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Abstract: Forest and land fires are disasters that greatly impact various sectors. Burned area identifi-
cation is needed to control forest and land fires. Remote sensing is used as common technology for
rapid burned area identification. However, there are not many studies related to the combination of
optical and synthetic aperture radar (SAR) remote sensing data for burned area detection. In addition,
SAR remote sensing data has the advantage of being a technology that can be used in various weather
conditions. This research aims to evaluate the burned area model using a hybrid of convolutional
neural network (CNN) as a feature extractor and random forest (CNN-RF) as classifiers on Sentinel-1
and Sentinel-2 data. The experiment uses five test schemes: (1) using optical remote sensing data; (2)
using SAR remote sensing data; (3) a combination of optical and SAR data with VH polarization only;
(4) a combination of optical and SAR data with VV polarization only; and (5) a combination of optical
and SAR data with dual VH and VV polarization. The research was also carried out on the CNN, RF,
and neural network (NN) classifiers. On the basis of the overall accuracy on the part of the region of
Pulang Pisau Regency and Kapuas Regency, Central Kalimantan, Indonesia, the CNN-RF method
provided the best results in the tested schemes, with the highest overall accuracy reaching 97% using
Satellite pour l’Observation de la Terre (SPOT) images as reference data. This shows the potential of
the CNN-RF method to identify burned areas, mainly in increasing precision value. The estimated
result of the burned area at the research site using a hybrid CNN-RF method is 48,824.59 hectares,
and the accuracy is 90% compared with MCD64A1 burned area product data.

Keywords: remote sensing; burned area; convolutional neural network (CNN); random forest (RF);
synthetic aperture radar (SAR); Sentinel-1; Sentinel-2

1. Introduction

As part of the United Nations, Indonesia is committed to implementing sustainable
development goals (SDGs) by 2030. These targets are realized through the alignment of
SDGs targets into the 2020–2024 National Medium-Term Development Plan [1]. One of the
goals of sustainable development is handling climate change, in which there are targets of
strengthening resilience and adaptation capacity to climate-related hazards and natural
disasters [2]. Forest and land fires are climatological disasters that contribute to climate
change, mainly due to greenhouse gas emissions due to biomass burning [3]. Data from
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the Ministry of Environment and Forestry of the Republic of Indonesia show that in 2019,
the burned area experienced a significant increase in the last three years, approximately
1.6 million hectares, dominated by the Kalimantan area [4]. The World Bank stated that the
resulting economic losses reached USD 5 billion in 2019 [5]. Not only having an impact
on economic losses, forest and land fires also affect the quality of public health due to air
pollution [6] and the balance of flora and fauna ecosystems [7]. Therefore, there needs to be
a quick effort made by the stakeholders to control forest and land fires.

In forest or land fires monitoring and control, information on the burned area is
needed to map the area. The advantage of remote sensing data is that it can provide
multi-temporal data and covers a wide area, potentially providing burned area information.
This advantage is supported in several studies where optical sensor remote sensing data
with satellite platforms can be used to identify the burned area. Medium-resolution remote
sensing optical sensor data, such as Sentinel-2, can be used to identify the burned area in
more detail because they can identify hotspots on a small scale (under 100 hectares) [8].
In addition, the use of physical parameter thresholds, such as normalized burned ratio
(NBR) [9,10] and burned area index for Sentinel-2 (BAIS2) [11], shows that the use of
physical parameters through remote sensing optical sensor data with a medium resolution
is effective for identifying the burned area. However, there can be similarities in physical
parameter values among objects using these thresholds.

Optical sensor remote sensing data has limitations influenced by cloud cover, which
affects the geospatial information [12]. This fact contrasts with remote sensing data from
radar sensors that utilize active microwaves, which can penetrate clouds and weather con-
ditions [13]. Radar-based parameters or synthetic aperture radar (SAR), such as radar burn
ratio (RBR) [14,15], radar burn difference (RBD) [14,15], normalized burn ratio (NBR) [16],
and texture features of gray-level co-occurrence matrix (GLCM) [16], especially homo-
geneity, contrast, and entropy, can distinguish between a burned area and an area that
is not burned. In addition, a combination of RBR, RBD, and GLCM texture features in
the combined optical and SAR data classification provides a better result [17], mainly the
GLCM texture feature contribution. Physical parameters of remote sensing radar sensor
data can also provide information, such as the level of fire severity [14]. This fact indicates
that radar sensor remote-sensing data can provide additional information in identifying
the burned area.

