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Abstract: The aim of infrared (IR) and visible image fusion is to generate a more informative image
for human observation or some other computer vision tasks. The activity-level measurement and
weight assignment are two key parts in image fusion. In this paper, we propose a novel IR and
visible fusion method based on the principal component analysis network (PCANet) and an image
pyramid. Firstly, we use the lightweight deep learning network, a PCANet, to obtain the activity-level
measurement and weight assignment of IR and visible images. The activity-level measurement
obtained by the PCANet has a stronger representation ability for focusing on IR target perception
and visible detail description. Secondly, the weights and the source images are decomposed into
multiple scales by the image pyramid, and the weighted-average fusion rule is applied at each scale.
Finally, the fused image is obtained by reconstruction. The effectiveness of the proposed algorithm
was verified by two datasets with more than eighty pairs of test images in total. Compared with
nineteen representative methods, the experimental results demonstrate that the proposed method
can achieve the state-of-the-art results in both visual quality and objective evaluation metrics.

Keywords: image fusion; principal component analysis network; lightweight deep learning network;
image pyramid; infrared image

1. Introduction

An infrared (IR) sensor reflects the temperature or thermal radiation differences in
a scene and captures thermal radiation objects in the dark or in smoke. However, IR
images suffer from inconspicuous details, low contrast, and poor visibility. On the contrary,
visible images can clearly show the detailed information of objects and have higher spatial
resolution under great lighting conditions. For objects in poor lighting conditions or behind
smoke, visible images barely capture useful information. Therefore, the purpose of IR and
visible image fusion is to fuse the complementary features of two different modal images
to generate an image with clear IR objects and a pleasing background, helping people
understand the comprehensive information of the scene. The fusion of IR and visible
images has many applications in military and civilian settings, such as video surveillance,
object recognition, tracking, and remote sensing [1,2].

In recent years, the fusion of IR and visible images has become an active topic in
the field of image processing. Various image-fusion methods have been proposed one
after another, which are mainly divided into multi-scale transform (MST) methods, sparse
representation (SR) methods, saliency methods, and deep-learning methods.

For MST methods, the source images are firstly decomposed in multiple scales and
then fused by artificially designed fusion rules in different scales, and finally, the fused
image is obtained via reconstruction. An MST fusion method can decompose the source
images into different scales and extract more information to represent the source images.
The disadvantage of an MST is that it often relies on artificially designed complex fusion
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rules. The representative examples are the Laplacian pyramid (LP) [3], multi-resolution
singular value decomposition (MSVD) [4], discrete wavelet transform (DWT) [5], dual-
tree complex wavelet transform (DTCWT) [6], curvelet transform (CVT) [7], and target-
enhanced multiscale transform decomposition (TE-MST) [8].

The SR method firstly learns an over-complete dictionary, then performs sparse coding
on each sliding window block in the image to obtain sparse representation coefficients, and
finally, reconstructs the image through the over-complete dictionary. The SR methods are
robust to noise but usually have low computational efficiency. The representative examples
are joint sparsity model (JSM) [9], joint sparse representation (JSR) [10], and joint sparse
representation based on saliency detection (JSRSD) [11].

The saliency-based methods mainly perform fusion and reconstruction by extracting
weights in salient regions of the image, such as weighted least squares (WLS) [12] and
classification saliency-based rule for fusion (CSF) [13]. The advantage of saliency fusion
methods is highlighting salient regions in the fused image, and the disadvantage is that
saliency-based fusion rules are usually complicated.

In recent years, deep learning has been used for fusion tasks due to its powerful
feature extraction capability. In [14], CNN was first used for multi-focus image fusion.
Subsequently, in [15,16], a CNN was applied for IR and visible-image fusion, and for IR and
medical-image fusion. For these two CNN-based fusion methods, the authors designed
fusion rules based on three different situations. In addition, Li [17] et al. proposed a
deep-learning method based on a pre-trained VGG-19, and adopted the fusion rules of the
l1-norm and weighted averages. In [18], Li et al. developed a fusion method based on a
pre-trained ResNet and applied the fusion rules of zero-phase component analysis (ZCA)
and the l1-norm. Recently, more and more deep-learning fusion methods based on gener-
ative adversarial networks have been proposed. Ma et al. [19] proposed a fusion model,
FusionGAN, based on a generative adversarial network, and applied a discriminator to con-
tinuously optimize the generator to generate the fusion result. The authors [20] presented a
generative adversarial network with a dual-discriminator conditional, named DDcGAN,
which aims to keep the thermal radiation in the IR image and the texture details in the visi-
ble image at the same time. Ma et al. [21] developed a generative adversarial network with
multi-classification constraints (GANMcC) to transform the fusion problem into a multi-
distribution estimation problem. Although these fusion algorithms have achieved good
fusion results, they cannot effectively extract and combine the complementary features of
IR and visible images.

Therefore, we propose a novel IR and visible fusion method based on a principal
component analysis network (PCANet) [22] and an image pyramid [3,23]. The PCANet
is trained to encode a direct mapping from source images to the weight maps. In this
way, weight assignment can be obtained by performing activity-level measurement via
the PCANet. Since the human visual system processes information in a multi-resolution
way [24], a fusion method based on multi-resolution can produce fewer undesirable artifacts
and make the fusion process more consistent with human visual perception [15]. Therefore,
we used an image-pyramid-based framework to fuse IR and visible images. Compared
with other MST methods, the running time of image-pyramid decomposition is short,
which can improve the computational efficiency of the entire method [8].

The proposed algorithm has the following contributions:

• We propose a novel IR and visible image fusion method based on a PCANet and
image pyramid, aiming to perform activity-level measurement and weight assignment
through the lightweight deep learning model PCANet. The activity-level measurement
obtained by the PCANet has a strong representation ability by focusing on IR target
perception and visible-detail description.

• The effectiveness of the proposed algorithm was verified by 88 pairs of IR and visible
images in total and 19 competitive methods, demonstrating that the proposed algo-
rithm can achieve state-of-the-art performance in both visual quality and objective
evaluation metrics.
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The rest of the paper is arranged as follows: Section 2 briefly reviews PCANet, image
pyramids, and guided filters. The proposed IR and visible image fusion method is depicted
in Section 3. The experimental results and analyses are shown in Section 4. Finally, this
article is concluded in Section 5.

2. Related Work

In this section, for a comprehensive review of some algorithms most relevant to this
study, we focus on reviewing PCANet, the image pyramid, and the guided filter.

2.1. Principal Component Analysis Network (PCANet)

A principal component analysis network (PCANet) [22] is a lightweight, unsupervised
deep learning neural network mainly used for extracting features in images, and it can also
be considered as a simplified version of a CNN. In a PCANet, the critical task is the training
of PCA filter, which will be specifically introduced in the next section. A PCANet consists
of three components: cascaded two-stage PCA, binary hashing, and block histograms:

(1) Cascaded two-stage PCA: We assume that the filter bank W1 in the first stage of
the PCANet includes L1 filters W1

1 , W1
2 , . . . , W1

L1
, and the filter bank W2 in the second stage

contains L2 filters W2
1 , W2

2 , . . . , W2
L2

. Firstly, the input sample I is convolved with the l-th
filter W1

l of the first stage:

Il = I ∗W1
l , l = 1, 2, . . . , L1 (1)

where ∗ represents the convolution operation. Then, Il is convolved with the r-th filter W2
r

of the second stage:

Oq = Il ∗W2
r , l = 1, 2, . . . , L1, r = 1, 2, . . . , L2, q = 1, 2, . . . , L1L2 (2)

where Oq represents the output of I and L1L2 stands for the amount of output images.
(2) Binary hashing: Next, Oq will be binarized, and then these binary matrices are

converted to decimal matrices as:

Tl =
L2

∑
r=1

2r−1H
(

Il ∗W2
r

)
(3)

where Tl is the l-th decimal matrix for I, and H(·) is a Heaviside step function, whose value
is one for positive entries and zero otherwise.

