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Abstract: Sea ice type classification is of great significance for the exploration of waterways, fisheries,
and offshore operations in the Arctic. However, to date, there is no multiple remote sensing method
to detect sea ice type in the Arctic. This study develops a multiple sea ice type algorithm using the
HaiYang-2B Scatterometer (HY-2B SCA). First, the parameters most applicable to classify sea ice
type are selected through feature extraction, and a stacking model is established for the first time,
which integrates decision tree and image segmentation algorithms. Finally, multiple sea ice types are
classified in the Arctic, comprising Nilas, Young Ice, First Year Ice, Old Ice, and Fast Ice. Comparing
the results with the Ocean and Sea Ice Satellite Application Facility (OSI-SAF) Sea Ice Type dataset
(SIT) indicates that the sea ice type classified by HY-2B SCA (Stacking-HY2B) is similar to OSI-SAF SIT
with regard to the changing trends in extent of sea ice. We use the Copernicus Marine Environment
Monitoring Service (CMEMS) high-resolution sea ice type data and EM-Bird ice thickness data to
validate the result, and accuracies of 87% and 88% are obtained, respectively. This indicates that the
algorithm in this work is comparable with the performance of OSI-SAF dataset, while providing
information of multiple sea ice types.

Keywords: HY-2B/SCA; sea ice type; AARI; Arctic; stacking model; decision trees; image segmentation

1. Introduction

Sea ice is among the most important climatic factors in the Arctic. It plays an important
role in climate change and further affects the global climate state. Sea ice also regulates
atmospheric and oceanic circulation by affecting ocean surface radiation, temperature,
energy balance, and salt current circulation [1]. According to the classification standard
of the World Meteorological Organization, sea ice can be categorized into Nilas, New Ice
(NI), Young Ice (YI), First Year Ice (FYI), and multi-year ice (MYI) in the Arctic. [2]. Ice
types have an important impact on assessing the total amount of sea ice. At present, most
sea ice classifications sort sea ice into newly formed ice after summer (FYI) and ice that
has survived at least one summer (MYI), while the relevant research on further ice type
subdivision is very limited. However, along with the growing research on polar climate
change, the demand for sea ice classification in the Arctic is growing, as it is of great
significance in exploring Arctic waterways, fisheries, and offshore operations.

Initially, observing sea ice in polar regions was mostly based on aerial surveys and
coastal observations, which were costly, time-sensitive, and had low observational space
coverage. Boasting wide spatial coverage, high temporal resolution, and continuous
observation capability, satellite observations are an important method for polar sea ice
observation. Remote sensing of sea ice classification can be divided into two categories,
namely microwave-based and optical-based remote sensing. Microwave scatterometer
observations are one of the most important methods for sea ice classification. This is due to
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a lower density and more air bubbles in MYI, which leads to a backscatter coefficient (σ0)
of MYI with strong volumetric scattering that is larger than that of FYI [3,4]. Therefore, sea
ice can be distinguished based on the difference in σ0.

Numerous researchers have conducted studies on scatterometer sea ice classification.
For Ku band scatterometers, Remund and Long [5] used QuikSCAT and Seawinds and
proposed a method for ice and water detection, mainly based on the maximum likelihood
estimation using the difference in polarization properties of sea ice and seawater. Kwok [6]
used QuikSCAT data to develop an empirical algorithm for MYI quantile detection, em-
ploying a fixed threshold method to successfully distinguish between FYI and MYI and
to calculate the proportion of image elements for MYI. Nghiem et al. [7] have developed
a sea ice classification algorithm based on statistical analysis, showing two separate dis-
tinctive peaks in backscatter data for seasonal and perennial sea ice in freezing seasons.
They used QuikSCAT data to classify Arctic sea ice into FYI, MYI, and mixed ice. Swan
and Long [8] generated an Arctic sea ice classification dataset for 2002–2009 for different
seasonal Arctic σ0 transformations using dynamic thresholds of seasonal transformations,
also based on QuikSCAT data. Lindell and Long [9] derived and cross-referenced MYI
quantile data from QuikSCAT and OSCAT-2. Li et al. [10] used Fisher’s linear discriminant
method to distinguish sea ice from seawater in HY-2A scatterometer data. In the case of
C-band scatterometers, in 1997, Early and Long [11] attempted to classify sea ice in the
Southern Ocean based on the wide amplitude and wide incidence angle characteristics of
an active microwave instrument (AMI) on board the ERS-1 satellite. Ezraty and Cavani [12]
compared a microwave scatterometer, NSCAT, operating in the Ku band with a microwave
scatterometer, AMI, operating in the C band, and showed that the difference in σ0 between
FYI and MYI is larger in the Ku band than that in the C band in the Arctic. Lindell and
Long [13] found that the difference in MYI and FYI σ0 was not obvious, which made it
difficult to classify sea ice using only a C band scatterometer. Then, they combined ASCAT
and SSMIS data by using Bayesian classifiers to achieve Arctic sea ice classification. Further
passive microwave data have been introduced into some studies of sea ice classification
based on C band and Ku band scatterometer data. Zhang et al. [14] used the backscatter
coefficients and brightness temperatures from QuikSCAT/AMSR-E and ASCAT/AMSR-2
to classify sea ice using the K-means clustering algorithm to distinguish sea ice into MYI
and 1-year-old ice; the classifications were consistent with results of visual interpretation
from synthetic aperture radar images in the Canadian Arctic Archipelago with an overall
classification accuracy of over 93%. In 2021, Zhang et al. [15] evaluated the relationship
between the σ0 and the incident angle by comparing the trend in the σ0 of QSCAT, ASCAT,
and RFSCAT with the same incident angle, and studied the classification results of these
three scatterometers by using the adaptive sea ice classification algorithm based on K-means
clustering algorithm; the overall accuracy was around 77% and 80% for the RFSCAT and
ASCAT results, respectively.