In addition to using physical parameter thresholds derived from optical and SAR
sensors, the machine learning approach has been used for burned area identification.
The use of the random forest (RF) method has been widely used to identify the burned area
in moderate resolution imaging spectroradiometer (MODIS) [18], Landsat [19], Sentinel-
2 [20], Sentinel-1 [21], and ALOS-2 PALSAR-2 [22] data because of the computational
speed [23] and less sensitive to overfitting [24]. These studies state that identifying burned
areas can be accomplished using optical sensor remote sensing data. However, the results
of burned area mapping obtained from the Sentinel-1 data are wider than the products
produced by the MODIS data.

Deep learning is a type of machine learning that uses a deep neural network (DNN),
which consists of many hidden layers in classifying. The utilization of deep learning to
identify burned areas has been carried out by Al-Rawi et al. [25] by utilizing low spatial
resolution image data from the National Oceanic and Atmospheric Administration Ad-
vanced Very High-Resolution Radiometer (NOAA-AVHRR) and using the neural network
method. The study used the vegetation index feature to classify burned areas. It showed
that increasing the training data will increase accuracy and reduce the potential for overes-
timation when classifying burned areas. In addition, unbalanced datasets can affect the
accuracy of the deep neural network method [26].

Along with developing deep learning technology in remote sensing data applications,
machine learning (ML), particularly convolutional neural network (CNN), is effectively
used in remote sensing data applications, including land cover classification with deep
convolutional neural network (DCNN) [27], ensemble classifiers [28], and 3D-CNN [29].
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The ability to perform feature extraction (feature learning) through convolution operations
is one of the advantages of the CNN method [30,31]. The burned area was identified using
a time series anomaly detection map as training data for the CNN method obtained from
the Sentinel-1 radar sensor data, resulting in high accuracy [32]. However, using the CNN
method, research combining optical data and SAR to identify burned areas is still minimal.
A study by Stroppiana et al. [33] integrated SAR temporal backscatter differences with
optical spectral indices using a fuzzy score to decrease local commission errors.

The architecture of the CNN based on the patch applied to remote sensing data de-
pends on the dataset type, so it is not universal [34]. On the other hand, pixel-based
CNN, such as one-dimensional CNN, has relatively low computational complexity and
computational requirements for real-time applications [35]. Thus, it becomes a promising
method on a large scale to support government agencies that carry out remote sensing oper-
ations in providing disaster information under Government Regulation No. 11 of 2018 [36].
Song et al. [37] used a one-dimensional pixel-based CNN architecture on WorldView-3
remote sensing data to classify land cover and obtained high accuracy results ranging from
80–92% and exceeded the results obtained from the neural network method. However,
using a fully connected layer can cause overfitting, especially in the limited amount of
data [29,38]. In this paper, we propose an ensemble method using a hybrid of CNN and
random forest to examine the ability of pixel-based CNN to perform feature extraction and
improve the performance of shallow machine learning.

2. Materials and Methods
2.1. Research Area and Data

A part of the region of Pulang Pisau Regency and Kapuas Regency, Central Kalimantan,
Indonesia (Figure 1), was selected as the research area as it has been one of the most affected
regions in the last three years [4]. The land cover in this area comprises plantations, shrub
swamps, and crops [39]. The size of the research area is approximately 344,600 hectares.

Figure 1. A part of the region of Pulang Pisau Regency and Kapuas Regency, Central Kalimantan,
Indonesia as the area of interest.

