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Abstract: The very high spatial resolution (VHR) remote sensing images have been an extremely
valuable source for monitoring changes occurring on the Earth’s surface. However, precisely detecting
relevant changes in VHR images still remains a challenge, due to the complexity of the relationships
among ground objects. To address this limitation, a dual neighborhood hypergraph neural network
is proposed in this article, which combines multiscale superpixel segmentation and hypergraph
convolution to model and exploit the complex relationships. First, the bi-temporal image pairs are
segmented under two scales and fed to a pre-trained U-net to obtain node features by treating each
object under the fine scale as a node. The dual neighborhood is then defined using the father-child
and adjacent relationships of the segmented objects to construct the hypergraph, which permits
models to represent higher-order structured information far more complex than the conventional
pairwise relationships. The hypergraph convolutions are conducted on the constructed hypergraph
to propagate the label information from a small amount of labeled nodes to the other unlabeled ones
by the node-edge-node transformation. Moreover, to alleviate the problem of imbalanced sampling,
the focal loss function is adopted to train the hypergraph neural network. The experimental results
on optical, SAR and heterogeneous optical/SAR data sets demonstrate that the proposed method
offersbetter effectiveness and robustness compared to many state-of-the-art methods.

Keywords: change detection; hypergraph neural network; dual neighborhood; semisupervised;
remote sensing images

1. Introduction

As a vital branch of remote sensing interpretation, change detection (CD) that aims at
identifying the changes in images collected in the same area but at different times [1] has
been widely applied in various fields, including urban planning, damage assessments, and
environmental monitoring [2]. With the rapid development of Earth observation technology,
very high spatial resolution (VHR) remote sensing images are now available, and they can
provide abundant surface details and spatial distribution information. Consequently, CD
with VHR images has drawn more attention. In the meantime, it remains a tough and
challenging task [3].

In the last few decades, numerous CD methods have been developed for diverse
circumstances, and they can be divided into pixel-based and object-based methods roughly
according to the basic unit of processing [4]. The pixel-based CD (PBCD) methods employ
the individual pixel as the basic analysis unit, and many widely-used methods belong to
this category. For optical images CD, change vector analysis (CVA) [5] and its extensions,
such as robust CVA (RCVA) [6], are the most commonly-used ones which can provide
change intensity and change direction. Some transform-based methods, such as principal
component analysis (PCA) [7] and slow feature analysis (SFA) [8], are also popular. To
suppress the interference of speckle noise, ratio-based approaches [9,10] were devised
for SAR CD. Some statistics-based methods [11] used specific distributions to model SAR
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images and then obtained change maps through estimating the posteriori probabilities. Due
to the great practical significance for the immediate evaluation and emergency disasters,
CD for heterogeneous optical/SAR images has also attracted much attention. For instance,
Liu et al. [12] defined a pixel-based transformation, which can transform the SAR and
optical images into a common space, after which difference analysis can be conducted in
the transformed space. Ferraris et al. [13] used the coupled dictionary learning framework
to model the two heterogeneous images. To capture the information of the adjacent pixels,
numerous methods used a sliding window to obtain patches as processing units [14]. In
addition, various advanced techniques have been introduced into PBCD, such as Markov
random fields [15], extreme learning machine (ELM) [16], and dictionary learning [17].
However, these PBCD methods are limited on VHR images, because the assumption of
pixel independence is unreliable. When using a sliding window, it is challenging to obtain
the most appropriate size. In addition, a fixed window can hardly represent a meaningful
ground object. Furthermore, registration error and radiometric correction have a significant
influence on the results [18].

With the spatial resolution increasing, the highly spectral variability and the diffi-
culty of modeling the contextual information may further weaken the performance of
PBCD methods. Under these circumstances, object-based CD (OBCD) techniques provide a
unique way to overcome these limitations by using an object as a basic processing unit. An
object (so-called parcel or superpixel in some literature) is a group of local pixel clusters
that are obtained through segmentation using spectral, texture, and geometric (such as
shape) features, as well as other information. A large number of OBCD methods have been
proposed in the last decade. For instance, Yousif and Ban [19] developed a novel OBCD
method for VHR SAR images, which can preserve meaningful detailed change information
and mitigate the influence of noise. Multiple feature fusion strategy was designed to
improve the performance of OBCD in [20]. Lv et al. [21] proposed an object-oriented key
point vector distance to measure the changed degree for VHR images, which can reduce
the number of pseudo changed points. These methods have shown extraordinary potential
to weaken the effects of spectral variability, spatial georeferencing, and acquisition charac-
teristics [22]. Nevertheless, most OBCD methods generally only use some hand-crafted
features, which require much domain-specific knowledge and may be affected by noise
and atmospheric conditions. Furthermore, to ensure the homogeneity within each object,
most OBCD methods make the objects prone to over-segmentation, and the boundary
fragmentation may lead to inadequate semantic integrity. It implies that the complex
interactions among objects need to be further exploited, and this is a vital motivation of
our method.

Recently, deep learning techniques have been employed in CD tasks, including both
supervised/semi-supervised and unsupervised ways. Various models have been intro-
duced into CD, such as convolutional neural networks (CNN), encoder [23] and trans-
former [24,25]. Among all deep learning models, CNN is the most widely used in CD
tasks. For instance, Liu et al. [26] designed a Siamese auto-encoder framework for CD
in optical aerial images, which can achieve transfer learning among different data sets.
Chen et al. [27] presented a novel spatial-temporal attention neural network based on
Siamese and designed a CD self-attention mechanism to calculate attention weights be-
tween any two pixels at various times and positions. Wu et al. [28] proposed a deep kernel
PCA convolution to extract representative features for multi-temporal VHR images, and
then built an unsupervised Siamese mapping network for binary and multiclass CD. An
end-to-end CD method that combines a pixel-based convolutional network and superpixel-
based operations was proposed in [29], which promoted the collaborative integration
of OBCD and deep learning. Wang et al. [30] designed a fully convolutional Siamese
network and improved the focal contrastive loss, which can reduce intra-class variance
and enlarge inter-class difference. Additionally, some CNN-based generative adversarial
networks (GAN) have been designed [31,32] for CD tasks in VHR images. Although these
methods can obtain high performance under some circumstances, some weaknesses still
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need to be addressed. First, CNNs assign weights to each pixel independently through
convolution kernels, and it means that the complicated interactive relationships among
pixels are ignored, which may result in insufficiently characterization of the ground objects.
Second, CNNs tend to excel at extracting multi-level features from data with structures of
regular rectangles, whereas the shapes of superpixels are usually irregular. Therefore, the
geometrical information of superpixels may be inadequately exploited.