In recent years, with the extensive application of deep learning in satellite remote
sensing [16], some deep learning methods have been used for sea ice detection and clas-
sification based on scatterometers in polar regions. Ren et al. [17] employed the U-Net
network for sea ice and open water classification using SAR images and integrated a double
attention mechanism on the original U-Net network to improve the feature extraction
performance. Han et al. [18] proposed a feature level fusion of heterogeneous data from
SAR and optical images and proposed a feature extraction-based sea ice image classification
method. Andersson et al. [19] designed the ICE-Net network structure by inputting CMIP6
simulated data and remote sensing observation data for Arctic sea ice prediction. The deep
learning method for sea ice retrieval effectively identifies different features among different
ice types and fully benefits from the advantages of a large amount of remote sensing data,
a wide observation range, and a long time period. However, it has the disadvantage that it
is easily affected by the selected training sample features, leading to overfitting. All the
above algorithms commonly use the threshold method or classifier for the initial training
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of the classifier and then correct the results by image-level processing [20] to improve the
model classification performance.

Considering the importance of the information for multiple sea ice type classification
in the Arctic, and the fact that there is currently no satellite product of it, this study is
dedicated to the algorithm development for multiple sea ice types in the Arctic using a
HaiYang-2B Scatterometer (HY-2B SCA). First, we train the decision tree model and image
segmentation model separately, then use the stacking algorithm to fuse these two models at
the algorithm level, instead of using image-level correction, as most algorithms do. This is
not an operational algorithm due to the use of dynamic threshold segmentation. There are
many melt ponds above sea ice in the summer in the Arctic, which prevent the microwave
signal from penetrating the ice; therefore, this research uses data from October 2019 to
April 2020 and October 2020 to April 2021 as training datasets and October 2021 to April
2022 as the validation dataset.

2. Data and Methods

A variety of data and algorithms were employed in this study. The HY-2B SCA σ0

data were used for sea ice type retrieval [21]; Arctic and Antarctic Research Institute (AARI)
ice map data [22] were used as reference data; OSI-SAF ice type data [23] and Ease-Grid
Sea Ice Age data from the National Snow and Ice Data Center (NSIDC) [24] were selected
as comparative data; and CMEMS data [25] and the EM-Bird ice thickness dataset [26] were
used to validate the results.

2.1. Data
2.1.1. HY-2B Scatterometer Data

The HY-2B satellite is the first operational satellite in the marine dynamic environment
satellite series from China. The satellite has a repetition period of 14 days with a sun-
synchronous orbit spacing of 207.64 km, a sub-satellite point drift of ±1 km, an orbital
inclination of 99.34015◦, and a local time of 6:00 AM at the descending node. The HY-2B
satellite carries a Ku band microwave scatterometer (HY-2B SCA), which is a rotating pencil
beam scatterometer. The HY-2B SCA’s swath widths are 1350 KM and 1700 KM under
H-polarization and V-polarization, respectively. The incidence angles of the HY-2B SCA are
41◦ under H-polarization and 48◦ under V-polarization. Additionally, the pole hole is at
88◦N in the arctic [21].

The HY-2B SCA L2A σ0 dataset was provided by the National Satellite Ocean Applica-
tion Service (NSOAS), with a resolution of 25 km. The observation accuracy of σ0 is 0.5 dB.
The HY2B SCA σ0 data were projected into a 25 KM × 25 KM grid in a polar-beam projec-
tion on a daily basis, averaging daily images from 16–17 L2A data files. Data download to
https://osdds.nsoas.org.cn/ (accessed on 19 April 2022). In this study, observed values of
σ0 under VV polarization (σ0

VV) and HH polarization (σ0
HH) were used for Arctic sea ice

classification. Figure 1 shows images of σ0 under two polarization modes.

https://osdds.nsoas.org.cn/
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Figure 1. (a) HY2B SCA backscatter (dB) under VV polarization on 1 January 2020. (b) HY2B SCA
backscatter (dB) under HH polarization on 1 January 2020.

2.1.2. AARI ICE Chart Products

The Arctic and Antarctic Research Institute (AARI) in St. Petersburg, Russia, produces
weekly AARI ice maps in the polar regions [22], which are obtained from satellite data
(visible, infrared, and radar) and data reported from coastal stations and ships. Since the
21st century, the main data source for the AARI has been satellite data. Since 2013, the
satellite receiving site in Barentsburg (Spitzbergen) has carried out permanent reception
and automatic processing of visual and IR data from NOAA, MetOp, Terra, Aqua, Suomi
NPP, and Fengyun satellites; processed images are distributed to ice experts for further
analysis [27]. It classifies five ice types: Nilas, YI, FYI, Old Ice, and Fast Ice. To store and
export data, AWS “Ice expert” includes special tools to standardize vector charts according
to WMO SIGRID-3 nomenclature [28]. The AARI dataset provides sea ice classification
polygon data, whose coordinates were extracted and projected to a 25 KM grid in this study.