Sentinel-1 and Sentinel-2 data were selected in this research using Google Earth Engine.
The multi-temporal data were used to avoid pixel gaps in the cloud cover area. In selecting
the data, the percentage of cloud cover was considered since it influences the data quality;
therefore, the optical remote sensing data used in this research has a cloud cover percentage
of less than 20%. Table 1 shows Sentinel-1 and Sentinel-2 data specifications used in this
research. For pre-fire and post-fire events, we mosaicked cloudless Sentinel-2 data on
5–30 July 2019, and 8–23 October 2019, respectively. Mosaic SAR images of pre-fire events
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were taken on 6–23 July 2019, and 10–27 October 2019, for post-fire events from Sentinel-1
data. Figure 2 shows mosaic images of SAR and optical remote sensing data that were used
in this research. The RGB SAR images are composed of VV polarization in pre-fire events
and VH polarization in post-fire events, while RGB optical images are composed of B4, B3,
and B2 in post-fire events.

Figure 2. Mosaic Sentinel-1 SAR images (left) and Sentinel-2 optical images (right) used in the area
of interest.

In addition to using SAR and optical remote sensing data for conducting classification,
as a reference, we used the 1.5 m resolution pan-sharpened Satellite pour de l’Observation
de la Terre (SPOT) images dated 2 September and 8 October 2019. The Indonesian Geospa-
tial Map, with a scale of 1:50,000 from the Geospatial Information Agency, was used to
identify the land cover type in the research site [38]. The hotspot data trend from MODIS
and Visible Infrared Imaging Radiometer Suite (VIIRS) sensor, acquired from the National
Aeronautics and Space Administration (NASA), was used to support the existence of
burned areas [40]. Moreover, MODIS burned area monthly global 500 m, MCD64A1, ob-
tained from Google Earth Engine, was used in this research. The burned area from the
Ministry of Environment and Forestry was used to determine the fire’s location and time.

Table 1. Specifications of Sentinel-1 and Sentinel-2 data used in the research [41,42].

Sensor Specifications

Sentinel-2 MSI

Date Pre-fire: July 2019 Post-fire: October 2019

Bands

Band number Band name Resolution
B2 Blue 10
B3 Green 10
B4 Red 10
B5 Vegetation red edge 1 20
B6 Vegetation red edge 2 20
B7 Vegetation red edge 3 20
B8 NIR 10

B8A Narrow NIR 20
B11 SWIR1 20
B12 SWIR2 20

Product Level L-2A

Sentinel-1
(C-Band SAR)

Date Pre-fire: July 2019 Post-fire: October 2019
Frequency 5.405 GHz

Orbit Descending
Product Type Ground range detected

Acquisition Mode Interferometric wide swath
Polarization Mode VV and VH
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2.2. Methodology

The proposed methodology of this research is described in Figure 3. It consists of
several main sections, including image pre-processing, band and polarization selection,
training and validation data production, classification, model evaluation, and burned
area calculation.

Figure 3. Research workflow.

Image pre-processing for SAR data produced gamma naught (γ0) and applied speckle
filtering using a 5 × 5 Boxcar filter to improve image classification. In SAR data, this
research used two backscatter coefficients: sigma naught (σ0) and gamma naught (γ0).
σ0 is the radar signals reflected per unit area in the ground range, whereas γ0 is radar
reflectivity per unit area perpendicular to the slant range direction [43,44]. For optical
data, pre-processing steps included cloud masking and resampling into 10 meters using
bilinear interpolation. The function used for cloud masking was acquired from Principe [45].
In addition, reprojection was conducted in both sets of data, and all pre-processing steps
were performed using Google Earth Engine. Figure 4 shows the area of interest that
overlays with SPOT images on 2 September and 8 October 2019, as the reference data.