(3) Block histograms: In this part, each Tl , l = 1, . . . , L1 is split into B blocks, and
we compute the histograms of the decimal values in each block and concatenate whole B
histograms into one vector Bhist

(
Tl
)

. Following this encoding process, the input image
I is transformed into a set of block-wise histograms. We ultimately acquire the feature
vectors as:

f =
[
Bhist

(
T1
)

, . . . , Bhist
(

TL1
)]T
∈ R(2L2)L1B (4)

where f is the network output.
The advantages of a PCANet are twofold:

• In the training stage, the PCANet obtains the convolution kernel through PCA auto-
encoding does not need to iterate calculations of the convolution kernel like other
deep learning methods.

• As a lightweight network, PCANet has only a few hyperparameters to be trained.

These two advantages make PCANet more efficient. PCANet has a wide range of
applications in various fields, such as image recognition [22], object detection [25,26], image
fusion [27], and signal classification [28,29].
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2.2. Image Pyramids

An image pyramid [3,23] is a collection of images that consists of multiple sub-images
of different resolutions of an image. In an image pyramid, the top-layer image has the lowest
resolution, and the bottom-layer images have the highest resolution. Image pyramids
include Gaussian pyramid and Laplacian pyramid [3].

In the Gaussian pyramid, we use I to represent the original image, that is, the 0-th
layer Gaussian pyramid GP0. We perform Gaussian filtering and interlaced subsampling on
GP0 to obtain the first layer of the Gaussian pyramid, GP1. Repeat the above operations to
obtain GP0, GP1, . . . , GPh, . . . , GPN (where GPh is the h-th layer of the Gaussian pyramid).

The Gaussian pyramid can be expressed as:{
GP0=I
GPh = REDUCE(GPh−1)

(5)

GPh(i, j) =
2

∑
m=−2

2

∑
n=−2

GPh−1(2i + m, 2j + n)s(m, n) (6)

where (i, j) represents the coordinates in the image, i ∈ [0, Rh − 1], j ∈ [0, Ch − 1], and
h ∈ [1, N]. N is the number of layers of Gaussian pyramid decomposition; Rh and Ch are
the numbers of rows and columns of the h-th layer of the Gaussian pyramid, respectively;
and s(m, n) is a 2D separable 5× 5 window function. By combining Equations (5) and (6),
we can get the Gaussian pyramid image sequence GP0, GP1, . . . , GPN , and the upper layer
is four times smaller than the lower layer.

On the other hand, we apply interpolation to enlarge the h-th layer Gaussian pyramid
GPh to obtain the image GP∗h :

GP∗h = EXPAND(GPh) (7)

where the size of GP∗h is the same as that of GPh−1. GP∗h can be denoted as:

GP∗h (i, j) = 4
2

∑
m=−2

2

∑
n=−2

GPh

(
i + m

2
,

j + n
2

)
s(m, n) (8)

where h ∈ [1, N], i ∈ [0, Rh − 1], j ∈ [0, Ch − 1]. When (i + m)
/

2 and (j + n)
/

2 are non-
integers:

GPh

(
i + m

2
,

j + n
2

)
= 0. (9)

The expansion sequence GP∗1 , GP∗2 , . . . , GP∗N can be obtained by Equations (7)–(9).
The Laplacian pyramid can be expressed as:

LPh = GPh − EXPAND(GPh+1) (10)

{
LPh = GPh − G∗h+1, h ∈ [0, N − 1]
LPN = GPN , h = N

(11)

where LP0, LP1, . . . , LPN represent Laplacian pyramid images, and LPN is the top layer.
The inverse Laplacian pyramid transform (reconstruction) process can be obtained

as follows: 
GPN = LPN
GPh = LPh + EXPAND(GPh+1), h ∈ [0, N − 1]
I = GP0

(12)
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where I is the reconstructed image.

2.3. Guided Filter

A guided filter [30] is an edge filter based on a local linear model which does not need
to perform convolution directly like most other filtering methods, and has simplicity, fast
speed, and great edge-preservation. We define that filter output q is a linear transform of
guidance image GI in a window ωk centered on pixel k:

qi = akGIi + bk, ∀i ∈ ωk (13)

where ak and bk are the linear coefficients in ωk.
To determine ak and bk, we minimize the difference between the filter output q and

the filter input p, i.e., the cost function:

E(ak, bk) = ∑
i∈ωk

(
(akGIi + bk − pi)

2 + εa2
k

)
(14)

where ε is a regularization parameter that serves to prevent ak from being too large. With
the above equation, we can enable the local linear model maximally similar to the input
image p in ωk.

ak and bk can be obtained by the following:

ak =

1
|ω| ∑i∈ωk

GIi pi − µk pk

σ2
k + ε

(15)

bk = pk − akµk. (16)

In the above equations, µk and σ2
k are the mean and variance of GI in ωk, |ω| is the

number of pixels in ωk, and p̄k =
1
|ω| ∑i∈ωk

pi is the mean of p in ωk.
We employ this linear model to all the local windows of the input image, but these

windows are overlapped, and their centers are located in ωk. Thus, the filter output is
averaged over all possible qi values by:

qi = aiGIi + bi (17)

where āi =
1
|ω| ∑k∈ωi

ak and b̄i =
1
|ω| ∑k∈ωi

bk are the mean coefficients acquired from whole
the overlapped windows, including pixel i.

Guided filter is performed by combining Equations (13)–(17), which can be simply
denoted by:

q = GuidedFilter(GI, p) (18)

where p indicates the input image, GI denotes the guidance image, and q represents the
filter output.

3. The Proposed Method

We propose a novel IR and visible fusion method based on PCANet and an image
pyramid. The activity-level measurement and weight assignment are two key parts of image
fusion. We used PCANet to perform activity-level measurement and weight assignment
because PCANet has stronger representation ability by focusing on IR target perception
and visible detail description. Due to the human visual system processing information
in a multi-resolution way [24], we apply an image pyramid to decompose and merge the
images at multiple scales in order to make the fused image details appear more suitable for
human visual perception.
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3.1. Overview

The proposed algorithm is exhibited in Figure 1. Our method consists of four steps:
PCANet initial weight map generation, spatial consistency, image-pyramid decomposi-
tion and fusion, and reconstruction. In the first step, we feed the two source images into
PCANet and get the initial weight maps. In the second step, we take advantage of the
spatial consistency to improve the quality of initial weight maps. The third step is image-
pyramid decomposition and fusion. On the one hand, the source images are multi-scale
transformed through the Laplacian pyramids. On the other hand, the initial weight maps
are decomposed into multiple scales through Gaussian pyramids, and the softmax opera-
tion is performed on each scale to obtain the weight maps of each layer. Then, the fused
image of each scale is obtained through a weighted-average strategy. In the last step, the
final fusion image is obtained by reconstructing the Laplacian pyramid.