In view of the aforementioned issues, in this article we propose an object-level semi-
supervised hypergraph neural network (HGNN) framework for VHR image CD tasks,
acting upon both homogeneous and heterogeneous remote sensing images. The input
images are firstly segmented under a fine scale and a coarse one, respectively. Treating each
object under the fine scale as one node, the features of nodes can be obtained by combing
segmentation under the fine scale and the outputs of the feature extractor, which is a
pre-trained U-net. The hypergraph is then constructed by defining the dual neighborhood,
to capture more comprehensive structural information among objects. Several hypergraph
convolution layers are then sequentially conducted on the hypergraph to propagate in-
formation among nodes through the hypergraph structure. As changed and unchanged
samples are usually imbalanced in CD, the focal loss function is adopted when training
the network.

The main contributions of this article are as follows.

(1) A novel dual neighborhood hypergraph neural network (DNHGNN) framework
for CD is proposed, which can adequately exploit the complex relationships and
interacting information of ground objects that commonly exist in VHR remote sensing
images. To the best of our knowledge, it is the first HGNN-based method in the field
of remote sensing CD.

(2) A dual neighborhood is defined, which contains a spatial neighborhood according to
the adjacent relationships of object under the fine scale and a structural neighborhood
according to the father-child relationships between scales. Based on the dual neigh-
borhood, reliable hyperedges can be obtained, which better represent the complicated
interactive relationships of ground objects in VHR remote sensing images.

(3) The multiscale object-based technique is integrated into hypergraph construction,
which not only yields to high-level node features as inputs of HGNN, but also sub-
stantially reduces the number of nodes, making the hypergraph convolution on the
image scene feasible and efficient.

The article is organized as follows. The related works are discussed in Section 2. In
Section 3, we illustrate the proposed DNHGNN in detail. Then, the experimental results
and discussions are reported in Section 4. Finally, the conclusion and future work are
presented in Section 5.

2. Related Work

In this section, we provide a brief review of graph/hypergraph-based CD methods
and graph neural networks, as they relate to this article.

2.1. Graph/Hypergraph-Based Change Detection

Figure 1 shows an example of an ordinary graph and hypergraph. The main difference
is that the graph is represented using the adjacency matrix, in which each edge connects just
two vertices, while the hypergraph can be represented by the incidence matrix, in which
the hyperedges can encode high-order correlations by connecting more than two vertices.
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Figure 1. An example of ordinary graph and hypergraph.

The VHR images are usually full of structural features, and the graph/hypergraph
models are feasible in representing these features. Thus, they have been utilized in CD.
Pham et al. [33] proposed a weighted graph to capture contextual information of a set of
characteristic points and measured the changed level by considering the coherence of the
information carried by the two images. A hierarchical spatial-temporal graph kernel was
designed to utilize the local and global structures for SAR image CD [34]. An object-based
graph model is proposed for both optical and SAR image CD in [35]. Sun et al. [36] con-
structed a nonlocal patch similarity graph to establish a connection between heterogeneous
images, and then determined the change level by measuring how much the graph structure
of one image still conforms to that of the other image. As research into graph-based CD
methods expands, several works have attempted to introduce hypergraph models into
CD tasks. For instance, Wang et al. [37] formulated the CD as the problem of hypergraph
matching and hypergraph partition, and constructed the hyperedges on the pixels and
their coupling neighbors using the K nearest neighbor rule.

Although the aforementioned graph/hypergraph-based methods have validated their
availability in many cases, some limitations still exist. In particular, they only utilize some
low features (e.g., spectrum, intensity, texture), which may not only be affected by noise and
atmospheric conditions, but also contain insufficiently semantic information. In addition,
the complicated structural relationships in VHR images have not been fully exploited when
constructing the graph/hypergraph models.

2.2. Graph/Hypergraph Neural Network

Motivated by CNNs, recurrent neural networks (RNNs), and graph embedding,
many works have attempted to use deep learning methods to handle the data with graph
structure. In such a situation, graph neural networks (GNNs) [38,39] emerge. The core
ideas of GNN are graph structure and message propagations. To date, numerous GNN-
based techniques have been developed, which can be divided into five categories: graph
convolutional networks (GCN), graph attention networks, graph autoencoders, graph
generative networks and graph spatial-temporal networks.
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In the applications of image processing, GCN is the most widely-used and representa-
tive one among the above categories. Similar to the convolutional operations in CNN, GCN
obtains new embedding for a centroid node through defining convolutional operations to
aggregate information from its neighborhood. The convolutional operations in GCN can
be divided into two categories: spectral-based and spatial-based approaches. This article
adopts a spectral-based approach to carry out convolutions for data with graph structure.
Bruna et al. [40] used the spectral graph theory to develop convolutional operations on
graphs, which were defined based on the graph Laplacian matrix. To date, there have
been numerous extensions on spectral-based approaches [41,42]. To reduce the computa-
tional complexity of eigendecomposition in the spectral-based approaches, ChebNet [43]
and CayleyNet [44] approximated the decomposition by special polynomials. Kipf and
Welling [45] further assumed that the order in ChebNet is 1, and proposed a fast layer-wise
GCN. Since then, many works have made improvements over GCN from different aspects,
such as the contextual graph Markov model (CGMM) [46] and graph wavelet neural net-
work (GWNN) [47]. Due to the effective capability of learning representations from graph
data, GCN has shown superior performance in many tasks of the RS community, such as
classification in hyperspectral images [48,49]. In the last two years, several CD methods
based on GCN have emerged. Saha et al. [50] first utilized GCN for semi-supervised CD
tasks. In our previous works [51], a multiscale GCN for CD was proposed, which can
comprehensively incorporate the information from several distinct scales. Tang et al. [52]
combined GCN and metric learning to develop an unsupervised method for CD.

With each edge representing the interaction between two nodes, traditional GNN
can effectively represent the pairwise relationships. However, in many real applications,
such as social connections and recommendation systems, the relationships among objects
are much more complex than pairwise. Under such circumstances, traditional GNN has
intrinsic limitations when modeling these relationships. To tackle this challenging issue,
Feng et al. [53] recently proposed the hypergraph neural network (HGNN), which used the
hypergraph structure for data modeling, after which a hypergraph convolution operation
was designed to better exploit the high-order data correlation for representation learning.
An improvement named dynamic hypergraph neural networks (DHGNN) was proposed,
which modified the hypergraph structure from adjusted feature embedding [54].

Based on the observations that relationships of ground objects in VHR remote sensing
images may be beyond pairwise connections and even more complicated, in this article, we
propose an HGNN framework for VHR image CD, which aims at improving performance
by better exploiting the relationships among objects.