Figure 4. A coverage of SPOT data as the reference within the area of interest in Figure 2.
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2.3. Convolutional Neural Network (CNN)

CNN is an artificial neural network that uses the convolution principle in data pro-
cessing. It is a type of deep neural network that uses additional layers between the input
and output layers [46]. The basic concept of CNN is to utilize a convolutional layer to
detect the relationship between the features of objects and a pooling layer to group similar
features. CNN architecture consists of at least one convolutional layer (CL), which trans-
forms a set of activation functions with a differential function, each with a corresponding
pooling layer (PL), and the final result is a fully connected layer (FCL) [29]. The pooling
layer is used to reduce the size of an image by downsampling it and summarizing the fea-
tures. The common pooling methods to achieve grouping are average pooling, where the
summary is the dominant feature, and maximum pooling, by summarizing the strongest
feature [47]. Unlike other neural networks where all neurons are fully connected with every
other neuron of the next layer to recognize a pattern, CNN omits zero-valued parameters
and makes fewer connections between layers. Non-zero parameters can be shared to be
used by more than one connection in the layer to reduce the number of connections. CNN
is a potent method, as structures of different dimensions can be constructed to adapt to
input data of different dimensions, which can greatly affect final classification/prediction
results. In addition, the representation of raw data is crucial because CNN is based on the
principle of locality [48]. The basic CNN shown in Figure 5 uses a 1-dimensional array of
data as the input layer, each pixel vector from different images represents the input data.
The CL then downsamples the data, collects it by the PL, and it results in the FCL.

Figure 5. Illustration of 1-Dimension Convolutional Neural Network.

2.4. Random Forest (RF)

Random forest is an ensemble method modified from bootstrap aggregating, or bag-
ging, developed from multiple uncorrelated trees. Bagging method generated a training
dataset by randomly drawing replacement examples from the same number of the original
training set of selected feature combinations [24]. Each tree in the bagging method is not
fully independent since all predictor variables are taken into account on each splitting in
a tree; therefore, the tree from different samples can have a similar structure called tree
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correlation. Random forest improves the bagging method by reducing the correlation
and variance.

Samples are classified from the most popular (high vote) class from the decision tree
predictors in the forest. Since the decision tree design requires attribute selection and
pruning to optimize the choices, a tree was grown to its maximum depth every time by
using new training data from a combination of features. As the number of trees increases,
the generalization error converges with pruning. The number of features used at each node
to generate a tree and the number of trees to be grown are user-defined parameters for the
RF classifier [24].

2.5. Proposed Method

The combined CNN and RF (CNN-RF) architecture is shown in Figure 6, which
consists of an input layer derived from the image bands, a convolutional layer, a pooling
layer, and a fully connected layer. The output of the first fully connected layer is the result
of features extracted and then used as input for the classification of the burned area using
the RF method.

Figure 6. The architecture of a hybrid of CNN and RF method (CNN-RF).

2.6. Training and Validation Dataset

The dataset was split into training and validation data that consisted of burned and
unburned areas. As a reference to label burned and unburned samples in the training and
validation dataset, this study used a high-resolution SPOT image, as seen in Figure 7, to
minimize mixing pixels. It is a pan-sharpened image with a resolution of 1.5 meters. The
training and validation were in polygon and classified at the pixel level. The dataset was
designed to be balanced to decrease the effect of an imbalanced dataset. The comparison
between training and validation samples was set to 70:30. Therefore, there were 176,100
pixels consisting of 88,460 pixels of burned and 87,640 of unburned classes for training, and
76,032 pixels consisting of 38,632 of burned and 37,400 of unburned classes for validation.
Figure 7 shows the training and validation samples in the specific area of interest.
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Figure 7. Selected training and validation sample locations.

2.7. Classifiers Implementation

The model classification was performed using the Python programming language.
Deep learning classifiers were conducted using “TensorFlow” and “Keras” libraries, while
the RF classifier and performance evaluation were performed using the “Scikit-learn”
library. Geospatial Data Abstraction Library (GDAL) was used in handling geospatial
imagery, such as importing in raster format, importing vector data, reading the images,
and converting data. The classification system of this research is shown in Figure 8.

Figure 8. Classification system.
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The fixed hyperparameters for the CNN-RF classification method were the learning
rate of 0.001, the epoch of 50, the batch size of 32, the dropout of 0.1, and the number of
trees of 500. The CNN architecture was constructed of four layers that consisted of two
convolutional layers, one pooling layer, and a fully connected layer. Kernel size was set at
2 × 2 with 24 filters on the convolutional layer. Stride was set to 1 to avoid downsampling,
and padding was set to 0 to maintain the dimensions of the feature map generated from
the input image. In each convolutional layer, we used rectified linear unit (ReLU). In the
pooling layer, max pooling was used, taking the maximum value from the filter.