Laplacian pyramid 

decomposition

IR image A LP{A}n

PCANet
Gaussian pyramid 

decomposition

Guided 

filter
Softmax LP{F}

n Laplacian pyramid 

reconstruction
GP{WA}n

GP{WB}n

Fusion

LP{B}nVisible image B

Laplacian pyramid 

decomposition

Fused image F

Initial weight 

map generation

Spatial 

consistency 

Image pyramid 

decomposition and fusion
Reconstruction

IWB

IWA

Figure 1. Schematic diagram of the proposed method.

3.2. PCANet Design

In our study, IR and visible image fusion is treated as a two-class classification problem.
For each pixel from the same position of the source images, a scalar from 0 to 1 is output
through PCANet to represent the probability of coming from different source images in the
fused image. Standard PCANet contains cascaded two-stage PCA, binary hashing, and
block histograms, where the role of the latter two components is to extract sparse features
of images. If the network includes binary hashing and block histograms, the output sparse
features have only two values of zero and one, and the size of the features are inconsistent
with the source images. In our fusion task, in order to obtain more accurate probability
values of the same position pixel from two source images and perform the fusion task
faster, we only use cascaded two-stage PCA. The network design of PCANet is shown in
Figure 2. In PCANet, the most important component is the PCA filter. In the next section,
we describe the training process of the PCA filter in detail. In the PCANet framework, firstly,
the input image is convolved with the first-stage PCA filter bank to obtain a series of feature
maps. Then, these feature maps are convolved with the second-stage PCA filter bank to
obtain more feature maps. These feature maps represent the details of the input image on
different objects. Particularly, the second-stage filters can extract more advanced features.
Two-stage PCA is usually sufficient to obtain a great effect, and a deeper architecture does
not necessarily lead to further improvements [22], so we selected cascaded two-stage PCA
for our experiments.
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The first-stage PCA 

filter bank 

The second-stage PCA 

filter bank

First stage Second stage

Figure 2. The PCANet model used in the proposed fusion method.

3.3. Training

The training of PCANet is essentially computing the PCA filter. PCA can be viewed
as the simplest class of an auto-encoder, which minimizes reconstruction error [22]. We
selected N images in the MS-COCO [31] database for training. In our experiments, we set
N to 40,000. Considering that the size of each image in the MS-COCO database is different,
each training image was converted into a 256× 256 grayscale image. The training process
of PCANet consisted of calculating two-stage PCA filter banks, and we assume that each
filter size was k1 × k2 in both stages. In the following, we describe the training process of
each stage in detail.

• The First Stage

In order to facilitate the convolution operation, each training image is preprocessed.
Preprocessing contains two steps: (1) Each sliding k1 × k2 patch in the i-th training im-
age Ii was converted into a column of Xi, where Xi = [xi,1, xi,2, . . . , xi,m̃ñ] ∈ Rk1k2×m̃ñ,
i = 1, 2, . . . N, m̃ = 256− k1 + 1, ñ = 256− k2 + 1. (2) The patch mean is subtracted from
each column in Xi to obtain X̄i = [x̄i,1, x̄i,2, . . . , x̄i,m̃ñ] ∈ Rk1k2×m̃ñ.

After the above preprocessing, we perform the same operation on N training images
to obtain X = [X̄1, X̄2, . . . , X̄N ] ∈ Rk1k2×Nm̃ñ. Then, we compute the covariance matrix C1
of X:

C1 =
XXT

Nm̃ñ
. (19)

Next, by calculating the eigenvalue Λ1 and eigenvector Q1 of the covariance matrix
C1, we can obtain:

C1 = Q1Λ1QT
1 (20)

where Λ1 is a diagonal matrix with k1k2 eigenvalues on the diagonal. Each column in Q1
indicates an eigenvector corresponding to the eigenvalue in Λ1, that is, the PCA filter. Par-
ticularly, the larger the eigenvalue, the more important the corresponding principal compo-
nent. Therefore, we select the eigenvectors corresponding to the top L1 largest eigenvalues
as the PCA filters. Accordingly, the l-th PCA filter can be expressed as W1

l , l = 1, 2, . . . , L1.
Clearly, the PCA filter bank of the first stage is denoted as:
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W1 =
[
W1

1, W1
2, . . . , W1

L1

]
. (21)

Actually, the role of the PCA filter bank is to capture the main changes in the input
image [22]. Next, we zero-pad the height and width boundaries of the i-th image Ii with
size k1 − 1 and size k2 − 1, respectively, so that the convolution outputs have the same size
as the source image. Then, Ii is preprocessed to obtain Īi. The Īi is convolved with the l-th
PCA filter in the first stage to obtain:

Tl
i = Īi ∗W1

l , i = 1, 2, . . . , N, l = 1, 2, . . . , L1 (22)

where ∗ represents the convolution operation and Tl
i indicates an input sample of the

second stage.

• The Second Stage

Firstly, almost the same as the first stage, the input image Tl
i is preprocessed to obtain

Ȳl
i = [ȳi,l,1, ȳi,l,2, . . . , ȳi,l,m̃ñ] ∈ Rk1k2×m̃ñ, and then the i-th input image is represented as

Yi =
[
Ȳ1

i , Ȳ2
i , . . . , ȲL1

i

]
∈ Rk1k2×L1m̃ñ. Performing the same for all N input images, we

obtain Y = [Y1, Y2, . . . , YN ] ∈ Rk1k2×NL1m̃ñ. Next, similar to the first stage, we compute the
covariance matrix C2 of Y:

C2 =
YYT

NL1m̃ñ
(23)

C2 = Q2Λ2QT
2 (24)

where Λ2 denotes the eigenvalues of the second stage, and Q2 represents the eigenvectors of
the second stage. We select the eigenvectors corresponding to the top L2 largest eigenvalues
as the filter bank of the second stage. Therefore, the r-th PCA filter in the second stage can
be denoted as W2

r , r = 1, 2, . . . , L2. The PCA filter bank of the second stage is indicated as:

W2 =
[
W2

1, W2
2, . . . , W2

L2

]
. (25)

Up till this point, the two-stage filter banks W1 and W2 of PCANet have been obtained.
The difference between the filters of the two stages is that the second-stage filters can extract
higher-level features than the first-stage.