3. Proposed Method

In this section, the proposed method is illustrated in details, as shown in Figure 2.
Firstly, we stack the two input images into one and then adopt fractal net evolution
approach (FNEA) to segment the stacked image under a fine scale and a coarse scale.
Meanwhile, the stacked image is fed into the feature extractor, which is a pre-trained
U-net, to produce the high-level feature maps with the same lengths and heights as the
input images. After that, the object-wise features of nodes are obtained by combining the
segmentation under the fine scale and the high-level feature maps. The hypergraph can
be constructed using the adjacent relationships under the fine scale and the father-child
relationships between the two scales. Then, sequential hypergraph convolutional layers
are conducted on the hypergraph, which exploit the high-order relationships carried by
the hypergraph structure to cluster the objects potentially belonging to the same class
(changed/unchanged) together in the embedding space.
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3.1. Multiscale Segmentation and Feature Extraction

As mentioned above, the proposed method is object-based, which treats each object
as a node of the hypergraph. Therefore, the input images need to be segmented into
homogeneous regions–namely, objects. In this article, the FNEA is employed to obtain
the objects. FNEA [55,56] segments the input images in a bottom-up way, which can get
segmented results with hierarchical structure. For an input image, the segmented results
of FNEA are decided by three parameters, namely, scale, shape, and compactness. The scale
parameter, which is the most important parameter in FNEA, is used to control the minimum
sizes of objects. Larger scale parameter would result in larger average size of objects, and
vice versa. The shape parameter preserves the integrality of object contours. The compactness
parameter is used to control the distinguishability of objects with similar spectral features.
Different from other segmentation methods such as SLIC, the FNEA is a multilevel method,
which means that an object under a coarse scale parameter is composed of several objects
under a fine scale parameter and these father-child relationships actually contain abundant
structural information of ground objects that can be exploited to construct the hypergraph.

As change detection involves two images simultaneously, to obtain objects in both
images with the same boundaries, three segmented solutions [57] can be considered:
(1) assigning, whereby one image is used as input for FNEA to generate object boundaries,
then, assign the boundaries to the other image; (2) overlaying, whereby the two images
are segmented by FNEA separately, and the two boundary sets are then overlaid to obtain
coincident boundaries in two images; and (3) stacking, whereby the two images are stacked
into one, and the stacked image is then segmented to generate boundaries. In this article,
the stacking solution is adopted for the following reasons. Firstly, the assigning solution
only utilizes information from one image while ignoring the other one, which may result
in loss of object boundaries, especially in the changed regions. Secondly, the overlaying
solution may generate excessively fragmentary boundaries, as ground objects in the two
images usually appear with inconsistent shapes and sizes. The stacking solution considers
information from the two images simultaneously, and thus, the generated boundaries are
relatively consistent in the two images.

As most hand-crafted features depend on the professional knowledge of operators and
are prone to inconsistency under diverse imaging conditions, we build high-level feature
sets for hypergraph using a modified U-net based on the following situations First, many
versions of end-to-end U-nets have been effectively applied in CD tasks [58–60], which can
extract high-level semantic features and obtain change maps with the same sizes of input
images. Second, several optical data sets have been made available, such as the ONERA
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Satellite Change Detection (OSCD) data set [61] and the AIST building change detection
(ABCD) data set [62]. Therefore, we can obtain pixel-wise high-level features through a
trained U-net using these available data sets.

The structure of the feature extracting network is shown in Figure 3, which consists
of three parts that involve a contracting (or encoding) path, bottleneck and expanding (or
decoding) paths. The OSCD data set is used to pre-train the U-net. When the pre-trained
feature extracting network acts as the module shown in Figure 2, we treat the 128 feature
maps M ∈ RH×W×128 as the output results, as marked by the red box in Figure 3. More
details of the feature extracting network can be tracked in our previous works [51].
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3.2. Hypergraph Construction

Supposing that the input images I1, I2 are stacked into one image IS, then, IS is
segmented by the FNEA under a fine scale parameter S1 and a coarse one S2 with
the same of shape and compactness parameters, respectively. Two object sets can be ob-
tained: Ω1 = {F1, F2, · · · , FN}, Ω2 = {C1, C2, · · · , CM}, where Fi and Cj(i = 1, 2, · · · , N;
j = 1, 2, · · ·M) denote the objects under the fine and coarse parameters, respectively, and
naturally N > M. In this article, we treat each object under the fine scale parameter S1 as a
vertex, thus, a hypergraph can be defined as G = (V, ε, w), which includes a vertex (node)
set V = [v1, · · · , vN ]

T ∈ RN×d, a hyperedge set ε = [E1, · · · , EL], and each hyperedge E ∈ ε
is assigned a positive weight w(E), where d is the length of each feature vector, d = 128.

As M ∈ RH×W×128, the feature maps of input images have been obtained through
the pre-trained feature extracting network, to build the high-level object-wise feature
vi ∈ R1×128 representing the ith node, we combine the M ∈ RH×W×128 which can represent
high-level semantic information and the object set Ω1 = {F1, F2, · · · , FN} that contains
abundantly spatial information to characterize the node. vi is formulated by:

vi = ∑
{(j,k)|IS(j,k)∈Fi}

M(j, k, :)/#(Fi) (1)

where #(Fi) denotes the number of pixels in Fi.
Most existing approaches of constructing hyperedge treat a centroid node with its

K-nearest neighbors (KNN) in the spatial domain, or the centroid node and all nodes
adjacent to it as the nodes within a hyperedge. The former may suffer the limitation that a
large K would cause remarkable redundancy, while a small K would acquire deficient local
relationships. Besides, a fixed K cannot be appropriate for all regions in VHR images due
to the diversity of ground objects. The latter is based on the widely-used observation that
the adjacent nodes (a node can present a pixel, a patch, an object and so on) have a greater
probability to belong to the same class. However, this mustrecognize that the adjacent
nodes by themselves may be insufficient to represent the structural relationships in some
cases. Consequently, we define the dual neighborhood to construct informative hyperedges
which can better exploit the relationships among objects.

As highlighted in Figure 4, a building can be presented by only one object (region)
under the coarse scale, while it is over-segmented into many objects under the fine scale
(marked by red boundaries). Supposing the red solid node in Figure 4b is the centroid
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node, if the hyperedge is constructed using only itself and the adjacent nodes (yellow solid
nodes), the structure of the building may not be fully represented. It can be observed that
although the objects denoted by black solid nodes are not adjacent to the centroid one,
they are still prone to belong to the same ground object, due to the fact that they are all
children of the same object under the coarse scale. Thus, when constructing the hyperedge
according to the red solid nodes, the structural information can be better exploited if taking
both yellow and black solid nodes into account.
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Figure 4. Illustration of dual neighborhood. (a) Segmentation under a coarse scale. (b) Segmentation
under a fine scale.

According to the analysis above, we construct a hyperedge for each vi based on the
spatial neighborhood and structural neighborhood.