Meanwhile, the number of nodes for all schemes in the fully connected layer was set
to 20. The sigmoid function was used in the output layer to meet the binary classification
requirement. The loss function binary cross-entropy and Adam optimizer were used for
the learning. The setting in these parameters was performed empirically as the optimal
one. Classification models of burned areas were also carried out using the RF and CNN
methods separately and the neural network (NN). The hyperparameters used in the CNN
method are the same as those in the CNN-RF method. Meanwhile, the NN architecture
consists of one input layer, two hidden layers, and one output layer.

2.8. Classification Scheme

Table 2 lists the classification scheme used in this research as a classification input.
The schemes were intended to evaluate the use of Sentinel-1 and Sentinel-2 data for burned
area classification. Scheme #1 uses Sentinel-2 optical data with 20 bands; Scheme #2
uses Sentinel-1 SAR data with co-polarization (VV), cross-polarization (VH), and full-
polarization (VH and VV). Schemes #3–#5 combine Scheme #1 and each polarization of
Scheme #2. This study uses 10 bands of pre-fire (July) and 10 bands of post-fire (October)
mosaicked images, resulting in 20 bands in Scheme #1. We mosaicked σ0 and γ0 SAR
images in July and October, resulting in 8 bands in Scheme #2, 24 combined bands in
Scheme #3–#4, and 28 combined bands in Scheme #5.

Table 2. Input bands and polarizations for each classification scheme.

Scheme Sensor Band/Polarization

#1 Optical 20 bands of pre-fire and post-fire events

# 2 SAR 8 bands VV and VH polarization of σ0 and γ0 of
pre-fire and post-fire events

# 3 Optical and SAR VH Polarization optical band and VH polarization of σ0 and γ0 of
pre-fire and post-fire events, with a total of 24 bands

# 4 Optical and SAR VV Polarization optical band and VV polarization of σ0 and γ0 of
pre-fire and post-fire events, with a total of 24 bands

# 5 Optical and SAR VH and VV
Polarization

optical band and VH and VV polarization of σ0 and γ0

of pre-fire and post-fire events, with a total of 28 bands

2.9. Evaluation Parameter

To evaluate the model, we used several parameters, such as overall accuracy (OA),
precision, recall, F1-Score, and Cohen’s Kappa (K), as expressed in Equations (1)–(5). OA is
the number of pixels that are classified correctly from the total number of pixels involving
true positive (TP), true negative (TN), false positive (FP), and false negative (FN). Precision
represents how many pixels are detected as a burned area out of the total predicted pixels.
The recall represents how many of the burned areas can be detected correctly. F1-Score is
the average precision and recall given a weight (harmonic mean). Cohen’s Kappa measures
the level of agreement between the predicted results and the reference data in classifying
pixels into specific classes. Cohen’s Kappa value ranges from −1 to 1. The pe value in
Equation (5) is the percentage change in measurement between the predicted results and
the reference data.
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Overall Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1− Score = 2× (Precision× Recall)
(Precision + Recall)

(4)

Cohen′s Kappa =
Overall accuracy− pe

1− pe
(5)

3. Results
3.1. Hotspot Distribution Pattern

Based on MODIS and VIIRS sensors, the number of hotspots in the research site
throughout 2019 with a medium to high confidence level is 14,030 spots, as shown in
Figure 9, with the peak of fire incidence in September 2019, with as many as 9,740 spots. On
the basis of the spatial resolution of the MODIS sensor for each hotspot pixel, the MODIS
MCD64A1 correlates with the maximum extent of the burned area of 53,836 hectares. The
results of the hotspot distribution pattern at the research location are shown in Figure 10.
The distribution results can be used as supporting data to determine the time and location
of the burned area.