3.4. Detailed Fusion Scheme
3.4.1. PCANet Initial Weight Map Generation

Let the input image A indicate an IR image and B represent a visible image, and they
are pre-registered images with the same size. Assume that each PCA filter size is k1 × k2
in both stages. Firstly, we zero-pad the height and width boundaries of A and B with
size k1 − 1 and size k2 − 1, respectively, so that the convolution outputs have the same
size as the source images. Next, the input image S, S ∈ {A, B}, takes advantage of the
preprocessing to obtain S̄ ∈ Rk1k2×m̃ñ. The S̄ is convolved with the l-th PCA filter in the
first stage:

Tl
S = S̄ ∗W1

l , l = 1, 2, . . . , L1. (26)

Through the first-stage filter bank W1, the first-stage PCANet outputs a total of L1

feature maps T1
S , T2

S , . . . , TL1
S .
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The second stage is similar to the first stage. Firstly, zero-padding is performed in each
Tl

S, and then preprocessing is taken to obtain Ūl
S ∈ Rk1k2×m̃ñ. Next, Ūl

S is convolved with
the r-th PCA filter in the second stage:

Oq
S = Ūl

S ∗W2
r , l = 1, 2, . . . , L1, r = 1, 2, . . . , L2, q = 1, 2, . . . , L1L2. (27)

The second-stage PCANet outputs a total of L1L2 feature maps O1
S, O2

S, . . . , OL1L2
S .

Next, we define the initial weight maps for IR image A and visible image B as IWA
and IWB:

IWA(x, y) = O1
A(x, y) + O2

A(x, y) + . . . + OL1L2
A (x, y) (28)

IWB(x, y) = O1
B(x, y) + O2

B(x, y) + . . . + OL1L2
B (x, y) (29)

where x and y represent the coordinates of the pixels in the image. Particularly, IWA and
IWB are the same size as the source images.

3.4.2. Spatial Consistency

Spatial consistency means that two adjacent pixels with similar brightness or color
will have a greater probability of having similar weights [32]. The initial weight maps are in
general noisy, which may create artifacts on the fused image. To improve the performance
of fusion, the initial weight maps need to be further processed. Specifically, we utilize a
guided filter [30] to improve the quality of the initial weight maps. The guided filter is a
very effective edge-preserving filter which can transform the structural information of the
guided image into the filtering result of the input image [30]. We adopt the source image S
as the guidance image to guide the absolute value of the initial weight map for filtering:

IWA=GuidedFilter(A, |IWA|) (30)

IWB=GuidedFilter(B, |IWB|) (31)

where A and B represent guidance images. In guided filter, we experimentally set the local
window radius to 50 and the regularization parameter to 0.1.

3.4.3. Image-Pyramid Decomposition and Fusion

We perform n-layer Gaussian pyramid decomposition [3,23] on IWA and IWB to obtain
GP{WA}n and GP{WB}n according to Equations (5) and (6). Each pyramid decomposition
layer is set to the value blog2 min(Hig, Wid)c, where Hig×Wid is the spatial size of source
images and b·c denotes the flooring operation. Then, GP{WA}n and GP{WB}n are fed into
a 2-way softmax layer, which produces probability values for two classes, denoting the
outcome of each weight assignment:

FW{A(x, y)}n =
eGP{WA(x,y)}n

eGP{WA(x,y)}n
+ eGP{WB(x,y)}n (32)

FW{B(x, y)}n =
eGP{WB(x,y)}n

eGP{WA(x,y)}n
+ eGP{WB(x,y)}n . (33)

The values of FW{A}n and FW{B}n are between zero and one, indicating the proba-
bilities that A and B take values at the same position pixel point. After the above operations,
the network can autonomously learn the features in the image and calculate the weight of
each pixel, avoiding the complexity and subjectivity of manually designing the fusion rules.
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In addition, we conduct n-layer Laplacian pyramid decomposition [3,23] on A and
B to obtain LP{A}n and LP{B}n according to Equations (10) and (11). The number of the
Laplacian pyramid’s decomposition layers is the same as that of the Gaussian pyramid.
It is noteworthy that FW{A}n and FW{B}n are the same sizes as LP{A}n and LP{B}n.
Then, the fused image L{F}n on each layer is obtained by the weighted-average rule:

L{F(x, y)}n = FW{A(x, y)}n × LP{A(x, y)}n + FW{B(x, y)}n × LP{B(x, y)}n. (34)

3.4.4. Reconstruction

Finally, we reconstruct the Laplacian pyramid L{F}n to obtain the fused image F
according to Equation (12). The main steps of the proposed IR and visible image fusion
method are summarized in Algorithm 1.

Algorithm 1 The proposed IR and visible image fusion algorithm.
Training phase
1. Initialize PCANet;
2. Calculate the first-stage PCA filter bank W1 via Equations (19)–(22);
3. Calculate the second-stage PCA filter bank W2 via Equations (23)–(25).
Testing (fusion) phase
Part 1: PCANet initial weight map generation
1. Feed IR image A and visible image B into PCANet to obtain the initial weight maps

according to Equations (26)–(29);
Part 2: Spatial consistency
2. Perform guided filtering on the absolute values of IWA and IWB according to

Equations (30) and (31);
Part 3: image-pyramid decomposition and fusion
3. Perform n-layer Gaussian pyramid decomposition on IWA and IWB to generate the

results GP{WA}n and GP{WB}n according to Equations (5) and (6);
4. Perform softmax operation at each layer to obtain FW{A}n and FW{B}n

according to Equations (32) and (33);
5. Perform n-layer Laplacian pyramid decomposition on A and B to obtain LP{A}n

and LP{B}n according to Equations (10) and (11);
6. Apply the weighted-average rule on each layer to generate the result L{F}n

according to Equation (34);
Part 4: Reconstruction
7. Reconstruct the Laplacian pyramid to obtain the fused image F according to

Equation (12).

4. Experiments and Discussions

In this section, the two experimental datasets and thirteen objective quality metrics
are introduced. Secondly, the effects of different sizes and various number of filters in our
method are discussed. Thirdly, we verify the effectiveness of our algorithm through two
ablation studies. Fourthly, the proposed algorithm is evaluated by using visual quality
and objective evaluation metrics. We selected nineteen state-of-the-art fusion methods to
compare with our algorithm. Finally, we show the computational efficiency of different
algorithms. All our experiments were performed on Intel (R) Core (TM) i7-11700, 64 GB
RAM, and MATLAB R2019a.

4.1. Datasets

In order to comprehensively verify the effectiveness of our algorithm, we selected
two datasets of different scenes for experiments, namely, the TNO dataset [33] and the
RoadScene [34] dataset. The TNO dataset consists of several hundred pairs of pre-registered
IR and visible images, mainly including military-related scenes, such as camps, helicopters,
fighter jets, and soldiers. We chose 44 pairs of images in TNO dataset as test images.
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Figure 3 exhibits eight pairs of testing images of the TNO dataset, where the top row
represents the IR images and the bottom row denotes the visible images.

Figure 3. Illustrations of 8 pairs of testing images of the TNO dataset.

Differently from the TNO dataset, the RoadScene dataset has 221 pairs of road-related
IR and visible pre-registered images, mainly including scenes of rural roads, urban roads,
and night roads. We selected 44 pairs of images in the RoadScene dataset as test images.
Figure 4 exhibits eight pairs of testing images of the RoadScene dataset, where the top row
indicates the IR images and the bottom row denotes the visible images.

Figure 4. Illustrations of 8 pairs of testing images of the RoadScene dataset.