2.1.3. OSI-SAF SEA ICE TYPE Dataset

The OSI-SAF sea ice type product (Global Sea Ice Type, OSI-403-c) is provided by the
European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) [25],
and its accuracy has been scientifically validated. The performance of the OSI-403-c prod-
uct in the Northern Hemisphere is within the target accuracy requirements, which is
100,000 km2 monthly STD of the daily differences from a running mean for all months,
except in October 2019 [29]. It is based on a combination of passive and active microwave
remote sensing data, calculated by a Bayesian algorithm, and provides sea ice type maps
with a spatial resolution of 10 km in both hemispheres. The OSI-SAF provides two classifi-
cations, FYI and MYI, which correspond to areas with more than 30% sea ice concentration,
while open water corresponds to areas with less than 30% sea ice concentration. The OSI
SAF index calculates posterior probabilities for each specified pixel based on active or
passive microwave sensor data. Pixels with a maximum posterior probability of less than
75% are defined as “ambiguous” in this product. In addition, summer melting makes the
ice type classification unreliable, so all ice is classified as “ambiguous” during this period.

2.1.4. EASE-Grid Sea Ice Age Dataset

The EASE-Grid Sea Ice Age dataset was obtained from the National Snow and Ice
Data Center (NSIDC), which has provided ice age data with a resolution of 12.5 km since
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1979 [27]. The ice age data are estimated from passive microwave satellite sensors, buoys,
and sea ice motion vectors calculated by atmospheric models and by a Lagrangian tracking
algorithm. The approach uses weekly values of sea ice concentration and sea ice drift, so
random uncertainties in the daily values are therefore reduced. In general, this product has
a positive ice age bias because the ice age of the oldest grade is preferentially assigned to
the entire grid cell [30]. For comparison with the classification results of this study, all data
with a value of 1 are 0–1-year-old ice, data with a value of 2 are 1–2-year-old ice, and data
with a value of 3 are 2–3-year-old ice. Since the focus of this study is not on the multiple
classifications of MYI, all points with a value higher than 3 are classified as 3+ year ice.

2.1.5. CMEMS Dataset

The CMEMS sea ice type data provide SAR-based data and microwave radiometer
sea ice types for the European Arctic Sea region with a resolution of 1 × 1 km [28]. The
algorithm uses the SENTINEL-1 SAR EW mode dual-polarized HH/HV data invert sea ice
types using convolutional neural networks. The data report three sea ice types: Young Ice,
FYI, and MYI. The accuracy of CMEMS dataset was 90.5% for the 2018 dataset and 91.6%
for the 2020 dataset.

2.1.6. EM-Bird Ice Thickness Measurements

EM-Bird ice thickness measurements belongs to Multidisciplinary Drifting Observa-
tory for the Study of Arctic Climate (MOSAiC), they include total (snow and ice) thickness
measurements taken from helicopters aboard the research vessels Polarstern and Akademik
Fedorov during the International Multidisciplinary Drift Observatory for MOSAiC activ-
ity [29]. This research used flight records for five days in April 2020 (4 April 2020, 10 April
2020, 17 April 2020, 26 April 2020, and 30 April 2020).

2.2. Methods
2.2.1. Decision Tree Algorithm

Decision Tree (DT) is a fundamental classification and regression method, proposed
by Quinlan in 1986 [31]. The DT model has a tree-like structure and represents the process
of classifying instances based on features in a classification problem. Its main advantages
are the readability of the model and the speed of classification. The DT model was built
based on the principle of minimizing the loss function using training data during learning.
During prediction, the new data is classified using the DT model. This study employs
classification and regression trees (CART) [32].

CART generation is the process of recursively building a binary DT, using the squared
error minimization criterion for regression trees and the Gini index minimization crite-
rion for classification trees, to perform feature selection and generate a binary tree. The
classification tree used in this study selects the optimal feature using the Gini index, and
also decides the optimal binary cut point for that feature. Suppose there are K classes,
and the probability of sample point input to the Kth class is Pk, then the Gini index of the
probability distribution is defined as

Gini(p) =
K

∑
k=1

pK(1− pK) = 1−
K

∑
k=1

pk
2 (1)

2.2.2. Image Segmentation Algorithm

In a traditional image classification task, the goal of deep learning is to provide a label
or category to the input image, but for Arctic sea ice classification, the goal is to determine
which category a specific pixel belongs to. In this study, the U-Net network structure [33]
was employed to classify the Arctic sea ice by first downsampling with convolution and
pooling, then upsampling by deconvolution, fusing the previously extracted features, and
then upsampling again. This process is repeated to obtain the final feature map, followed
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by using SoftMax to obtain the classification mask and thus the specific classification type
of sea ice within each pixel.