The spatial neighborhood of vi is defined as follows:

N1(vi) =
{

vj
∣∣Fi, Fj ∈ Ω1, Fj is adacent to Fi

}
(2)

While the structural neighborhood of vi is defined as follows:

N2(vi) =
{

vj
∣∣Fi ∈ Ck&Fj ∈ Ck

}
(3)

Consequently, the hyperedge Ei centers on vi is denoted as:

Ei = vi ∪ N1(vi) ∪ N2(vi) (4)

The incidence matrix H ∈ RN×L (L = N in this article) of the hypergraph is represented as:

H(i, j) = h
(
vi, Ej

)
=

{
1, if vi ∈ Ej
0, otherwise

(5)

The hyperedge weight is computed as:

wi = w(Ei) =
2

ni(ni − 1) ∑
j,k|vj∈Ei ,vk∈Ei

exp
(
−‖Fj − Fk‖

)
(6)

where ni is the number of vertices within Ei. wi measures the similarity of all vertices
within the hyperedge. A large wi means that the similar degree is high, thus the vertices
within the hyperedge are prone to belong to the same class.

Based on H and w, the vertex degree of each vi ∈ V is:

di = d(vi) =
N

∑
j=1

wjH(i, j) (7)

and the edge degree of each Ei ∈ ε is:

δi = δ(Ei) =
N

∑
j=1

H(j, i) (8)

Further, W = diag(w1, · · · , wN), Dv = diag(d1, · · · dN) and DE = diag(δ1, · · · , δN)
denote the diagonal matrices of the hyperedge weights, the edge degrees and the vertex
degrees, respectively.
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Then, the normalized hypergraph Laplacian matrix can be computed as follows:

∆ = I−Dv
−1/2HWDE

−1HTDv
−1/2 (9)

where ∆ is positive semi-definite.

3.3. Hypergraph Convolution

Given a signal x = (x1, · · · , xn) with hypergraph structure, the approximation of
spectral convolution of x and filter g can be denoted as [40]:

g ∗ x ≈
K

∑
k=0

θkTk

(~
∆
)

x (10)

where Tk

(~
∆
)

is the Chebyshev polynomial of order k with scaled Laplacian
~
∆ = 2

λmax
∆− I,

with λmax being the largest eigenvalue of ∆. Equation (10) can avoid the complex computa-
tion of Laplacian eigenvectors by using only matrix powers, additions and multiplications.
Feng et al. [52] further let K = 1 to limit the order of convolution operation as the Laplacian
in hypergraph can already well represent the high-order relationships among nodes. Kipf
and Welling [44] pointed out that λmax ≈ 2 as the neural network parameters can adapt
in scale during the training process. Based on the above assumptions, the convolution
operation can be simplified to:

g ∗ x ≈ θ0x− θ1Dv
−1/2HWDE

−1HTDv
−1/2x (11)

where θ0 and θ1 are parameters of filters over all nodes. It can be beneficial to constrain the
number of parameters to address over fitting and to minimize the number of operations
(such as the matrix multiplications), by setting θ0 and θ1 as:{

θ1 = − 1
2θ

θ0 = 1
2θDv

−1/2HDE
−1HTDv

−1/2
(12)

Equation (12) can be simplified to the following expression:

g ∗ x ≈ θDv
−1/2HWDE

−1HTDv
−1/2x (13)

Then, given a hypergraph signal X ∈ RN×I1 with N nodes and I1 dimensional feature,
the hypergraph convolution can be formulated by:

Y = Dv
−1/2HWDE

−1HTDv
−1/2XΘ (14)

where Θ ∈ RI1×I2 is the parameter to be learned during the training process. The output
Y ∈ RN×I2 can be used for clustering or classification.

Noting that Dv and DE play a role of normalization in Equation (14), the hypergraph
convolution actually propagates information by a node-edge-node manner, which can
better refine the features using the hypergraph structure. Equation (14) can be interpreted
from right to left as follows: first, the initial node feature X is processed by the filter matrix
Θ to extract I2 dimensional node feature. Then, the node feature is gathered according
to the hyperedge by using the multiplication of WHT ∈ RL×N to form the hyperedge
feature, which can be denoted as WHTXΘ ∈ RL×I2 . After that, by multiplying matrix H
to aggregate the related hyperedge feature, we can transform the hyperedge feature into
output node feature HWHTXΘ ∈ RN×I2 .

According to Equation (14), the output feature of the ith node can be expressed as:

Yi =
N

∑
j=1

L

∑
k=1

H(i, k)H(j, k)wkXjΘ/(diδi) (15)
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It can be concluded from Equation (15) that information is propagated among nodes
within a common hyperedge. In addition, the hyperedge with a larger weight means that
labels within the hyperedge are smoother [63].

Based on the above definitions, the hypergraph convolutional networks with L layers
can be built using the following formulation:

X(l+1) = σ
(

Dv
−1/2HWDE

−1HTDv
−1/2X(l)Θ(l)

)
(16)

where X(l) is the signal of hypergraph at the lth layer, and σ is the non-linear activation
function like ReLU, X(0) = V.

Imbalanced distribution of changed and unchanged samples is very typical in CD
problems. Generally, the changed regions often account for a small part in the whole
studied area. To solve the sample imbalance problem, in the training process, we adopt
the focal loss [64], which has proved its availability in various detection and classification
tasks. The loss function in this article can be defined as:

LHGNN =
NL

∑
i=1
−α
(

1− p(i)
)γ

log
(

p(i)
)

(17)

where α is used to control the contribution weight of positive (changed) and negative
(unchanged) samples to the total loss. When γ is 0, it is equivalent to cross-entropy loss.
NL is the number of labeled samples. In this article, we set α = 0.2 and γ = 2. p(i) is the
prediction probability of the ith labeled sample and it is formulated as:

p(i)t =

{
pi, if yi = 1 (changed)

1−pi, if yi = 0 (unchanged)
(18)

where pi is the predicted output of the networks.

4. Experiments and Analysis

In this section, we first introduce the data sets. Then, brief implementation and
evaluation metrics are provided. Following that, experimental results are presented and
discussed in detail.

4.1. Descriptions of Data Sets

We conducted the experiments on three openly optical VHR image data sets: the first
one was the Sun Yat-Sen University CD data set (SYSU-CD) provided by Shi et al. [65].
SYSU-CD contains 20,000 pairs of aerial images with a spatial resolution of 0.5 m and
size of 256 × 256 pixels. It was collected between 2007 and 2014 in Hong Kong. The
data set included the following main types of changes: newly-built buildings, suburban
expansion, changes in vegetation, road expansion, and sea construction. Several patch
samples of the first data set are shown in Figure 5. The second one was the WHU-CD
data set [66], as shown in Figure 6. It contained a pair of aerial images with a spatial
resolution of 0.2 m, which were taken in 2012 and 2016. The image size is 15,354 × 32,507
pixels and the main types of changes labeled are construction and demolishing of buildings.
We split the images into 6000 image pairs with a size of 256 × 256 pixels. Both data sets
introduced variations derived from seasonal factors and illumination conditions, which
could be used to test the robustness of methods. The third one was the LEVIR-CD data
set released by Chen and Shi [27], which contained 637 VHR (0.5 m/pixel) Google Earth
(GE) image patch pairs with a size of 1024 × 1024 pixels. The types of changes included
several significant land-use changes, especially urban constructions. Some patch samples
are shown in Figure 7.