4.2. Objective Image Fusion Quality Metrics

In order to verify the fusion effect of our algorithm, we selected 13 objective eval-
uation metrics to conduct experiments. In what follows, we precisely describe various
evaluation metrics:

• Yang’s metric QY [35]: QY is a fusion metric based on structural information, which
aims to calculate the degree to which structural information is transferred from the
source images into the fused image;

• Gradient-based metric QG [36]: QG provides a fusion metric of image gradient, which
reflects the degree of edge information of the source images preserved in the fusion image;

• Structural similarity index measure SSIM [37]: SSIM is a fusion index based on
structural similarity, which mainly calculates the structural similarity between the
fusion result and the source images;

• FMIw, FMIdct and FMIpixel [38] calculate wavelet features, discrete cosine, and feature
mutual information (FMI), respectively;

• Modified fusion artifacts measure Nab f [39]: Nab f provides a fusion index that in-
troduces noise or artifacts in the fused image, reflecting the proportion of noise or
artifacts generated in the fused image;

• Piella’s three metrics QS, QW , QE [40]: Piella’s three measures are on the basis of the
structural similarity between source images and the fused image;

• Phase-congruency-based metric QP [41]: QP calculates the degree to which salient
features in the source images are transferred to the fused image, and it is based on the
absolute measure of image features;

• Chen–Varshney metric QCV [42]: The metric QCV is based on the human vision system
and can fit the results of human visual inspection well;

• Chen–Blum metric QCB [43]: QCB is a fusion metric based on human visual percep-
tion quality.

In the above metrics, except Nab f and QCV , the larger the values, the better the fusion
performance. On the contrary, the smaller the values of Nab f and QCV , the better the fusion
effect. Among all the metrics, SSIM, Nab f , and QCB are the most important.
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4.3. Analysis of Free Parameters

PCANet is a lightweight network with only three free parameters: the number of
first-stage filters L1, the number of second-stage filters L2, and the size of the filter. We set
the filter sizes of the two stages to be the same. We used the 44 pairs of images in TNO
dataset to perform parameter setting experiments. The fusion performance is calculated by
the average values of 13 fusion metrics, and the best values are indicated in red.

4.3.1. The Effect of the Number of Filters

We discuss the effect of the number of filters on fusion performance. As shown in
Table 1, we fixed the PCA filter size to 3× 3, and then the number of first-stage filters L1
and the number of second-stage filters L2 were set to vary from 3 to 8. In PCANet, the
number of L1 and L2 affects the feature extraction of input samples. A higher number
of filters means that the model extracts more features. Table 1 shows the influences of
different numbers of L1 and L2 on the fusion performance. When L1 = L2 = 8, the model
obtains 10 best values. If the values of L1 and L2 are greater than eight, the model will take
more time, and the value of SSIM may be lower. We should keep the model as simple as
possible, so we set L1 = L2 = 8.

Table 1. The effect of the number of filters. L1 and L2 denote the numbers of first-stage and second-
stage filters, respectively.

L1 L2 QY QG SSIM FMIw FMIdct FMIpixel Nab f QS QW QE QP QCV QCB

3 3 0.6868 0.3662 0.7495 0.4168 0.3991 0.9079 0.0000 0.8019 0.7429 0.3432 0.3211 500.3300 0.4732
3 4 0.6874 0.3669 0.7495 0.4168 0.3991 0.9079 0.0000 0.8021 0.7432 0.3439 0.3212 497.5229 0.4733
4 4 0.6878 0.3676 0.7494 0.4169 0.3991 0.9080 0.0000 0.8024 0.7435 0.3447 0.3216 500.7296 0.4730
4 5 0.6886 0.3685 0.7494 0.4169 0.3991 0.9080 0.0000 0.8026 0.7439 0.3456 0.3219 500.0824 0.4734
5 5 0.6883 0.3681 0.7494 0.4169 0.3991 0.9080 0.0000 0.8026 0.7438 0.3454 0.3216 500.4060 0.4729
5 6 0.6885 0.3683 0.7494 0.4170 0.3992 0.9080 0.0000 0.8026 0.7437 0.3454 0.3216 500.6746 0.4731
6 6 0.6887 0.3685 0.7494 0.4170 0.3992 0.9080 0.0000 0.8028 0.7439 0.3456 0.3217 500.3191 0.4732
6 7 0.6888 0.3687 0.7494 0.4171 0.3993 0.9080 0.0000 0.8028 0.7439 0.3455 0.3217 500.0603 0.4735
7 7 0.6894 0.3692 0.7494 0.4171 0.3994 0.9080 0.0000 0.8030 0.7441 0.3463 0.3219 499.6389 0.4735
7 8 0.6897 0.3696 0.7494 0.4172 0.3994 0.9081 0.0000 0.8031 0.7442 0.3465 0.3218 499.4519 0.4733
8 8 0.6920 0.3726 0.7493 0.4175 0.3996 0.9081 0.0000 0.8042 0.7455 0.3489 0.3228 499.3465 0.4750

4.3.2. The Influence of Filter Size

In this experiment, we discuss the impact of filter size on fusion performance. In
Table 2, we fixed L1 = L2 = 8, and then the sizes of PCA filters were set to 3× 3, 5× 5, 7× 7,
9× 9, and 11× 11, respectively. In PCANet, different filter sizes affect receptive field and
feature extraction. A larger filter size means that the model extracts more features. Table 2
exhibits the influence of different filter size on the fusion performance. One can see that the
fusion performance is the best when the size of the PCA filter is 11× 11.

Table 2. The effect of filter size.

Size QY QG SSIM FMIw FMIdct FMIpixel Nab f QS QW QE QP QCV QCB

3× 3 0.6920 0.3726 0.7493 0.4175 0.3996 0.9081 0.0000 0.8042 0.7455 0.3489 0.3228 499.3465 0.4750
5× 5 0.7163 0.4020 0.7476 0.4195 0.3982 0.9108 0.0000 0.8131 0.7707 0.4152 0.3441 466.6789 0.4675
7× 7 0.7511 0.4434 0.7432 0.4244 0.3932 0.9133 0.0000 0.8216 0.8008 0.5020 0.3776 449.1673 0.4755
9× 9 0.7864 0.4786 0.7374 0.4306 0.3829 0.9150 0.0001 0.8251 0.8207 0.5659 0.4065 427.3843 0.4879

11× 11 0.8238 0.5097 0.7299 0.4406 0.3719 0.9162 0.0002 0.8240 0.8277 0.5998 0.4333 407.4069 0.4959

Therefore, we set L1 = L2 = 8, and the PCA filter size was 11× 11.
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4.4. Ablation Study

In this part, we conducted two ablation studies to verify the effectiveness of the image
pyramid and guided filter.

4.4.1. The Ablation Study of the Image Pyramid

Figure 5 shows the results of image pyramid ablation experiment. We compared the
model with and without image pyramids regarding the fusion results. The first column
represents the IR image, the second column denotes the visible image, the third column
indicates the model without the image pyramid, and the fourth column represents the
model with the image pyramid. Except the image pyramid, other parameters were the
same. For the four examples, the fusion results for the model with the image pyramid
are better than the fusion results for the model without the image pyramid. The fusion
results for without the pyramid introduce some artifacts and noises, and the model with the
pyramid almost eliminated these artifacts and the noise through multi-scale decomposition
(see the red boxes in Figure 5).