2.2.3. Model Fusion Algorithm

Model fusion means ensemble learning, which is widely used for classification and
regression tasks. It uses a number of (different) methods to change the distribution of
original training samples to build several different classifiers and linearly combine these
classifiers to obtain a more powerful classifier. This study employs the stacking model
fusion algorithm, whose central concept is to explore the space of different models for the
same problem. This is achieved using different types of models for a portion of the entire
problem set, so that they serve as an intermediate prediction, and then adding a new model
that uses the intermediate prediction results as training data to predict the true value [34].
Two DT models were fused with a deep learning model based on the U-Net neural network
to classify Arctic sea ice in detail, using the features of stacking.

3. Data Process and Results
3.1. Data Preprocessing

The melting of Arctic sea ice in summer leads to more melt ponds inside sea ice, which
prevent the microwave signal from penetrating the ice surface; therefore, we selected the data
from October 2019 to April 2020 and from October 2020 to April 2021 as the training data. The
comparison and validation data time range spans from October 2021 to April 2022.

First, the HY2B SCA L2A data quality was controlled using a data quality mask and a
surface type mask. AARI produces one ice map per week; therefore, this study maps the
daily average HY-2B SCA to the AARI ice maps, and each AARI ice map corresponds to the
nearest ±3 days of the HY-2B SCA σ0. The σ0 of the HY2B SCA and AARI ice map mask
were projected into a 25 km grid by polar projection, and subsequently the daily average σ0

corresponding to the current week’s ice map data was matched. Only data points recorded
by both the AARI ice map and HY2B SCA data were selected for training.

In the model training process, the DT and image segmentation algorithms were used
to train the Arctic sea ice classification model, respectively. The image segmentation model
requires input feature size image data; therefore, the projected daily average parameter
data image was cut into 128 × 128 for training.

3.2. Characterization of σ0 for Each Sea Ice Type

Deep learning can effectively adapt the observed data and results; however, the
predicted results may contradict the physical observations. Thus, providing the deep
learning model with the existing physical knowledge of remote sensing observations can
help the model to accomplish the task more effectively. In this section, we select appropriate
features for the machine learning model by analyzing the σ0 variation of each ice type in
the monthly mean and time series separately.

3.2.1. Time Series Histograms of σ0

To illustrate the features of σ0 characteristics for MYI and FYI, the daily average σ0

histograms were stitched together and normalized to form σ0 time series plots. The σ0

under VV polarization time series plot demonstrates the seasonal variation of MYI and FYI.
In Figure 2, the left and right columns are 2019/2020 and 2020/2021, respectively, and from
top to bottom Nilas, YI, FYI, Old Ice, and Fast Ice are presented. The white area indicates
absence of data. Days with insufficient data were removed.
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Figure 2. 2019/2020 vs. 2020/2021 σ0 time series histogram under VV polarization.

Figure 2 shows that the distribution of the σ0 of Nilas was more heterogeneous. The
σ0 of YI was between –12 and –15 dB in mid-October, and the reading gradually decreased
to near –15 dB by the end of December due to freezing inside the sea ice. At this point, the
number of Young Ice points was low due to the formation of FYI (thicker than 200 cm).
From mid-October to mid-November, the σ0 of FYI remains unstable, because the Young
Ice has not yet frozen into FYI. In mid-November, FYI starts to form, and its values are
basically distributed between –15 and –20 dB. Due to the stable internal structure of MYI,
σ0 was always between –6.5 and –10 dB, which is relatively easy to distinguish. The σ0 of
Fast Ice exhibits a bimodal distribution, with a high σ0 located near the northern Canadian
Archipelago and low values located near the Kara Sea, which must be distinguished by
another parameter. Figure 3 shows the density distribution diagram of each ice type on
1 January 2020, and the density distribution of each ice type on a single day also conforms
to the above conditions.
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By analyzing time series histograms and monthly mean values of σ0 of each ice type,
the values of σ0 of Young Ice, FYI, and Old Ice were found to be significantly different
under VV polarization. In addition, Nilas and Fast Ice are significantly different from other
ice types after introducing the polarization gradient ratio, and they can be distinguished by
a nonlinear classifier.

3.2.2. Analysis of Monthly Mean σ0

In comparison to FYI, there are more bubbles inside MYI [35]; therefore, the penetration
depth of the scatterometer pulse is deeper in MYI than in newly formed ice, and the strong
volume scattering leads to a higher σ0 in MYI than in FYI [36]. At the same time, the salinity
of MYI is lower than that of FYI, resulting in deeper penetration of MYI. Furthermore, the
salinity of FYI is higher than that of MYI, leading it to possess stronger electromagnetic
absorption properties [4]. Hence, the σ0, as well as the polarization ratio, can be used as a
basis for sea ice classification.

Figure 4 shows the distribution of monthly average σ0 for different ice types under
VV polarization and HH polarization for a total of 16 months from October 2019 to April
2020 and from October 2020 to April 2021. From the distribution, the monthly average σ0

scattering values of Fast Ice and FYI are similar, and other parameters must be introduced
to distinguish them. The values of YI are in the range of –15 to –13 dB due to the early stage
of sea ice formation, and the range of values is close to Nilas, which can be distinguished
using features such as the polarization gradient ratio.
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Figure 4. Monthly average ice type σ0 in 2019/2020 and 2020/2021.

