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Abstract: Atmospheric correction is the processes of converting radiance values measured at a spectral
sensor to the reflectance values of the materials in a multispectral or hyperspectral image. This is
an important step for detecting or identifying the materials present in the pixel spectra. We present
two machine learning models for atmospheric correction trained and tested on 100,000 batches of
40 reflectance spectra converted to radiance using MODTRAN, so the machine learning model learns
the radiative transfer physics from MODTRAN. We created a theoretically interpretable Bayesian
Gaussian process model and a deep learning autoencoder treating the atmosphere as noise. We
compare both methods for estimating gain in the correction model to process for estimating gain
within the well-know QUAC method which assumes a constant mean endmember reflectance.
Prediction of reflectance using the Gaussian process model outperforms the other methods in terms
of both accuracy and reliability.

Keywords: atmospheric compensation; Gaussian process; hyperspectral

1. Introduction

Atmospheric correction of a hyperspectral or multispectral image is the process of
converting the observed at-sensor radiance (the amount of light per wavelength measured
at the sensor) to ground reflectance (the percent reflectance per wavelength of the material(s)
located at on the ground). This is an essential step when using hyperspectral imagery to
identify the materials in pixels, so that the pixel spectra provide information about the
materials and not the illumination and atmospheric variation.

In this paper we present two methods for machine learning of atmospheric radiative
transfer from collections of spectra from a hyperspectral image. Each method takes in a
collection observed pixel spectra from a hyperspectral image and outputs the reflectance
spectra for the pixels, providing coefficients for atmospheric correction that can be applied
to the entire image.

1.1. Background

A hyperspectral image is a digital image in which each pixel has more than the visual
three color (red, green, blue) bands, but often hundreds of bands across wavelengths
sufficient to get spectral information about the materials in each pixel. We focus on
hyperspectral images that have band wavelengths from about 400 nm to 2500 nm—for
comparison the visual colors occur around 450 nm (blue), 550 nm (green) and 650 nm
(red) —and our spectra have 452 bands as collected with 375 bands after removing bands
where the signal is absorbed by atmospheric water vapor. For a hyperspectral image
collected at these wavelengths, the measured light at the sensor is primarily reflected
sunlight, having passed through the atmosphere, reflected off materials, and passed again
through some amount of atmosphere (which may be small for a ground-based space or
significant if the sensor is on board an aircraft or satellite.) Each band is typically 2 nm to
10 nm wide, and the bands are contiguous across the wavelength range. The reflectance
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for a material is important because it is the result of the interaction of photons at different
wavelengths and the resonant frequencies of molecular bonds (for the wavelengths above
the visible range) and the interaction of photons and electrons moving between quantum
states (for wavelengths around the visible range). Specifically, important information about
the constituents and bonds present in a material can be computed from reflectance spectra,
for example distinguishing between different polymers, or distinguishing talcum powder
from powdered sugar from dangerous white powdered substances.

As light propagates through the atmosphere, some light is absorbed by the particles
and gases in the atmosphere, some light is scattered, and some light passes through the
atmosphere. Light at lower wavelengths has greater probability of being scattered (the
blue sky effect), and generally the fraction of light that is absorbed varies with wave-
length, depending on the gasses and particles present. The percentage of light that passes
through the atmosphere is called transmittance, which is a function of wavelength for
a given atmosphere. This transmittance can be computed from physical measurements
for a given atmosphere (density of water vapor, sun and sensor angles, etc.) using MOD-
TRAN [1] (MODerate resolution atmospheric TRANsmission) software. A plot of transmit-
tance for two different atmospheric models created using the MODTRAN online interface
(http://modtran.spectral.com/modtran_home, accessed on 23 December 2022) across our
wavelength range with a spectral resolution (band width) of 5 nm is shown in Figure 1.
Observe that these two spectra differ in magnitude and in depth of the absorption features
that occur at various wavelengths. The transmittance labeled US Std 1976 was created
using the US Standard 1976 Atmospheric model, water column of 1162.3 atm-cm, ozone
column of 0.3456 atm-cm, CO2 of 400 ppmv, CO of 0.15 ppmv, CH4 of 1.8 ppmv, ground
temperature of 288.15 K, a Rural Aerosol model, 13 km visibility, sensor altitude of 50 km,
and sensor zenith angle of 180 deg. The transmittance labeled Mid-Lat Summer was cre-
ated using the Mid-Latitude Summer model with a water column of 3635.9 atm-cm, ozone
column of 0.33176 atm-cm, ground temperature of 294.2 K, and solar zenith of 135 deg,
and all other parameters equal to those for the US Std 1976 transmittance. Our main goal
includes determining this transmittance fraction from spectra on the ground measured
from a sensor even when the reflectance of the ground material is unknown.