(a) IR image (b) Visible image (c) Without pyramid (d) With pyramid

(e) IR image (f) Visible image (g) Without pyramid (h) With pyramid

(i) IR image (j) Visible image (k) Without pyramid (l) With pyramid

(m) IR image (n) Visible image (o) Without pyramid (p) With pyramid

Figure 5. The ablation study of the image pyramid. The first column has IR images, the second
column has visible images, the third column has images without the use of the image pyramid, and
the fourth column has images with the use of the image pyramid.

We used the 44 pairs of images in the TNO dataset to verify the effect of the model
with and without image pyramids. Table 3 shows the average value of each evaluation
index and the fusion time for 44 pairs of images. The best values are indicated in red. The
running times of the two models were almost the same, and the model with image pyramid
obtained eight optimal values. Combined with visual quality and objective evaluation
metrics, it is proved that the algorithm with the image pyramid is better.
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Table 3. The average value of with and without image pyramids on the TNO dataset (unit: seconds).

Method QY QG SSIM FMIw FMIdct FMIpixel Nab f QS QW QE QP QCV QCB Time

With pyramid 0.8238 0.5097 0.7299 0.4406 0.3719 0.9162 0.0002 0.8240 0.8277 0.5998 0.4333 407.4069 0.4959 257.6713
Without pyramid 0.8218 0.4936 0.7308 0.4366 0.3649 0.9162 0.0012 0.8269 0.8314 0.5937 0.4326 360.0513 0.5008 251.6412

4.4.2. The Ablation Study of the Guided Filter

Figure 6 shows the results of the guided-filter ablation experiment. We compare the
model with and without guided filtering. The first column has IR images, the second
column has visible images, the third column has images produced without guided filtering,
and the fourth column has images produced with guided filtering. All other parameter
settings were the same. There are some obvious artifacts and noise in the red boxes in
the third column of Figure 6. After guided filtering, these artifacts and the noise were
eliminated. It can be seen in the figure that the fusion effect with guided filtering is better.

(a) IR image (b) Visible image (c) Without filtering (d) With filtering

(e) IR image (f) Visible image (g) Without filtering (h) With filtering

(i) IR image (j) Visible image (k) Without filtering (l) With filtering

(m) IR image (n) Visible image (o) Without filtering (p) With filtering

Figure 6. The ablation study of the guided filter. The first column has IR images, the second column
has visible images, the third column has images produced without guided filtering, and the fourth
column has images produced with guided filtering.

4.5. Experimental Results and Discussion
4.5.1. Comparison with State-of-the-Art Competitive Algorithms on the TNO Dataset

We used the TNO dataset to verify the performance of our algorithm. The competitive
algorithms numbered 19: MST methods (MSVD [4], DWT [5], DTCWT [6], CVT [7], ML-
GCF [44], and TE-MST [8]), SR methods (JSM [9], JSR [10], and JSRSD [11]), deep learning
methods (FusionGAN [19], GANMcC [21], PMGI [45], RFN-Nest [46], CSF [13], DRF [47],
FusionDN [34], and DDcGAN [20]), and other methods (GTF [48] and DRTV [49]). In
particular, the comparative algorithms based on deep learning have been proposed in the
last three years. The corresponding parameter settings in the comparison algorithms were
set to the default values given by their authors.

In our approach, we set the filter size to 11× 11 for both stages, and the number of
filters to eight for both stages. The number of image-pyramid decomposition layers was
n, n = blog2min(Hig, Wid)c, where Hig×Wid represents the size of the source images
and b·c denotes the flooring operation. We set the radius of the guided filter to 50 and
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the regularization parameter to 0.1. The fusion performance of the proposed method was
evaluated by comparing the visual quality and objective evaluation metrics.

Figures 7 and 8 show two representative examples. For better comparison, some
regions in the fused images are marked with rectangular boxes. Figure 7 shows the fusion
results of “Queen Road” source images. The described nighttime scene includes rich
content, containing pedestrians, cars, street lights, and shops. IR images exhibit thermal
radiation information of pedestrians, vehicles, and street lights, while visible images
provide clearer details, especially the details of the plate of storefront. The ideal fusion
result of this example is to preserve the thermal radiation information in the IR image while
extracting the details in the visible image. Pedestrians in the MSVD, DTCWT, and CVT
methods suffer from low brightness and contrast (see red and orange boxes in Figure 7c,e,f).
The DWT-based method introduces undesired small rectangular blocks (see three boxes
in Figure 7d). Although the MLGCF algorithm can extract the thermal objects well, the
whole image is too dark. The TE-MST technique has high fusion quality, but it introduces
too much of the infrared spectrum to the plate of storefront, resulting in an unnatural
visual experience (see the green box in Figure 7h). The plate of storefront in the JSM fusion
result is clearly blurred (see the green box in Figure 7i). Although JSR and JSRSD schemes
achieve a great fusion effect, their backgrounds lack some details. Both GTF and DRTV
methods suffer from low fusion performance, especially the lack of details on the plate of
storefront (see green boxes in Figure 7l,m). Among the deep-learning-based algorithms,
the FusionGAN, GANMcC, PMGI, and RFN-Nest methods cannot extract the details of the
plate of storefront well due to introducing too much of the infrared spectrum (see the green
boxes in Figure 7n,o,p,q). The CSF technique cannot extract thermal radiation information
well (see the red and orange boxes in Figure 7r). The DRF, FusionDN, and DDcGAN
methods appear overexposed and introduce some undesired noise (see Figure 7s,t,u). Our
algorithm can well extract thermal radiation objects in the IR image and details in the
visible image with a more natural visual experience (see Figure 7v). Our algorithm has
the stronger representation ability by focusing on IR target perception and visible detail
description compared with other methods.

Figure 8 shows the fusion results of the “Kaptein” source images, which exhibit a
person standing at a door. On the one hand, IR images mainly capture the thermal radiation
information of person. On the other hand, the visible images clearly show the details of
buildings, trees in the distance, and grass. The person after MSVD, DWT, DTCWT, and
CVT methods suffers from low brightness and contrast. In particular, the DWT, DTCWT,
and CVT algorithms produce some artifacts around the people. The MLGCF and TE-MST
methods cannot well extract the details of the ground textures (see the orange boxes in
Figure 8g,h). The JSM fusion result is blurry, and JSR and JSRSD schemes introduced some
noise. The GTF and DRTV methods introduce artifacts around distant trees. Regarding
the deep learning algorithms, the man after application of the FusionGAN and DDcGAN
methods is blurry, and the person after the RFN-Nest and DRF methods has low brightness.
These fusion results constitute an unnatural visual experience. In addition, the GANMcC,
PMGI, and CSF methods cannot well capture the details of the sky and ground (see the
orange and green boxes in Figure 8o,p,r). The FusionDN technique achieves high fusion
performance. Compared to other methods, our method obtains better perceptual quality
for the sky (see green box in Figure 8v), higher brightness of the thermal radiation objects
(see red box in Figure 8v), and clearer ground textures (see orange box in Figure 8v).

Table 4 shows the averages of 13 objective evaluation metrics for the TNO dataset,
and the best values are indicated in red. As can be seen in Table 4, except FMIdct and QE,
our algorithm obtained the best results for all metrics, indicating that our algorithm has
excellent fusion performance.
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Table 4. The average values of different methods on the TNO dataset.