The difference between the signals of each polarization is more apparent in Figure 5.
As a resulot of the high surface salinity of Nilas, the value of σ0

VV − σ0
HH is generally higher

than zero. When Nilas gradually thickens and forms Young Ice (between 10 and 30 cm),
σ0

VV − σ0
HH starts to decrease, whereas the value of σ0

VV + σ0
HH remains between –30 and

–26 dB, similar to Nilas. The polarization ratio of the σ0 of FYI is similar to that of the Fast
Ice distribution area, but the value of σ0

VV + σ0
HH is somewhat higher compared to that of

Fast Ice. The parameter distribution characteristics of Old Ice are significantly different
from other ice types; the value of σ0

VV + σ0
HH is distributed between –26 and –18 dB and

the value of σ0
VV − σ0

HH is above 0 dB. The σ0
VV + σ0

HH of Fast Ice is generally distributed
between –30 and –32 dB, which is significantly different from FYI. We conclude that the
polarization ratio (PR) and the gradient ratio (GR) can be used for sea ice classification. PR
and GR can be calculated using Equations (2) and (3), respectively.

PR = σ0
VV/σ0

HH (2)

GR = σ0
VV−σ0

HH/σ0
VV+σ0

HH (3)

3.3. DT Classification

We first attempted a preliminary classification of sea ice types for FYI-MYI using
the threshold method of σ0, and the classification results were used as one of the input
parameters of the DT. Subsequently, an attempt to refine the sea ice classification was made
using various combinations of parameters. By adding parameters such as the dynamic
threshold pre-classification of FYI-MYI values, PR, and GR to the machine learning model,
the classification performance of the model can be improved.
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3.3.1. Pre-Classification by σ0 Threshold

To provide an effective MYI and FYI broad class (including Nilas, Young Ice, and FYI)
of segmentation features for machine learning models, those two classes can be separated
by setting a threshold value. The ice type of fast ice is more specific; in the Kara and Laptev
Seas there is FYI, and in Canadian Arctic Archipelago there is MYI; therefore, the fast ice
data does not contain this broad classification feature. Haarpaintner [36], in 2007, used a
threshold of –12 dB to segment MYI and FYI. Physical properties such as surface roughness,
salinity, and thickness of multi-year and FYI change daily, resulting in variations in σ0

observations [35]; therefore, segmenting ice species using only a fixed σ0 threshold would
result in errors. In this study, we used a dynamic threshold to classify ice as either FYI
or MYI, which means that pixels with σ0 above the threshold are classified as MYI, while
below the threshold, they are classified as FYI. An adaptive sea ice classification threshold
was set to correspond to each histogram.

In the process, each HY-2B SCA monthly histogram was first plotted, and then for
each histogram the lowest value between the bimodal peaks was adopted as the threshold
for the month. Furthermore, the threshold was specified between –10 and –14 dB, and if
there was no minimum between these values, a value of –12 dB was adopted. To reduce
the error caused by histogram fluctuations, monthly histograms were used instead of daily
histograms for sea ice classification.

Figure 6 shows the threshold from October to April 2019/2020.
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3.3.2. Parameter Selection

The largest influence on the accuracy of the DT is from the selection of input features.
Furthermore, due to the seasonal variation in the characteristics of ice types, which is shown
in Figure 1, time is also used as an input parameter in different forms, such as the month,
week, and day of the year (DOY). Five different combinations of temporal and backward
scattering coefficient dimensional features were used as training data. Data from October
2019 to April 2020 and October 2020 to April 2021, with a total of 8,339,334 points, were
collected and divided into training and test sets at a ratio of 7:3. One day per month was
selected not to participate in the training process for validation. The accuracies obtained are
shown in Table 1. FYI-MYI-PRE indicates the pre-classification parameter by the threshold.

Table 1. Classification accuracy for each parameter of decision tree.

Parameters Overall Accuracy

σ0
VV , Month, FYI-MYI-PRE 91.75%
σ0

VV , DOY, FYI-MYI-PRE 96.06%
σ0

VV , Week, FYI-MYI-PRE 94.25%
σ0

VV , Week 94.22%
Week, σ0

VV + σ0
HH , σ0

VV − σ0
HH 93.94%

In the course of the experiment, we took one day out of each month of the training
set to observe the classification performance of each feature combination. After a compre-
hensive comparison of the classification accuracy and regional classification performance,
(σ0

VV , week) and (σ0
VV , DOY, pre-classification) were finally selected as the two sets of

feature values.

3.4. Image Segmentation Method

In this section, a tuned U-Net, consisting of an encoder (for downsampling) and a
decoder (for upsampling) [33] was employed. Images of Arctic sea ice features were fed
to the U-Net network, encoded by downsampling to obtain a set of features smaller than
the original image, and then subsequently decoded by an upsampler to reduce the original
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image size and obtain a map of the classification results of the original image. This image
segmentation network is then trained by back propagating the differences between the
results obtained and the real segmentation, which was from the AARI Ice Chart in this
research. The theoretical significance of downsampling is to increase the robustness of
some small perturbations of the input image, reduce the risk of overfitting, reduce the
number of operations, and increase the size of the perceptual field. The role of upsampling
is to restore the image features extracted by downsampling to the initial pixel size and
finally obtain the segmentation result. In the recovery process of the up-sampled image, the
information is supplemented and the convergence speed is increased by skip connection to
prevent the information loss caused by the change in feature scale [37].

