plausible explanation for these trends is in response
to global influences, including both the pandemic and the more recent conflict in Ukraine,
which have seen disruptions in international supply, logistics, and trade. A future analysis
using this framework will be able to quantify the degree, and speed, at which the local
agricultural sector was able to respond to these global perturbations, providing insights
into the resilience and elasticity of the Saudi Arabian food system.

5.3. Future Work

The development of a scalable framework for field delineation allows for the identifi-
cation and description of agricultural dynamics at the national scale. The changing trends
and variations identified herein provide both a quantification of the number and acreage of
the fields as well as the geographical distribution of these temporal dynamics. One obvious
advantage of such an analysis is that it provides a tool for decision-makers to determine
the relative impact of agricultural management policy initiatives, and whether they have
the intended outcomes. As a further application, the produced field maps may also be used
for compliance purposes to assess if farmers are in fact adhering to implemented policy
initiatives for crop production and a reduction in irrigation and water use [88].

While the image processing framework achieved high field delineation accuracies
across the Kingdom, there were some limitations when (1) fields were overlapping, espe-
cially if the overlapping fields had different sizes and/or shapes, and (2) fields were small
or had low maximum annual NDVI values. The overlapping fields were the main cause of
error in this framework, i.e., fields being under-segmented. One of the most straightfor-
ward solutions could be to use satellite imagery with a higher spatial resolution, such as
Sentinel-2 (10 m bands) [89] and PlanetScope (~3 m bands) [90], albeit coming with a higher
computational cost. According to our analysis, one of the reasons for under-segmentation
was that the CNN approach misclassified the field objects consisting of multiple fields
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into one field object. The current CNN model in the framework was trained using data
from the north region in 2018, where the fields were well distributed and with a relatively
uniform size. Field objects consisting of large fields overlapping with small fields did not
exist in this training sample. A higher CNN classification accuracy might be achieved by
re-training the model using more representative data collected from various locations and
times [91], which would require the manual classification of smaller fields and combina-
tions of overlapping fields. Gap-filling methods to reduce the stripes in the Landsat-7 data
are worth exploring to reduce the over-segmentation errors [92]. Another challenge was
the discrimination of the agricultural pixels from the bare soil, which was done simply
by eliminating pixels with an annual maximum NDVI value of less than 0.25. However,
this threshold filtration might not work in other non-desert environments where natural
vegetation is present. Using indices such as the Soil Adjustment Vegetation Index, which
considers the soil spectra as the framework input, is worth exploring [49,93]. Future work
should also explore the use of other vegetation indices, such as the Enhanced Vegetation
Index, which is less impacted by the atmospherical condition than the NDVI, to assess the
impact and potential improvement in mapping accuracies of center-pivot fields [94]. Ma-
chine learning techniques (e.g., random forest) are also considered to discriminate between
bare soil, natural vegetation, and crops in the initial stage of the framework [95], opening
many avenues for ongoing research and investigation.

6. Conclusions

A three-decades-long retrospective analysis of center-pivot-driven agricultural devel-
opment was performed across the main agricultural regions of Saudi Arabia. A hybrid
machine learning framework implementing DBSCAN, CNN classification, and spectral
clustering in a sequential manner was applied to delineate center-pivot fields utilizing
annual maximum NDVI maps obtained from Landsat imagery (Landsat 4/5/7/8) since
1990. The framework achieved high field delineation accuracies when applied to different
regions (i.e., Landsat tiles 165/41, 166/46, and 168/42 in path/row) and periods (i.e., 2000,
2010, and 2015), resulting in 83.7–94.8% and 90.2–97.9% producer’s and user’s accuracies at
the object level, respectively. The extent of the individual center-pivot fields was delineated
accurately, with the median value of the over-segmentation, under-segmentation, and
intersection over union error being 2.1, 0.9, and 5%, respectively. The coefficient of deter-
mination (R2) for the acreage between the framework-delineated fields and ground-truth
fields was higher than 0.97.

The results presented herein provide new insights into the development of the agri-
cultural sector in Saudi Arabia on a national scale. For the first time, the number and
acreage of center-pivot fields, the distribution of field sizes, and the expansion and con-
traction dynamics for the most recent thirty years were characterized. The major trends
and variations in the field dynamics identified within this study broadly reflected the
effects of successive policy initiatives on agriculture development. From 1970 to1990, the
policy initiatives in Saudi Arabia stimulated an increase in agricultural production and the
number of center-pivot fields. The gradual decrease observed between 1990 and 2010 was
the outcome of the policy initiatives implemented to phase out wheat, which had exceeded
the self-sufficiency level of the Kingdom by the mid-1980s. Increases in the cultivated
area seen from 2010 to 2015 were a consequence of wheat fields being replaced by fodder
crops, with the latter being phased out since 2016 to save water. However, the framework
presented some limitations when dealing with overlapping fields, so additional exploration
will need to focus on reducing the under-segmentation errors caused by the overlap. Such
framework developments might include an assessment of additional vegetation indices
as input, the collection of more training samples from different regions and periods, and
the implementation of machine learning techniques to discriminate bare soil from crops.
Through this study, the capability of a regionally focused machine learning framework ap-
plied at the national scale was demonstrated. Apart from delivering actionable information
for decision-makers on long-term agricultural patterns and dynamics, the field masks and
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the subsequent agro-informatics retrieved from this study will prove useful as baseline
information for future food- and water-security-related studies.

Author Contributions: T.L.: Conceptualization, Methodology, Coding, Validation, Visualization,
Writing—original draft, Writing—review & editing. O.M.L.V.: Visualization, Writing—review &
editing. K.J.: Writing— review & editing. M.F.M.: Conceptualization, Supervision, Writing—review
& editing. All authors have read and agreed to the published version of the manuscript.

Funding: Research reported in this publication was supported by the King Abdullah University of
Science and Technology (KAUST).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Figure A1. The NDVI distributions of pixels detected as pixels forming a center-pivot field using 6SV-
corrected maps, but not detected using LSRC-corrected maps. The grey line indicates NDVI = 0.25.

Figure A2. An example of a maximum annual NDVI map associated with the Global Food Security-
support Analysis Data (GFSAD) cropland extent map (30 m spatial resolution) and the framework
delineation result.
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