Type Method QY QG SSIM FMIw FMIdct FMIpixel Nab f QS QW QE QP QCV QCB

MST MSVD 0.6297 0.3274 0.7220 0.2683 0.2382 0.8986 0.0022 0.7735 0.7091 0.3107 0.2456 549.9197 0.4428
DWT 0.7354 0.5042 0.6532 0.3678 0.2911 0.8970 0.0581 0.7632 0.7643 0.5499 0.2473 522.7137 0.4732

DTCWT 0.7732 0.4847 0.6945 0.4127 0.3547 0.9122 0.0243 0.8019 0.8100 0.6361 0.3087 524.0247 0.4956
CVT 0.7703 0.4644 0.6934 0.4226 0.4021 0.9095 0.0274 0.8017 0.8141 0.6365 0.2784 539.9093 0.4931

MLGCF 0.7702 0.4863 0.7078 0.3717 0.3229 0.9009 0.0208 0.8063 0.8032 0.5694 0.2974 454.5477 0.4627
TE-MST 0.7653 0.4503 0.7006 0.3749 0.3313 0.9075 0.0224 0.7775 0.7251 0.4518 0.2787 923.3319 0.4512

SR JSM 0.2233 0.0830 0.6385 0.1404 0.1061 0.8928 0.0048 0.6076 0.3961 0.0057 0.0604 676.3967 0.3086
JSR 0.6338 0.3392 0.6053 0.2208 0.1672 0.8839 0.0566 0.6858 0.7111 0.4051 0.2051 431.9517 0.4182

JSRSD 0.5558 0.2981 0.5492 0.1981 0.1451 0.8632 0.1032 0.6322 0.6830 0.3389 0.1436 476.0037 0.4288

Other GTF 0.6639 0.3977 0.6706 0.4301 0.4059 0.9045 0.0103 0.7168 0.6571 0.3439 0.1991 1161.7491 0.3984
methods DRTV 0.5906 0.3012 0.6622 0.4104 0.4198 0.8888 0.0214 0.7098 0.6502 0.2111 0.1016 1348.3111 0.4202

Deep FusionGAN 0.5263 0.2446 0.6430 0.3754 0.3565 0.8889 0.0131 0.6626 0.5842 0.1370 0.1076 963.9209 0.4115
learning GANMcC 0.5976 0.3056 0.6824 0.3820 0.3512 0.8980 0.0099 0.7197 0.6771 0.2768 0.2506 674.4502 0.4369

PMGI 0.7166 0.4040 0.6981 0.3948 0.3810 0.8996 0.0282 0.7771 0.7716 0.4566 0.2699 586.3804 0.4604
RFN-Nest 0.6263 0.3453 0.6820 0.2976 0.2897 0.9032 0.0114 0.7345 0.7079 0.3010 0.2340 584.3049 0.4749

CSF 0.6841 0.4136 0.6901 0.3007 0.2541 0.8826 0.0280 0.7578 0.7568 0.4753 0.2714 538.8530 0.4873
DRF 0.4466 0.2024 0.6184 0.1694 0.1184 0.8866 0.0342 0.6400 0.5430 0.1025 0.0962 1004.4690 0.3941

FusionDN 0.6856 0.3788 0.6230 0.3597 0.3097 0.8842 0.1356 0.7301 0.7467 0.4439 0.2678 633.9079 0.4935
DDcGAN 0.6390 0.3364 0.5820 0.4114 0.3863 0.8760 0.1016 0.6530 0.5918 0.2060 0.1451 1017.1516 0.4360
Proposed 0.8238 0.5097 0.7299 0.4406 0.3719 0.9162 0.0002 0.8240 0.8277 0.5998 0.4333 407.4069 0.4959

(a) IR image (b) Visible image

(c) MSVD (d) DWT (e) DTCWT (f) CVT (g) MLGCF

(h) TE-MST (i) JSM (j) JSR (k) JSRSD (l) GTF

(m) DRTV (n) FusionGAN (o) GANMcC (p) PMGI (q) RFN-Nest

(r) CSF (s) DRF (t) FusionDN (u) DDcGAN (v) Proposed

Figure 7. Fusion results of the “Queen Road” source images.
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(a) IR image (b) Visible image

(c) MSVD (d) DWT (e) DTCWT (f) CVT (g) MLGCF

(h) TE-MST (i) JSM (j) JSR (k) JSRSD (l) GTF

(m) DRTV (n) FusionGAN (o) GANMcC (p) PMGI (q) RFN-Nest

(r) CSF (s) DRF (t) FusionDN (u) DDcGAN (v) Proposed

Figure 8. Fusion results of the “Kaptein” source images.

4.5.2. Further Comparison on the RoadScene Dataset

In order to verify the fusion performance in different scenes, we employed the Road-
Scene dataset for experiments. Figures 9 and 10 show two representative examples. Figure 9
exhibits the fusion results of “FLIR04602” source images. The scene shows a pedestrian
standing on the side of the road and a car parked on the road during the daytime. The IR
images mainly capture the thermal radiation information of pedestrian and car, and visible
images show the details of buildings and trees. The pedestrian and car in the MSVD method
lost brightness and contrast. The DWT method introduces undesired “small rectangles”
(see car and buildings in Figure 9d). The trees in the DTCWT, CVT, MLGCF, and TE-MST
methods introduce too many “small black spots” from the infrared spectrum, resulting
in unnatural visual experience (see green boxes in Figure 9e–h). The fusion result of JSM
method is noticeably blurry. The JSR and JSRSD results appear overexposed. In particular,
the JSRSD method introduces a certain amount of noise. The pedestrian and car became
blurry by the GTF and DRTV methods. Regarding deep-learning-based methods, the fusion
results of FusionGAN, DDcGAN, and DRF appear blurry. Specifically, the pedestrian and
car through FusionGAN and DDcGAN methods were blurred, and trees and buildings
through the DRF method were blurred. Since this example is a daytime scene, most of
the visible image details are required. Although GANMcC, PMGI, RFN-Nest, CSF, and
FusionDN methods achieved a good fusion effect, too many “small black dots” from IR
images were introduced into the trees, resulting in an unnatural visual experience (see
green boxes in Figure 9o–r,t). Compared with other algorithms, our algorithm can extract
the pedestrian and car in the IR images well, and the results look more natural.
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(a) IR image (b) Visible image

(c) MSVD (d) DWT (e) DTCWT (f) CVT (g) MLGCF

(h) TE-MST (i) JSM (j) JSR (k) JSRSD (l) GTF

(m) DRTV (n) FusionGAN (o) GANMcC (p) PMGI (q) RFN-Nest

(r) CSF (s) DRF (t) FusionDN (u) DDcGAN (v) Proposed

Figure 9. Fusion results of the “FLIR04602” source images.