Figure 9. Hotspot intensity per month at the research site throughout 2019.
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Figure 10. The distribution of hotspots at the research sites throughout 2019.

3.2. Classification Result of Burned Area using CNN-RF Method

Figure 11 shows the performance of the burned area classification model using the
CNN-RF method for Schemes #1–#5, with parameters of OA, recall, precision, F1-score,
and K-score. Overall accuracy is the probability that an individual data can be correctly
classified, either true positive (i.e., correctly identified as burned area) or true negative
(i.e., correctly removed as unburned area). The sum is divided by the total number of tests.
Recall represents the CNN-RF’s ability to correctly identify the burned area from the actual
data, while precision is the ability to detect burned areas from several tests. F1-score is the
harmonic mean of precision and recall. K-score measured the performance of the CNN-RF
on the basis of the agreement between the model and the actual data.
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Figure 11. Performance of burned area classification model using CNN-RF method for Schemes
#1–#5 with evaluation parameters (a) OA; (b) recalls; (c) precision; F1-score; and (d) Cohen’s Kappa.
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In Scheme #1, which is a classification involving only optical remote sensing data, the
OA value was 0.9644. In addition, it obtained the recall and precision values at 0.9520 and
0.9773, respectively, indicating that over 95% of validation data can be predicted correctly.
Meanwhile, the F1-score value was obtained at 0.9645 and K at 0.9282, indicating a strong
agreement between prediction results and validation data. In Scheme #2, classification
involving only SAR data provided the OA, recall, precision, F1-score, and K values of
0.7029, 0.6990, 0.7113, 0.7051, and 0.4058, respectively. Meanwhile, for Schemes #3–#5,
the combination schemes between optical and SAR data involving VH, VV, and both
polarizations, the OA values were 0.9719, 0.9718, and 0.9725, respectively. The recall values
obtained were 0.9660, 0.9641, and 0.9618; the precision values were 0.9783, 0.9800, and
0.9837; the F1-scores were 0.9721, 0.9720, and 0.9726; and K values were 0.9437, 0.9435, and
0.9450, respectively.

On the basis of these results, it is shown that Scheme #5, which is a classification
involving optical remote sensing data and SAR on VH as well as VV polarizations, provides
the best model performance based on the parameters of OA, precision, F1-score, and K.
Meanwhile, Scheme #3 obtained the best recall value compared with other schemes. The
improvement of the model’s OA in Scheme #5 reached 0.81% compared with Scheme #1
and 26.96% compared with Scheme #2.

4. Discussion

Figure 12a–e shows the confusion matrix for Schemes #1–#5 using the CNN-RF method,
which shows how the 76,032 pixels of the validation data were classified. In Scheme #2, the
classification involving only SAR data resulted in the lowest performance. It misclassified
10,960 pixels as burned area and 11,629 pixels as unburned area. However, 70% of the pixels
in Scheme #2 were classified correctly. In Scheme #5, where the classification involved
optical remote sensing data and SAR on VH and VV polarization, it obtained the most
minor false positive compared with other schemes: 617 pixels.

Meanwhile, the slightest false negative was achieved in Scheme #3. Based on the
confusion matrix results, the number of false negatives was always greater than false
positives in the entire scheme. Therefore, the resulting model shows that an unburned area
was still incorrectly classified as burned.

The model in Schemes #1–#5 was then applied to classify the research site. These
results for each scheme are shown in Figure 11a–e. In Scheme #2, SAR remote sensing
data classified burned areas for the large-scale area (>300 hectares). The pattern of the
burned area is shown in Figure 11b so that it can be used as supporting data for mapping
burned areas. However, there were still high commission and omission errors that need
to be improved. In addition, this integration method should be tested in other land cover
types outside of this research’s area of interest since burned area product from SAR data is
influenced by land cover types such as grassland [49].
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Figure 12. (a–e) Confusion matrix classification of the burned area using CNN-RF method for
Schemes #1–#5.