Remote Sens. 2023, 15, 694 11 of 24

Remote Sens. 2023, 15, 694 11 of 25 
 

 

samples of the first data set are shown in Figure 5. The second one was the WHU-CD 
data set [66], as shown in Figure 6. It contained a pair of aerial images with a spatial res-
olution of 0.2 m, which were taken in 2012 and 2016. The image size is 15,354 × 32,507 
pixels and the main types of changes labeled are construction and demolishing of 
buildings. We split the images into 6000 image pairs with a size of 256 × 256 pixels. Both 
data sets introduced variations derived from seasonal factors and illumination condi-
tions, which could be used to test the robustness of methods. The third one was the 
LEVIR-CD data set released by Chen and Shi [27], which contained 637 VHR (0.5 
m/pixel) Google Earth (GE) image patch pairs with a size of 1024 × 1024 pixels. The types 
of changes included several significant land-use changes, especially urban constructions. 
Some patch samples are shown in Figure 7. 

 
Figure 5. Image patch examples and corresponding reference images of the SYSU-CD data set. 

 
Figure 6. Image patch examples and corresponding reference images of the WHU-CD data set. 

Figure 5. Image patch examples and corresponding reference images of the SYSU-CD data set.

Remote Sens. 2023, 15, 694 11 of 25 
 

 

samples of the first data set are shown in Figure 5. The second one was the WHU-CD 
data set [66], as shown in Figure 6. It contained a pair of aerial images with a spatial res-
olution of 0.2 m, which were taken in 2012 and 2016. The image size is 15,354 × 32,507 
pixels and the main types of changes labeled are construction and demolishing of 
buildings. We split the images into 6000 image pairs with a size of 256 × 256 pixels. Both 
data sets introduced variations derived from seasonal factors and illumination condi-
tions, which could be used to test the robustness of methods. The third one was the 
LEVIR-CD data set released by Chen and Shi [27], which contained 637 VHR (0.5 
m/pixel) Google Earth (GE) image patch pairs with a size of 1024 × 1024 pixels. The types 
of changes included several significant land-use changes, especially urban constructions. 
Some patch samples are shown in Figure 7. 

 
Figure 5. Image patch examples and corresponding reference images of the SYSU-CD data set. 

 
Figure 6. Image patch examples and corresponding reference images of the WHU-CD data set. Figure 6. Image patch examples and corresponding reference images of the WHU-CD data set.

Remote Sens. 2023, 15, 694 12 of 25 
 

 

 
Figure 7. Image patch examples and corresponding reference images of the LEVIR-CD data set. 

Two VHR SAR data sets were involved. The first one was the Wuhan-SAR data set, 
which was composed of a pair of images acquired by TerraSAR-X sensor with 1 m/pixel 
covering a suburban area of Wuhan, China. The image size is 780 × 870 pixels, as shown 
in the first row of Figure 8. The second one was the Shanghai-SAR data set, a pair of 
images covering an area in Shanghai, China, which were acquired by Gaofen-3 sensor 
with the size of 457 × 553 and 1 m/pixel, as shown in the second row of Figure 8. 

 
(a) (b) (c) 

Figure 8. SAR data sets. (a) Image T1. (b) Image T2. (c) Reference change map. 

Five VHR heterogeneous optical/SAR data sets (Data 1~5) were involved. The first 
one consisted of an optical image acquired by QuickBird in July 2006 and an SAR image 
captured by TerraSAR-X in July 2007, with a spatial resolution of 0.65 m. The mainly 
changed information was the flooding in Gloucester, England. The second to the fifth 
data sets all included a Google image and a Gaofen-3 SAR image, covering different cit-
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Figure 7. Image patch examples and corresponding reference images of the LEVIR-CD data set.

Two VHR SAR data sets were involved. The first one was the Wuhan-SAR data set,
which was composed of a pair of images acquired by TerraSAR-X sensor with 1 m/pixel
covering a suburban area of Wuhan, China. The image size is 780 × 870 pixels, as shown in
the first row of Figure 8. The second one was the Shanghai-SAR data set, a pair of images
covering an area in Shanghai, China, which were acquired by Gaofen-3 sensor with the size
of 457 × 553 and 1 m/pixel, as shown in the second row of Figure 8.
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Five VHR heterogeneous optical/SAR data sets (Data 1~5) were involved. The first
one consisted of an optical image acquired by QuickBird in July 2006 and an SAR image
captured by TerraSAR-X in July 2007, with a spatial resolution of 0.65 m. The mainly
changed information was the flooding in Gloucester, England. The second to the fifth data
sets all included a Google image and a Gaofen-3 SAR image, covering different cities in
China, including Shanghai, Zhengzhou, Huizhou and Xiangshui, respectively. The spatial
resolution was 1 m and the main types of changes were construction and demolition of
buildings, and areas covered by water. These five data sets are shown in Figure 9.
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4.2. Implementation and Evaluation Metrics

We implemented the proposed method via PyTorch library. In the training phase, we
fixed the learning rate as 0.001 and the momentum as 0.9. As the proposed method was
semi-supervised, for each image pair introduced in Section 5-A, we randomly selected 5%
of the objects under the fine scale as labeled nodes after superpixel segmentation, while
the other 95% of the objects were used as testing nodes. A hypergraph was constructed
and trained for each image pair. The number of HGNN layers was set to 2, as per L = 2 in
formula (16). The proposed networks were trained with 400 epochs and the dropout rate
was 0.5, and the weight decay was 0.0005. All experiments were conducted on a single
GeForce GTX 1080Ti GPU.

To evaluate the performance of the proposed method, we utilized four quantitative
metrics: false alarm rate (FAR), missed alarm rate (MAR), overall accuracy (OA) and Kappa
coefficient (Kappa), F1 score (F1), and intersection of union (IOU).

4.3. Experiments on Optical Images

To verify the superiority of DNHGNN on optical remote sensing CD tasks, the follow-
ing seven benchmark methods were selected as competitors:

(1) FC-Siam-con: The FC-Siam-con [58] uses a Siamese encoding stream to extract deep
features from bi-temporal images. The features were then concatenated in the decoding
stream for CD.

(2) FC-Siam-diff: Different from the FC-Siam-con, FC-Siam-diff [58] uses absolute differ-
ence between the bi-temporal features to decide changed degrees.

(3) Siam-NestedUNet: The Siam-NestedUNet [67] uses a Siamese semantic segmentation
network UNet++ to extract features of different resolution. Following that, the features
are fed into an ensemble channel attention module.