(a) IR image (b) Visible image

(c) MSVD (d) DWT (e) DTCWT (f) CVT (g) MLGCF

(h) TE-MST (i) JSM (j) JSR (k) JSRSD (l) GTF

(m) DRTV (n) FusionGAN (o) GANMcC (p) PMGI (q) RFN-Nest

(r) CSF (s) DRF (t) FusionDN (u) DDcGAN (v) Proposed

Figure 10. Fusion results of the “FLIR08835” source images.
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Figure 10 shows the fusion results of “FLIR08835” source images. The described scene
contains rich content, including pedestrians, a street, and buildings. On the one hand, the
IR image mainly extracts the thermal radiation information of the pedestrians to better
display the locations of pedestrians. On the other hand, visible image provides clearer
background details. The MSVD algorithm cannot extract thermal radiation information
well. The DWT, DTCWT, CVT, TE-MST, and MLGCF fusion results all introduce some
noise. The JSM fusion result is blurry, and JSR and JSRSD methods appear overexposed.
The GTF method achieved great fusion performance, and the background areas in the
DRTV algorithm’s images are obviously blurry (see the green box in Figure 10m). The
pedestrians in the FusionGAN, DRF, RFN-Nest and DDcGAN algorithms’ images are
blurry (see red and orange boxes in Figure 10n,s,q,u). The CSF method introduced some
noise into the background. The GANMcC, PMGI, and FusionDN schemes achieved high
fusion performance. Based on the above observations, it is clear that our algorithm captures
the thermal radiation information of pedestrians well and has a great fusion effect. It can
be at least stated that our method achieves competitive performance with the GANMcC,
PMGI, and FusionDN methods.

Table 5 shows the averages of 13 objective evaluation metrics for the RoadScene dataset
and the best values are indicated in red. It can be seen in Table 5 that, except for QW , QE,
QCV , and QCB, the proposed fusion method achieved the best results for all other metrics.

Overall, it was found that the 19 competitive algorithms all suffer from some defects.
Considering the above comparisons in relation to visual quality and objective evaluation
metrics together, our algorithm can generally outperform other methods, leading to state-
of-the-art fusion performance.

Table 5. The average values of different methods on the RoadScene dataset.

Type Method QY QG SSIM FMIw FMIdct FMIpixel Nab f QS QW QE QP QCV QCB

MST MSVD 0.6703 0.3694 0.7239 0.2724 0.2225 0.8571 0.0030 0.7723 0.6920 0.3006 0.3122 808.7879 0.4781
DWT 0.7732 0.5673 0.6455 0.4015 0.2677 0.8623 0.0496 0.7721 0.7757 0.5732 0.3266 769.0781 0.4922

DTCWT 0.7517 0.4625 0.6645 0.3584 0.2415 0.8589 0.0386 0.7752 0.7610 0.4769 0.3255 800.1602 0.4976
CVT 0.7990 0.4975 0.6785 0.4353 0.3738 0.8738 0.0277 0.8057 0.8068 0.6127 0.3523 982.3925 0.5075

MLGCF 0.8136 0.5395 0.7064 0.3604 0.2783 0.8600 0.0174 0.8252 0.7899 0.5449 0.3732 795.6147 0.4647
TE-MST 0.8534 0.5855 0.6983 0.4091 0.3093 0.8751 0.0199 0.8210 0.7799 0.5416 0.4262 981.4404 0.5305

SR JSM 0.2689 0.0983 0.6011 0.1538 0.1060 0.8426 0.0044 0.5105 0.2606 0.0008 0.0789 752.1129 0.2918
JSR 0.4876 0.2678 0.5774 0.1955 0.1601 0.8292 0.0389 0.6192 0.6128 0.2610 0.2039 591.9430 0.3618

JSRSD 0.4595 0.2499 0.4937 0.1777 0.1437 0.8196 0.0859 0.5540 0.6420 0.2871 0.1442 509.1361 0.4136

Other GTF 0.6671 0.3007 0.6820 0.3755 0.3742 0.8721 0.0077 0.6782 0.5256 0.1842 0.2495 1595.9816 0.3950
methods DRTV 0.5268 0.2310 0.6695 0.3379 0.3704 0.8478 0.0168 0.6883 0.5930 0.1187 0.1313 1672.9384 0.4308

Deep FusionGAN 0.4997 0.2381 0.6025 0.3169 0.3312 0.8529 0.0151 0.6179 0.5254 0.1181 0.1387 1138.3050 0.4551
learning GANMcC 0.6350 0.3511 0.6594 0.3693 0.3330 0.8561 0.0092 0.7094 0.6479 0.2718 0.3029 943.6773 0.4778

PMGI 0.7566 0.4718 0.6736 0.3875 0.3597 0.8597 0.0140 0.7819 0.7388 0.4448 0.3740 967.0633 0.5222
RFN-Nest 0.5928 0.2906 0.6562 0.2723 0.2691 0.8627 0.0079 0.6831 0.6091 0.1779 0.2648 981.0049 0.4833

CSF 0.7525 0.4916 0.6837 0.3258 0.2507 0.8536 0.0220 0.7793 0.7570 0.4763 0.3727 772.7454 0.5250
DRF 0.4226 0.2078 0.5590 0.1858 0.1137 0.8402 0.0222 0.5808 0.4117 0.0459 0.1138 1668.1819 0.4167

FusionDN 0.7681 0.4825 0.6478 0.3665 0.2943 0.8524 0.0686 0.7797 0.7616 0.4975 0.3522 1223.1102 0.5510
DDcGAN 0.5267 0.2668 0.5491 0.3499 0.3451 0.8548 0.0587 0.5329 0.4443 0.1147 0.1723 1004.4252 0.4566
Proposed 0.8720 0.5903 0.7252 0.4681 0.4065 0.8820 0.0001 0.8315 0.7959 0.5609 0.5286 683.7624 0.5357

4.6. Computational Efficiency

To compare the computational efficiency, we ran all deep learning algorithms on the
TNO dataset 10 times and took the average running time. It is worth noting that our
experimental hardware environment was an Intel (R) Core (TM) i7-11700 with 64 GB RAM,
but the experimental environments for various algorithms were different. The Fusion-
GAN, GANMcC, PMGI, CSF, DRF, FusionDN, and DDcGAN methods used TensorFlow
(CPU version). The RFN-Nest method used Pytorch (CPU version). Our algorithm was



Remote Sens. 2023, 15, 685 20 of 22

implemented in Matlab. All parameters in the comparison algorithms were the default
values given by their authors. Table 6 shows the average time of 10 operations, and the
optimal value is shown in red font. The running time of our algorithm achieved fourth
place, namely, 255.6642 s, behind PMGI, FusionGAN, and RFN-Nest methods. Although
the running time of our algorithm obtained fourth place, our fusion effect is state of the art.

Table 6. The average running time of different methods for the TNO dataset (unit: seconds).

Method FusionGAN GANMcC PMGI RFN-Nest CSF DRF FusionDN DDcGAN Proposed

Time 170.4436 338.3344 36.9569 193.7670 899.4110 350.3019 330.3895 304.0095 255.6642

5. Conclusions

In this paper, we propose a fusion method for IR and visible images based on PCANet
and the image pyramid method. We use PCANet to obtain the activity-level measurement
and weight assignment and apply an image pyramid to decompose and merge the images
in multiple scales. The activity-level measurement obtained by PCANet has the stronger
representation ability in focusing on IR target perception and visible detail description. We
performed two ablation studies to verify the effectiveness of the image pyramid and the
guided filter. Compared with nineteen representative methods, the experimental results
demonstrated that the proposed method can achieve the state-of-the-art performance in
both visual quality and objective evaluation metrics. However, we only used the results
of the second stage of PCANet as image features, ignoring the useful information of the
first stage. In the future research, we will explore combining features of multiple stages for
fusion tasks.
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