In Figure 13, one can see that the most significant classification error was in Scheme #2.
The reason is that the speckle filtering was not able to extract surface roughness information
between objects, wherein some training data from the unburned class is shrub swamp,
where 18% of the area in South Kalimantan is a peatland and waterlogged [50]. In addition,
the presence of an open land area produced low-intensity backscatter coefficient values
in VH and VV polarization. Meanwhile, the backscatter coefficient value trend of the
burned area was low [21] due to the scattering mechanism that applies to the VH and VV
polarization. Therefore, backscatter coefficient values can be similar between the burned
and unburned areas. It can be concluded that using SAR remote sensing data without
involving any features, such as texture feature or radar-based parameter, as the only input
through pixel-based pre-processing is not effective enough using the CNN-RF method. In
addition, to reduce commission error in Scheme #2, it is important to use additional data,
such as hotspots, to discriminate between burned and unburned areas with a similar trend
of backscatter coefficient values [49].
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Figure 13. The classification results using the CNN-RF method in the Schemes: (a) #1; (b) #2; (c) #3;
(d) #4; and (e) #5.

4.1. Comparison among CNN-RF, CNN, RF, and NN Methods

Table 3 shows the performance comparison of the burned area classification model
for Schemes #1–#5, with parameters such as OA, recall, precision, F1-score, and K. Based
on Table 3, the highest OA and K values were found in the CNN-RF method in the tested
schemes, except in Scheme #2. The highest values are printed in bold.



Remote Sens. 2023, 15, 728 16 of 20

Table 3. The results of the performance of the burned area classification model using the CNN, RF,
and NN methods, as well as the CNN-RF method for Schemes #1–#5.

Sensor Scheme
CNN

OA Recall Precision F1 -Score K

Optical #1 0.9619 0.9475 0.9767 0.9619 0.9237

SAR #2 0.7136 0.7553 0.7030 0.7282 0.4263

Optical and
SAR

#3 0.9676 0.9665 0.9697 0.9681 0.9352
#4 0.9716 0.9793 0.9653 0.9723 0.9432
#5 0.9682 0.9519 0.9849 0.9681 0.9363

RF

Optical #1 0.9580 0.9427 0.9738 0.9580 0.9160

SAR #2 0.6991 0.6908 0.7094 0.7000 0.3983

Optical and
SAR

#3 0.9621 0.9498 0.9749 0.9622 0.9241
#4 0.9635 0.9513 0.9763 0.9636 0.9271
#5 0.9636 0.9525 0.9753 0.9638 0.9272

NN

Optical #1 0.9611 0.9602 0.9632 0.9617 0.9223

SAR #2 0.6953 0.6614 0.7170 0.6881 0.3912

Optical and
SAR

#3 0.9548 0.9742 0.9391 0.9563 0.9095
#4 0.9506 0.9483 0.9543 0.9512 0.9012
#5 0.9580 0.9593 0.9580 0.9587 0.9159

CNN-RF

Optical #1 0.9644 0.9520 0.9773 0.9645 0.9287

SAR #2 0.7029 0.6990 0.7113 0.7051 0.4058

Optical and
SAR

#3 0.9719 0.9660 0.9783 0.9721 0.9437
#4 0.9718 0.9641 0.9800 0.9720 0.9435
#5 0.9725 0.9618 0.9837 0.9726 0.9450

Based on the recall parameter, the NN method has the highest recall values in Scheme
#1 to Scheme #3. Meanwhile, the CNN method has the highest recall values for Schemes
#2 and #4. Furthermore, the highest recall value for Scheme #5 was achieved using the
CNN-RF method. For the precision parameter, the highest precision value resulted from
the CNN-RF method for Schemes #1, #3, and #4, while the highest precision values for
Schemes #2 and #5 were found in the NN and CNN methods, respectively, as shown in
Table 3. Table 3 also shows that the trend of the precision value was always higher than
the recall for the CNN-RF method. An accurate burned area estimation is important [20],
and improved burned area estimation can be achieved by identifying and minimizing false
positives [51]. The CNN-RF method’s results increased the precision value in the obtained
model classification. Hence, this method is promising in improving burned area estimation.