(4) DSIFN: A deeply supervised image fusion network (DSIFN) [68] has been proposed
which consists of a shared deep feature network and a difference discrimination
network, which utilizes the channel attention module and spatial attention module.

(5) DSAMNet: The deeply supervised attention metric-based network (DSAMNet) em-
ploys a metric module to learn change maps by means of deep metric learning, in
which convolutional block attention modules are integrated to provide more discrimi-
native features [65].

(6) GCNCD: A GCN-based method that utilizes several types of hand-crafted features to
build to feature sets of nodes [50].

(7) MSGCN: A multiscale GCN has been proposed which can fuse the outputs of GCN
under different segmented scales [51].

The first five methods are supervised; thus, we used 12,000 pairs of images for training,
4000 pairs for verification, 4000 pairs for testing on the SYSU-CD data set and 3600 pairs
for training, 1200 pairs for verification, and 1200 pairs for testing on the WHU-CD data set,
respectively. The parameters in these methods are set to be as consistent as possible with
the original literature. The GCNCD and MSGCN are semi-supervised as DNHGNN. Thus,
to ensure fair comparisons, we randomly selected 5% of the objects under the fine scale as
labeled nodes. The two scale parameters of multiscale segmentation were set as 8 and 15
for both data sets.

Some typical results of SYSU-CD and WHU-CD are presented in Figures 10–12. The
results generated by the three GNN-based methods (GCNCD, MSGCN and DNHGNN)
can reflect main information regarding changes. In contrast, one can see that change maps
provided by FC-Siam-con, FC-Siam-diff and DSIFN are affected by significant salt-and-
pepper noise where numerous unchanged pixels are misclassified as changed ones (marked
by the red boxes in Figures 10d,e,g and 11d,e,g). The reason is that they have limited
immune capabilities on the spectral variations. Obvious false alarms also occur in the
results of these three methods (see the red ellipses in Figures 10d,e,g and 11d,e). In addition,
some changed regions in the results of DSIFN are not homogeneous enough, such as the
image presented in the first row of column (g). The Siam-NestedUnet addresses these issues
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well by introducing the ensemble channel attention module, and thus causes fewer false
alarms. However, the boundaries between changed and unchanged regions are inaccurate
in some results, as can be seen in the blue boxes of Figures 10f, 11f and 12f, as the results
fail to partition the changed and unchanged regions. The DSAMNet achieves relatively
good performance on some image pairs, such as the second row of Figure 10h and the
fourth row of Figure 11h, but false alarms are still relatively high in some results, such as
the red ellipses in Figure 11h. Moreover, DSAMNet loses some changed regions, which
are marked by the blue boxes in Figure 10h. GCNCD can obtain results with relatively
complete regions. Nevertheless, some boundaries are inaccurate (see the blue boxes in
Figures 10i and 11i), as the discrimination of hand-crafted features is limited. MSGCN
seems to obtain similar results as DNHGNN. Interpreted in detail, the results of DNHGNN
are more consistent with the reference maps. In some regions with complex structures,
DNHGNN achieves higher precision, as shown by the blue boxes in Figures 10j and 11j.
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Figure 10. Some typical CD maps by different methods on the SYSU-CD data set. (a) Image T1.
(b) Images T2. (c) Reference change map. (d) FC-Siam-con. (e) FC-Siam-diff. (f) Siam-NestedUNet.
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Table 1 reports the quantitative evaluation results of different methods. It can be
concluded that the proposed DNHGNN outperforms all the compared methods in terms
of OA, Kappa, F1 and IOU on all data sets. In addition, it clearly reaches the lowest MAR
on the SYSU-CD and LEVIR-CD data sets, and the second-lowest on the WHU-CD data
set. Regarding the FARs, those of DNHGNN are also relatively low. Compared with other
methods, the DNHGNN yields an improvement of at least 4.92%, 0.78%, 2.66%, 1.49%
and 2.27% for MAR, OA, Kappa, F1, and IOU, respectively, on the SYSU-CD data set. The
improvement on the WHU-CD and LEVIR-CD data sets is also evident. For the SYSU-
CD data set, GCNCD and MSGCN achieve slightly lower FARs than that of DNHGNN.
However, they yield significantly higher MARs, resulting in the loss of some structural
information in changed regions as the analysis above. On the whole, the DNHGNN
can suppress false alarms and reduce missed detections simultaneously. The reasons for
this behavior are: (1) the combination of pixel-wise high-level features with object-based
extraction improves the robustness on the misregistration errors and spectral variations,
and this can reduce the false alarms and missed detection; and (2) when constructing the
hypergraph, the utilization of dual neighborhood helps capture the structural information
of complex regions effectively and accurately.
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Table 1. Quantitative accuracy results for different methods on the optical data sets (%).

Data set Method FAR MAR OA Kappa F1 IOU

SYSU-CD

FC-Siam-con 4.57 36.29 88.91 62.30 65.21 55.17
FC-Siam-diff 7.77 39.27 86.51 54.03 58.30 48.65

Siam-NestedUnet 3.26 24.41 92.12 73.47 77.02 65.12
DSIFN 5.20 18.75 91.79 72.72 76.29 63.86

DSAMNet 2.97 17.77 93.60 78.29 82.65 72.33
GCNCD 1.92 20.02 95.01 82.21 88.01 80.13
MSGCN 1.83 15.06 95.94 85.22 89.91 82.77

DNHGNN 2.08 10.14 96.72 87.88 91.40 85.04

WHU-CD

FC-Siam-con 4.31 44.79 91.03 52.46 56.10 42.89
FC-Siam-diff 4.63 44.07 90.88 49.60 53.22 41.77

Siam-NestedUnet 0.89 53.55 93.07 54.54 60.05 47.32
DSIFN 2.39 24.78 94.49 67.83 71.37 60.59

DSAMNet 3.35 15.09 95.06 74.22 80.07 67.19
GCNCD 1.70 34.13 95.30 70.74 75.10 62.54
MSGCN 1.78 24.53 96.01 76.83 81.11 70.66

DNHGNN 1.16 18.97 97.05 82.19 85.42 74.12

LEVIR-CD

FC-Siam-con 6.23 41.91 88.57 56.57 59.20 48.37
FC-Siam-diff 3.97 31.24 90.69 63.41 67.45 55.44

Siam-NestedUnet 0.54 42.98 89.88 61.74 63.54 52.83
DSIFN 2.42 25.21 93.89 67.52 71.28 57.21

DSAMNet 3.32 29.45 94.12 64.96 68.91 56.01
GCNCD 2.31 26.79 92.80 66.88 70.77 56.84
MSGCN 1.76 23.89 95.49 72.71 75.02 60.56

DNHGNN 1.37 23.01 95.70 74.86 79.16 64.21

4.4. Experiments on SAR Images

The following six state-of-the-art methods are selected to compare with the proposed
DNHGNN on SAR images:

(1) PCA-Kmeans. A PCA-based method [7], in which the K-means approach was used
for binary classification.