Figure 1. Two plots of transmittance for two different atmospheric models created using the MOD-
TRAN online interface.

The plot in Figure 2 shows more components involved in the radiative transfer model.
The plots (left) were generated with the MODTRAN online interface. The Direct Solar

http://modtran.spectral.com/modtran_home
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(100 km) gives the amount of sunlight measured at the top of the atmosphere. The main
shape of this curve is from the blackbody radiation given the temperature of the sun. The
Direct Solar (0 km) is the amount of sunlight reaching the ground, which is the Direct Solar
(100 km) times a transmittance similar to that shown in Figure 1. The Downward Diffuse
(0 km) is the amount of light per wavelength that reaches the ground after scattering in
the atmosphere; this is the indirect illumination on an object, for example on an object in a
shadow from the sun. The upward Diffuse is the amount of upward light, which at 100 km
(top of atmosphere) is from atmospheric scattering and at 0 km is from the blackbody
radiation of the ground (which is insignificant given the wavelength range and ground
temperature assumed in this model).

Figure 2. Components of the atmospheric radiative transfer model created using the MODTRAN
online interface (left). The at-sensor radiance is the sum of all light entering the sensor, which is the
result of these components and their interaction with the ground (right). The components shown
in the left-hand figure were created using a Mid-Latitude Summer atmosphere model and a Rural
aerosol model, with all parameters at default values for these models. The parameters correspond to
the labeled paths on the right-hand figure: UD = Upward Diffuse, etc.

The at-sensor radiance is the Upward Diffuse (at the elevation of the sensor) plus
the total illumination at the ground (Direct Solar + Downward Diffuse) times the per-
cent reflectance per band of the material on the ground per wavelength Re fλ. Using the
abbreviations for these components as shown in Figure 2, this is

UDλ + (DSλ + DDλ)Re fλ = Radλ.

There are additional nonlinear effects as well which are not shown in Figure 2. Light
that has passed through a leaf and reflected off the ground would have the leaf transmit-
tance times ground reflectance in place of Re fλ in this equation. In the lower wavelengths,
especially blue and below, photons will take multiple bounces/scattering (collectively,
’haze’ in the image) in the atmosphere. This multiple bounce haze causes additional up-
ward diffuse and additional downward diffuse illumination on the ground. There are also
photons that reflect off material at one ground location and then scatter in the atmosphere
to enter the sensor at locations/directions for other pixels, causing an “Upward Diffuse”
that varies across the image comprised of a nonlinear mixture of nearby ground material
spectra and atmospherics, rather than the ideal Upward Diffuse from the atmosphere alone
shown in Figure 2. These nonlinear effects are minimal in most cases.

All of these values change with respect to atmospheric constituents, water vapor, CO2,
Ozone, CH4, aerosols, sun angle, fraction of sun and sky visible to each pixel (shadow from
objects, terrain, clouds, etc.), sensor angle, angle and roughness of the ground material, and
other factors. The MODTRAN software can simulate these effects if they are known, and
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provide a modeled at-sensor radiance for reflectance spectra, or an approximated ground
reflectance spectrum for a measured at sensor radiance.

1.2. Significance

The purpose of hyperspectral imaging is to perform spectroscopy writ large; that is,
to be able to determine the materials in each pixel from the reflectance spectra for those
pixels. As such, good atmospheric compensation is an essential step. Before atmospheric
compensation is applied, the spectral are primarily the result of atmospheric absorption.
After applying atmospheric compensation, the spectra in the image are the actual spectra
of the materials on the ground. Without this step, it is impossible to compare image pixel
spectra to laboratory measurements of known materials.

1.3. Related Works

The most accurate methods either use physics-based modelling with MODTRAN
such as FLAASH [2] or using materials of known reflectance in the image, for example
the empirical line method [3,4], in which case it is usually preferable to have materials
that are spectrally flat, for example a set of five panels which are 5%, 30% 50% 80% and
95% reflectance across all wavelengths, which can be used to estimate a best fit regression
line per wavelength to convert from radiance units to reflectance. However, both of these
methods make approximations in their modelling of physical parameters. For example,
a good ELM will estimate the upward diffuse as the intercept and the direct solar and
downward diffuse as the slope, but assume these are consistent values for every pixel in
the image. FLAASH attempts to estimate the physical parameters from the image radiance
spectra based on user input of parameters, even estimating water vapor content per pixel,
and use a physics based model to compute the grouped reflectance from each at-sensor
radiance measurement.