In the case of F1-score parameter, the highest value was retrieved using the CNN-RF
method for Schemes #1, #3, and #5, among other methods. In addition, the CNN method
had the highest F1-score for Schemes #2 and #4. For the K parameter, the highest value
resulted from the CNN-RF method, except for Scheme #2.

This research also showed that using SAR remote sensing data in Scheme #2 for the
four methods provides the lowest performance compared with other schemes. For this
scheme, OA values of 0.7136, 0.6991, 0.6953, and 0.7029 resulted from CNN, RF, NN, and
CNN-RF, respectively. The highest accuracy, recall, F1-Score, and K values were achieved
using the CNN method for Scheme #2. Meanwhile, the NN method had the highest
precision value. Although the overall accuracy was low compared with other schemes, the
current use of machine learning classification methods for SAR data was in the range of
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0.70–0.75 [29,47,48]. The obtained K value was also the lowest because the agreement score
range was approximately 0.4.

4.2. Burned Area Estimation

The burned area was calculated using the CNN, RF, NN, and CNN-RF methods using
WGS 1984 PDC Mercator as a reference projection system. Table 4 shows the prediction
results of burned area for each scheme, where for the CNN-RF method, the area obtained
was 48,367.02 hectares for Scheme #1, 106,945.36 hectares for Scheme #2, 48,735.11 hectares
for Scheme #3, 48,514.23 hectares for Scheme #4, and 48,824.59 hectares for Scheme #5. The
largest area result was obtained in Scheme #2, which involved only SAR remote sensing
data, and the results were obtained from a model with low precision and K values so that
the largest chance of error in the estimation was in this scheme.

Table 4. Burned area estimation using CNN, RF, NN, and CNN-RF methods.

Scheme
Burned Area Estimation (Hectares)

CNN RF NN CNN-RF

#1 47,834.74 47,762.48 51,749.67 48,367.02

#2 112,691.83 108,029.40 96,339.55 106,945.36

#3 51,750.16 47,536.03 55,671.40 48,735.11

#4 50,428.16 47,659.81 51,366.37 48,514.23

#5 47,903.56 47,433.93 50,783.50 48,824.59

As burned area information from the field survey is in the form of coordinate points,
MODIS MCD64A1 burned area product was used as a comparison. Figure 14 compares
burned area result prediction using the CNN-RF method on Scheme #5 and MODIS
MCD64A1 burned area product. Using the same reference projection system, burned
area estimation from MODIS in the area of interest was 53,836.08 hectares. It shows that
the obtained burned area estimation using the CNN-RF method had 89–90% agreement
with MCD64A1 burned area product for Schemes #1, #3–#5. However, the burned area
estimation using SAR remote sensing data for all tested methods in Scheme #2 tended to
be larger than optical remote sensing data or combined optical and SAR data. The burned
area proportion from the MODIS MCD64A1 products was 47–55% of those obtained from
this research.

Figure 14. Comparison of burned area prediction using the CNN-RF method on Scheme #5 and
MODIS MCD64A1 burned area product in the study area in July-October.
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5. Conclusions

It can be concluded that optical-based classification, SAR-based classification, and
combined optical and SAR data classification are reliable methods for burned area identi-
fication using a hybrid CNN-RF method. The CNN-RF method on the combined optical
remote sensing and full-polarization SAR data can be used as the best method to identify
the burned area, with the highest overall accuracy reaching 97.25%, with the burned area
being 48,824.59 hectares, yielding 90% accuracy compared with MCD64A1 burned area
product data. Estimation results using only SAR data with the CNN-RF method can be
used only as supporting data for identifying the burned area. For further research, using
physical parameters of radar or grey level co-occurrence matrix needs to be examined to
improve classification performance using only SAR data.

In future works, to be applicable throughout Indonesia, this model needs to be tested
using different datasets to increase model performance and maintain the stability of classi-
fication accuracy. In addition, it is crucial to investigate this model in different landscape
characteristics, such as peatland in Sumatera and Kalimantan and savanna in East Nusa
Tenggara Province. The object-oriented approach using high-resolution data also needs to
be investigated for better results.
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