(2) ELM. An extreme learning machine-based method for CD in SAR images [69].
(3) S-PCA-Net. The S-PCA-Net [70] introduced the imbalanced learning process into

PCA-Net [71].
(4) CWNN. The method used convolutional wavelet neural network (CWNN) instead of

CNN to extract robust features with better noise immunity for SAR image CD [72].
(5) CNN. The method used a novel CNN framework without any preprocessing opera-

tions, which can automatically extract the spatial characteristics [73].
(6) MSGCN [51].

The scale parameters of multiscale segmentation in MSGCN and DNHGNN are set as
10, 15 for the Wuhan-SAR data set and 15, 25 for the Shanghai-SAR data set, respectively.

The visual results on the two SAR data sets are shown in Figure 13. As can be seen,
many false alarms appear in the results generated by PCA-Kmeans, ELM, S-PCA-Net
and CWNN in both data sets, as per the red boxes in Figure 13a–d. The reason is that
these methods are essential pixel-based methods, which may have poor immunity to the
severe speckle noise that is commonly prevalent in VHR SAR images. Additionally, the
homogeneity within the regions of changed buildings is not ideal, where the completeness
of the buildings can hardly be represented by the results of these four methods (see the
yellow boxes in Figure 13a–d). In contrast, CNN, MSGCN and DNHGNN can effectively
suppress false alarms. However, more changed regions are missed in the results of CNN.
For example, in the regions of yellow boxes in Figure 13e, the areas of changed buildings
are fragmentary. The results of MSGCN lose more structural information compared with
those of DNHGNN, as marked by the yellow box in Figure 13f.
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Table 2 shows the quantitative evaluation results on the two SAR data sets. DNHGNN
achieves the best in terms of all indices on the Wuhan-SAR data set. For the Shanghai-
SAR data set, the MAR, OA, Kappa, F1 and UOI of DNHGNN are likewise the best.
Although DNHGNN achieves a higher FAR than CNN, the MAR is much lower. Due to
the complicated noise situation, the performances of the PCA-Kmeans, ELM, S-PCA-Net
and CWNN are not ideal. Obviously, the FARs of these four methods are much higher
than those of others. Although CNN achieves the lowest FAR, it yields significantly higher
MAR, which is as high as 57.08%, and this means that many changed pixels are missed in
the results of CNN, as per our analysis in the aforementioned visual results. Comparing
the indices comprehensively, DNHGNN produces the best results on both data sets.

Table 2. Quantitative accuracy results for different methods on the SAR data sets (%).

Methods
Wuhan Shanghai

FAR MAR OA Kappa F1 IOU FAR MAR OA Kappa F1 IOU

PCA-Kmeans 11.80 37.22 84.20 49.11 54.11 45.85 11.51 40.11 85.56 38.52 42.22 35.10
ELM 4.15 37.21 90.65 62.45 66.03 50.36 8.89 39.80 88.06 43.33 46.21 36.97

S-PCA-Net 2.71 32.91 92.54 70.58 73.21 58.64 4.43 39.74 92.08 55.65 60.16 48.85
CWNN 3.61 28.92 92.41 71.21 75.87 61.77 10.97 36.50 86.51 40.93 44.37 35.81
CNN 3.41 28.87 92.59 71.78 77.10 63.74 0.76 57.08 93.68 54.27 59.54 46.22

MSGCN 2.97 16.73 94.87 80.57 83.30 71.92 0.77 42.71 94.89 65.49 70.09 59.94
DNHGNN 2.30 15.64 95.60 83.17 84.94 74.33 2.80 29.15 94.60 69.14 73.58 62.45

4.5. Experiments on Heterogeneous Optical/SAR Images

We validated proposed DNHGNN on heterogeneous images comparing with the
following benchmark methods:

(1) FPMS [74]. The fractal projection and Markovian segmentation-based method (FPMS)
projects the pre-event image to the domain of post-event image by fractal projection.
Then, an MRF segmentation model is employed to obtain change maps.

(2) CICM [75]. A concentric circular invariant convolution model (CICM) is proposed to
project one image into the imaging modality of the other.

(3) IRG-MCS [76]. The authors define an Iterative robust similarity graph to measure
changed degree.

(4) SCASC. A method which uses a regression model with sparse constrained adaptive
structure consistency [77].
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(5) GIR-MRF [78]. A structured graph learning based method, which first learns a robust
graph to capture the local and global structure information of the image, and then
projects the graph to the domain of the other image to complete the image regression.

(6) MSGCN [51].

The scale parameters in MSGCN and DNHGNN are set as 25, 50 for the first data set
and 12, 30 for the others.

Figure 14 shows the change maps of all comparing methods on the heterogeneous
optical/SAR data sets. It can be observed that the performances of FPMS, CICM, and
IRG-MCS are unsatisfactory, as they not only cause many false alarms (marked by red
boxes in Figure 14a–c), but also miss some mainly changed regions, such as those shown
by the yellow boxes in Figure 14a–c. SCASC seem to achieve better performances than
those of the above three methods. Nevertheless, the missing of changed regions is still
present, as can be seen in the yellow boxes in Figure 14d. Intuitively, GIR-MRF and MSGCN
can capture the mainly changed information as DNGHNN does. However, interpreted in
details, GIR-MRF causes more false alarms than DNGHNN (see the red boxes in Figure 14e).
Compared with DNGHNN, MSGCN fails to accurately capture some shapes of changed
regions, such as those marked by the yellow boxes in Figure 14f.
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The quantitative evaluation results on the two heterogeneous data sets are listed in
Table 3. DNHGNN outperforms other methods significantly in terms of OA, Kappa, F1
and IOU. As it is consistent with the visual comparison of Figure 14, the relatively low
MAR and FAR mean that DNHGNN can effectively suppress the false alarms and avoid
the missed detection simultaneously. On the whole, the proposed DNHGNN outperforms
the benchmark methods and the reasons of this behavior may be as follows:
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Table 3. Quantitative accuracy results for different methods on the heterogeneous data sets (%).