To improve the robustness of the model and reduce the number of trainable parameters,
a MovileNetV2 pre-trained model was used as the feature extraction model in this study,
and the intermediate output values of this model were used as the input values in the
U-Net network to improve the training speed of the model. The network structure is shown
in Figure 7.
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σ0
VV , σ0

HH , and σ0
VV + σ0

HH/σ0
VV − σ0

HH for a projected resolution of 25 × 25 km were
used in a 128× 128× 3 image input model according to the RGB channel, and the categories
were set as Nilas, YI, FYI, MYI, and Fast Ice.

3.5. Model Fusion

The core idea of the stacking model approach is to generate a meta-model. This meta-
model is generated by using a k-Fold cross-validation technique on the prediction results of
one set of machine learning sub-models (i.e., weak learners) as the training set, and using
an additional simple model to train to obtain the final strong learner. In this study, the two
previously mentioned DT models with different features and an image segmentation model
were used as sub-learners for model fusion. Table 2 shows the training parameters used for
each sub-learner, and the results of the first-level training set by five-fold cross-validation.

Table 2. Selection of sub-model parameters used for fusion.

Sub-Method\Feature Backscatter
Coefficient Time FYI-MYI-PRE σ0

VV/σ0
HH σ0

VV − σ0
HH/σ0

VV + σ0
HH

Decision tree 1 σ0
VV Week × × ×

Decision tree 2 σ0
VV DOY

√
× ×

Image Segmentation σ0
VV , σ0

HH × ×
√ √

Figure 8 shows the stacking model process. “
√

” mark means that the feature is used
by the current submodel, and “×” means that it is not used. Parameters of daily average
σ0, time, and the pre-classification result were first used as the initial training data, which
were divided into training and test sets at a ratio of 5:1, and the training data set was
cross-validated using five-fold cross-validation. Then, one-fifth of the training set was
adopted as the sub-test set, while the other four-fifths were taken as the sub-training set to
train the same model five times and make predictions for each sub-test set that are then
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stitched together with other sub-test set results to make the training set for Stage 2. At
the same time, the classification results of the five test sets were averaged and used as the
test set for Stage 2. This process was applied to DT model 1, DT model 2, and the image
segmentation method to generate the corresponding data and test sets. The final fusion
model was trained with a simpler structured DT model.
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Figure 9 shows the classification results of each algorithm, taking 23 October 2020 as
an example.
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Figure 9. (a) AARI ice map used as true data; (b,c) classification results of DT model using σ0 (week)
and σ0 (DOY, FYI-MYI-PRE) as parameters, respectively; (d) results of image segmentation algorithm;
(e) result of stacking algorithm after fusion.
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The missing data in the central region of the Arctic in Figure 9d is due to σ0
HH data

used by the algorithm, which are not available in the region. Figure 9b,c shows that the
DT model has good classification performance for the main part of the MYI, but there is a
region where some YI was misclassified as Old Ice between 100◦E and 120◦E. Furthermore,
the image segmentation model has good classification performance in this region, but there
is some YI that was misclassified as FYI at the sea ice edge. After fusion, the classification
performance was improved in the misclassified region for these three sub-models. This
demonstrates that the stacking model fusion algorithm can be an effective alternative to
traditional image-level algorithms for the correction task.

3.6. Sea Ice Classification Maps

The HY2B SCA sea ice classification results for 2019/2020, 2020/2021, and 2021/2022
were obtained by the stacking model fusion algorithm, referred to in the following as
stacking-HY2B. Figure 10 shows the prediction results on four days: 29 October 2019,
23 December 2019, 23 February 2020, and 22 April 2020.
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Figure 10. Sea ice classification results in the winter of 2019/2020.

We calculated the confusion matrix for the entire winter season using data from
October 2021 to April 2022 as a validation, and the results are shown in Table 3. A total
of 3,684,800 points were counted. The largest errors were for Nilas, YI, and Fast Ice. The
accuracy of Nilas was 70.3%, while some of the points of Nilas were incorrectly classified as
Young Ice. The accuracy of Young Ice was 77.7%, and nearly 18% of the points (75,304) were
misclassified as FYI, which is due in part becuase young ice is similar to FYI in physical
characteristics during the freezing process. For Fast Ice, the user accuracy was 67.4%,
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because there is a regional difference in Fast Ice in some parts of the Arctic, e.g., in the Kara
and Laptev Seas, Fast Ice is FYI.

Table 3. Comparison of classification results with AARI in October 2021 to April 2022.

Classification Result AARI Accuracy

Nilas Young Ice FYI Old Ice Fast Ice Total

Nilas 19,927 4935 1974 1070 447 28,353 70.3%
Young Ice 4682 327,792 75,304 9896 4212 421,886 77.7%

FYI 3589 67,996 1,395,491 59,337 12,161 1,538,574 90.7%
Old Ice 687 39,828 106,710 1,427,211 1441 1,575,877 90.6%
Fast Ice 371 5214 30,343 3177 81,005 120,110 67.4%

Total 29,256 445,765 1,609,822 1,500,691 99,266 3,684,800

4. Comparison and Discussion

Most current sea ice classification datasets only distinguish FYI and MYI; therefore,
there are no multiple sea ice classification methods or long-time and large-scale in situ data
to verify the classification results. In this study, we used the OSI-SAF sea ice type dataset
as the comparison data, and areas with large classification differences were subsequently
assessed using EASE-GRID Sea Ice Age data. As a result of the lack of on-site actual mea-
surement data, the CMEMS data and EM-Bird ice thickness measurements were selected as
the validation data.