Data set Method FAR MAR OA Kappa F1 IOU

Data 1

FPMS 2.55 10.28 97.01 75.73 78.86 65.36
CICM 8.36 34.32 90.17 38.41 44.21 33.56

IRG-MCS 1.18 27.74 97.21 74.36 76.89 64.13
SCASC 1.21 17.98 97.65 80.47 82.24 71.20

GIR-MRF 2.11 6.07 97.77 81.62 85.11 75.23
MSGCN 1.11 13.03 98.15 84.34 86.45 76.80

DNHGNN 0.56 13.26 98.66 88.10 89.82 79.88

Data 2

FPMS 6.57 11.24 93.03 64.96 68.66 52.28
CICM 8.54 82.75 85.08 13.47 16.58 9.04

IRG-MCS 4.00 45.50 92.43 51.19 55.32 38.24
SCASC 6.63 30.40 91.33 53.30 57.99 40.83

GIR-MRF 6.48 16.86 92.63 62.04 65.98 49.23
MSGCN 3.30 14.58 95.73 75.14 77.48 63.23

DNHGNN 1.05 9.93 98.19 88.53 89.52 81.03

Data 3

FPMS 10.27 44.02 85.66 40.30 48.45 31.97
CICM 4.95 53.21 89.24 45.16 51.14 34.68

IRG-MCS 8.93 80.23 81.82 12.14 13.23 8.08
SCASC 6.58 47.76 88.47 45.60 52.16 35.28

GIR-MRF 8.64 38.38 87.78 47.87 54.83 37.77
MSGCN 1.29 17.10 96.81 84.40 85.20 75.75

DNHGNN 1.57 4.05 98.13 91.44 92.51 86.06

Data 4

FPMS 7.96 82.12 83.86 11.76 14.11 9.23
CICM 5.85 87.21 83.78 10.73 13.54 8.87

IRG-MCS 8.79 88.12 81.56 10.12 13.01 8.24
SCASC 4.89 14.28 94.03 73.13 76.69 62.19

GIR-MRF 6.22 11.99 93.12 70.68 74.56 59.43
MSGCN 0.53 10.82 98.29 91.34 92.29 85.69

DNHGNN 0.38 6.19 98.95 94.77 95.36 91.13

Data 5

FPMS 5.24 51.11 91.73 39.43 43.84 28.07
CICM 9.35 39.68 88.65 35.65 41.22 25.96

IRG-MCS 9.92 84.25 85.47 14.10 17.20 9.02
SCASC 3.86 3.95 96.14 74.63 76.64 62.13

GIR-MRF 3.64 4.57 96.30 75.32 77.26 62.95
MSGCN 0.13 17.54 98.72 88.79 89.46 80.94

DNHGNN 0.19 9.56 99.19 93.22 93.65 88.06

(1) Different from the methods based on regression or feature projection, DNHGNN
treats CD as a classification task and obtain features from the same feature space, which
may avoid the influence of heterogeneity between images.

(2) The hypergraph neural networks make full use of the small amount of labeled
samples (5%) to identify the labels of unlabeled nodes.

5. Discussion

In the following, we discuss the robustness to the scale parameters and the influence
of the ratio of labeled samples.

5.1. Robustness to the Scale Parameters

In order to capture more comprehensive information of the ground objects and reduce
the number of nodes, we segment the input image pair under one fine scale parameter S1
and one coarse S2, respectively. Each object under S1 is treated as a node and the father-
child relationships between objects under S1 and S2 are used to construct hypergraphs.
Thus, the scale parameters are pivotal to the performance of DNHGNN.

To ensure the homogeneity of each object, we set S1 to a relatively small value to
guarantee moderate over-segmentation. Nevertheless, S2 needs to be further considered.
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As an object under S2 is merged by several objects under S1, different S2 can obtain distinctly
structural information. To be specific, when fixing the fine scale parameter, a larger S2
would result in more nodes within a hyperedge, and this means that usable information
within a hyperedge increases, but may lead to redundancy. Consequently, in this section,
for each image pair, we fix the S1 and set S2 to different values to discuss the performance.

Figure 15 shows two samples of optical CD results with S1 = 8 and different S2, in
steps of 3. As can be seen in the first row of Figure 15, when S2 increases from 15 to 18, the
changed building in the up-left region is detected more precisely, while when S2 increases
from 21 to 24, the detected structure of this building is not integrated again due to the
utilization of some redundant information. This phenomenon also occurs in the second row
of Figure 15. On the whole, all results shown in Figure 15 can capture the main changed
information, with some discrepancy in complex regions. Meanwhile, all these results can
effectively suppress false alarms, as we can see that a small number of unchanged pixels
are misclassified as changed ones.
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Figure 15. Two samples of CD results by DNHGNN with fixed S1 = 8 and different S2. (a) Image
T1. (b) Image T2. (c) Reference change map. (d) S2 = 15. (e) S2 = 18. (f) S2 = 21. (g) S2 = 24.
(h) S2 = 27. (i) S2 = 30.

The corresponding OA and Kappa are displayed in Figure 16. It can be observed that
both OA and Kappa maintain relatively high values and the discrepancy is not evident.
Although the best S2 is hard to determine, the performances under all S2 ∈ [15, 30] are
acceptable. It means we can set S2 in a relatively large range. In other words, the method
has good robustness to the scale parameters.
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5.2. Influence of the Ratio of Labeled Samples

As a semi-supervised method, the motivation of DNHGNN is to infer the labels of
nodes using only a few labeled nodes. Without doubt, the performance of DNHGNN
would be influenced by the number of labeled samples. For each pair of input images, a
part of the segmented objects are randomly selected as training samples, as per the red
solid circles shown in Figure 2. In our experiments, the numbers of segmented objects
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vary widely for different images. Thus, we utilize the ratio of labeled samples to evaluate
the unavoidable influence. Figure 17 shows the OA and Kappa under different ratios of
labeled samples using the image pairs of Figure 15 as input. It can be seen that higher
ratios can obtain higher OA and Kappa, due to the increase of supervised information
helping to more accurately infer the labels of nodes. It is noteworthy that the improvement
of OA is not notable, as the DNHGNN has achieved a relatively high OA when the ratio is
only 5%. From another point of view, this phenomenon demonstrates that the DNHGNN
can achieve promising performance with relatively few labeled samples, which makes it
valuable and feasible in many applications.
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6. Conclusions

In this article, a semi-supervised hypergraph neural network is proposed for change
detection. The main idea of the presented framework is to model the high-order relation-
ships commonly existing in VHR images using hypergraph and to propagate information
through the defined hypergraph convolution. To reduce the number of nodes and obtain
object-wise features with semantic information, the input image pair is firstly segmented
through FNEA with one fine scale parameter and one coarse one, respectively. Treating
each object under fine scale parameter as a node, the node features can be obtained by
combining the segmentation with a pre-trained U-net. The hyperedges are constructed
based on a defined dual neighborhood which uses not only spatial adjacent relationships
under the fine scale, but also the father-child relationships between the two scales. Af-
ter that, the constructed hyperedges can represent objects with complex structure more
comprehensively. With the help of the structural information, the hypergraph convolution
operations can accurately propagate the label information from labeled nodes to unlabeled
ones. The experimental results on both homogeneous and heterogeneous remote sensing
images have demonstrated the superiority of the proposed DNHGNN. Our future work is
to extend the framework to time-series images.
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