4.1. Comparison with OSI-SAF Sea Ice Type

First, we compared the sea ice extent of the two data sets, as shown in Figure 11, from
October 2021 to April 2022. The sea ice extent was obtained by summing the area of each
pixel point to calculate the total, removing the days with incomplete satellite data. OSI-SAF
data only distinguishes FYI and MYI; therefore, the Nilas, Young Ice, and First Year Ice
from Stacking-HY2B were classified as FYI and Old Ice was classified as MYI. Since Fast Ice
is one-year-old ice in areas such as the Kara and Laptev Seas in the Arctic and MYI in the
Canadian Arctic Archipelago, the areas classified as Fast Ice were not counted. Pixel points
marked as ambiguous in the OSI-SAF data were not included in the calculation.

Figure 11a indicates that the results of the Stacking-HY2B and OSI-SAF have a basically
consistent trend in both FYI and MYI, which changes with the season. In winter, the area
of FYI in Stacking-HY2B gradually increases from the lowest value of 0.91× 106 km2 in
October to 5.01× 106 km2 in April.

In Figure 11b, there is a certain difference in the area of extent between the two data
sets of MYI, and the average classification result difference in sea ice extent is 0.53× 106 km2.
The difference in the extent of MYI is smaller from November 2021 to December 2021 and
larger from February 2022 to March 2022. The maximum MYI extent for Stacking-HY2B
is 3.71× 106 km2, and for OSI-SAF is 3.13× 106 km2. This indicates that the MYI extent
decreases, while the FYI extent increases. Table 4 shows the confusion matrix between
Stacking-HY2B and OSI-SAF.
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Table 4. Confusion matrix results on 2021/2022 data comparison with OSI-SAF.

Classification Result
OSI-SAF

User Accuracy
FYI MYI Total

FYI 1,386,345 144,989 1,531,334 90.53%
MYI 48,439 736,374 784,813 93.82%
Total 1,434,784 881,363 2,316,147

Overall Accuracy = 91.64%

The overall accuracy was 91.64%, and the user accuracy of FYI and MYI was 90.53%
and 93.82%, respectively. The areas where there is a difference are analyzed next. Taking 1
March 2022 as an example, Figure 12 shows the difference distribution of the two data sets
to analyze MYI differences.
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Figure 12. Difference distribution between Stacking-HY2B and OSI-SAF.

Figure 12 shows that the areas classified as FYI by OSI-SAF and MYI by Stacking-HY2B
are mainly concentrated in the central Arctic (CA, Figure 12 boxed area). This indicates
that Stacking-HY2B has a higher amount of MYI extent than OSI-SAF. For the area boxed
in Figure 12, we selected sea ice age (SIA) data to compare the classification results, which
classify the sea ice into 0–1-, 1–2-, 2–3-, and 3+-year-old ice in Figure 13.
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This indicates that in the boxed area, the sea ice is more than one year old, which means
that it is MYI. This is consistent with the inversion results of the Stacking-HY2B model.

4.2. Validation Using CMEMS Sea Ice Type Product

To further investigate the classification accuracy of Stacking-HY2B, we compared it to
the CMEMS SAR-based sea ice type dataset. The accuracy evolution with time of Stacking-
HY2B and OSI-SAF are shown in Figure 14. The accuracy is calculated by dividing the
number of correctly identified pixel points by the total number of pixel points. According
to time coverage of σ0, we used data from November 2021 to March 2022 for validation.
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Figure 14. Precision of Stacking-HY2B and OSI-SAF with regard to CMEMS.

Figure 14 illustrates the recognition accuracy was between 0.87 and 0.92 for both types.
The identification accuracy of OSI-SAF was higher than that of Stacking-HY2B by about
0.03 from October to December 2021, while their accuracy remained about the same in
January 2022. This is because at the early stage of the formation of FYI, the DT model
cannot effectively identify the characteristics of MYI, as the σ0 of ice types in some regions
are not evident. The structure of newly formed FYI is relatively stable after December;
therefore, the identification accuracy can be on par with the OSI-SAF product.

4.3. Validation Using EM-Bird Ice Thickness Measurements

Due to the lack of actual sea ice type data, we used the EM-Bird measurement data of
sea ice thickness, extracted and projected into a 25 KM × 25 KM grid, and converted it into
four sea ice typed (Nilas, Young Ice, FYI, and MYI) by the relationship between sea ice type
and thickness [2]. To match the period of EM-Bird measurements, two freezing seasons
from October 2020 to April 2021 and from October 2021 to April 2022 were used as training
data in the validation process, and then 5 days of helicopter measurements from 4 April
2020, 10 April 2020, 17 April 2020, 26 April 2020, and 30 April 2020 were used to validate
with the sea ice types obtained from the inversion. The spatial range of the comparison is
83.6◦N–85.2◦N and 6◦E–20◦E, and the results of the comparison are shown in Table 5.
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Table 5. Comparison accuracy over five days: EM-Bird vs. Stacking-HY2B.

Date Matching Points Number of FYI Number of OI Overall Accuracy

4 April 2020 24 5 19 79.16%
10 April 2020 4 0 4 100%
17 April 2020 3 0 3 100%
26 April 2020 10 0 10 100%
30 April 2020 2 0 2 100%

Due to seasonal and observational location limitations, EM-Bird only shows two types
of ice: FYI and OI. The ice type pixel points obtained from the conversion of the airborne
observations on all dates are consistent with the results of this study, except for 4 April
2020, when there is a comparison error of the points close to 20%. This research analyzed all
data from the 4 April 2020, and Figure 15 shows the ice thickness of EM-Bird, the converted
ice chart, and the inversion results of Stacking-HY2B at the corresponding positions.
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It can be inferred that the difference in the comparison mainly comes from two aspects.
The first is an ice thickness–ice conversion error. Due to the direct conversion of sea ice
thickness to ice type in the WMO-IOC Technical Commission for Oceanography and Marine
Meteorology SIGRID-3 format, there are some pixels with thickness around 1.8–2 m in the
chart, and these pixels have been converted to 1-year-old ice, while in fact, they are most
likely MYI. The second is that the spatial resolution of HY2B SCA is much coarser than
EM-Bird.

4.4. Discussion

The difference in MYI between Stacking-HY2B and OSI-SAF in the CA regions may
arise from several reasons: First, the different active microwave sensors have different
sensitivities to sea ice types. The Ku band scatterometer employed by the Stacking-HY2B
is more sensitive to the sea ice type than the C band ASCAT employed by OSI-SAF [20].
Second, it may be due to some changes in the prevailing ice thickness of one-year ice
compared to the years developed in SIGRID-3 format. The classification results of the
Stacking-HY2B are closer to that of SIA than OSI-SAF, possibly because the DT algorithm
uses the threshold method for pre-classification, and the dynamic threshold can effectively
differentiate ice types from FYI to MYI according to their trends.

In the validation process, the proximity posterior probability of each ice type in the
classification model can cause inaccurate ice type determination. For example, within
the sea ice pixel at the edge of FYI and MYI, the probability of FYI of this pixel in the
classification algorithm is close to the probability of MYI because of the close microwave
properties of sea ice. The classification result of this pixel may not be determined correctly in
this case. In turn, this results in Stacking-HY2B detecting a lower density of MYI, inducing
a loss in classification accuracy. Furthermore, due to the regional limitation of CMEMS data
and EM-Bird ice thickness measurements, Stacking-HY2B cannot represent the retrieval
accuracy of the whole Arctic. Further evaluation and validation of the algorithm using
other high precision data will be attempted in the future.

5. Conclusions

Based on the HY-2B SCA data and the AARI ice maps, an innovative stacking model
incorporating a DT algorithm and an image segmentation algorithm is used in this study
to retrieve multiple sea ice types in the Arctic. Due to the use of dynamic threshold
segmentation, this is not an operational algorithm.

First, the optimal features for the classification of multiple sea ice types are selected
by comparing the sensitivity of σ0 to sea ice types. Six parameters are used in the study,
they are satellite observed σ0 under VV and HH polarization (σ0

VV, σ0
HH), σ0 ratio, σ0

polarization gradient ratio, DOY, and pre-classification features by the monthly histogram
threshold method.

Second, we use stacking to fuse the three sub-models trained by the DT algorithm and
image segmentation algorithm using different parameters. This successfully improves the
performance of the filtering and masking compared to image correction after classification,
which is commonly used in sea ice classification algorithms. This means that the perfor-
mance is improved at the algorithm level, and beneficial recognition results are achieved
by Stacking-HY2B.

Finally, Stacking-HY2B is compared with the OSI-SAF product. The results show that
the extent of FYI in winter 2021/2022 is about the same, and the extent of MYI calculated
by Stacking-HY2B is about 0.58× 106 m2 more than that of the OSI-SAF product. The
difference in sea ice extent is mainly from differences in the Central Arctic. Additionally, we
then introduced the EASE-Grid Sea Ice Age dataset to evaluate the classification differences
in the Central Arctic sea region, and the Stacking-HY2B is found to be closer to the SIA
dataset than the OSI-SAF dataset. Validation using the CMEMS product showed that
Stacking-HY2B is comparable to the OSI-SAF product in terms of the classification accuracy,
but the categories are more refined. The EM-Bird airborne measurements are also used to
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verify the sea ice classification results, with an overall accuracy of 88.37%, and the causes of
the errors were analyzed. The classifier obtained by fused model using a stacking algorithm
in this study is able to effectively distinguish Arctic sea ice types.

In future work, we will consider applying this classification method to other scatterom-
eters and improving models so that they can be operational. If the incidence angle of the
applied scatterometer is variable, we will perform an incidence angle correction first. At
the same time, the current monthly dynamic threshold method of pre-classification can also
be improved; we will consider adding dynamic ± X days thresholds to the classification.
Additionally, the water content of snow on sea ice will likely affect the σ0; therefore, we
will use air temperature data, such as ERA5, in the future to exclude areas with excessive
water content.
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