A heuristic and approximate but surprisingly effective method for atmospheric com-
pensation is to make the assumption that the mean spectrum of a significantly large diverse
library of reflectance spectra will be constant (independent of the spectra used and vary-
ing only with wavelength, called the ideal mean reflectance), and use this assumption
to compute a single gain and offset that is applied per wavelength across the image. A
method based on this assumption is QUAC [5] (QUick Atmospheric Correction), which
functions approximately as follows. First, the minimum measured radiance value across
the image per wavelength is assumed to be the upwelling radiance at the sensor (offset),
and is thus subtracted from the image. The top of atmosphere solar radiance (Direct Solar
in Figure 2) is approximated using a plank function at the observed temperature of the
sun, and this value is divided by the radiance values per band as a first step in correcting
for illumination intensity. Then a sample of 50 different spectra (called endmembers) are
selected from the radiance image, usually iteratively so each new endmember is optimally
different than the previous ones, and the mean of these 50 endmembers is determined.
Then the ratio between the ideal mean and mean of the endmembers is computed and used
as a ’gain’ and is multiplied by every upwelling-subtracted radiance value to convert to
reflectance. This is often implemented with additional heuristic improvements such as
removing spectra of mud or vegetation from the spectra, and is provided in QUAC [5].
There are other semi-heuristic methods for example SHARC [6].

1.4. Issues

The QUAAC method is faster than physics-based methods and unlike FLAASH
requires no manual input. In tests, it often provides reflectance spectra that are generally
±15% in comparison to FLAASH generated reflectance spectra [7], and perhaps more
importantly QUAC tends to generate reflectance spectra that retain the features of the true
spectra, which is the most important factor for spectroscopy. The main assumptions in
QUAC are:
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Q1 Assuming that the atmospheric correction is linear, comprised of an offset (upward
diffuse) and gain (transmittance per band).

Q2 Assuming the minimum radiance value observed in each band is the upward diffuse.
Q3 Assuming that the mean reflectance of a collection of spectral diverse spectra is

always the universal mean

A major problem with QUAC is that these assumptions never perfectly hold, and
sometimes are poor approximations.

1.5. Our Approach

In this paper we provide a Gaussian process method for estimating the gain in at-
mospheric correction that does not make assumption 3, and a denoising autoencoder
method for estimating the gain in atmospheric correction that can be used avoiding all
3 assumptions. The differences between these two methods in terms of the usual statistical
bias-variance trade-off is that the Gaussian process methods is lower variance error because
of the parametric model assumptions, but the autoencoder has lower bias variance.

2. Materials and Methods

We developed and tested two machine learning models to transform the radiance data
to reflectance. The first method, which showed exceptional performance, is a Gaussian
process model. Our second method is a deep learning model using a denoising autoencoder,
training the autoencoder as if the atmospheric effects are noise. These methods were
trained and tested on reflectance spectra with associated radiance that were computed
using MODTRAN.

2.1. Data

For this paper, we started with a set of about 1200 reflectance spectra of known
materials, each of which passed some basic quality checks for noise. All of the spectra
in this set were collected with an ASD and downsampled to the 452 bands associated
with a SPECIM hyperspectral sensor ranging from 400 nm to 2400 nm, and then removing
bands in the 1340–1440 nm and 1800–2000 nm ranges because light in these wavelengths is
completely or nearly completely absorbed by water in the atmosphere resulting in a final
set of 375 bands. To simulate a set of radiance endmembers form an image, we randomly
select 39 spectra from this library and a set of parameters for MODTRAN (solar zenith
angle from 0–85 in increments of 5, random selection from the 6 possible atmospheric
models, random selection from the 12 possible aerosol models) and created an associated
set of 39 at-sensor radiance spectra. For each set, we then computed the mean spectrum
and added this as a 40th spectrum. So our input data is a set of 40 radiance spectra each
with 375 wavelengths, and our output data is a set of 40 reflectance spectra. Each set of
40 spectra is intended to simulate the set of endmembers obtained in QUAC from an image
that are acquired with methods that enforce diversity among the materials.

Our software maintained the option to include the upwelling (offset) term, to to
exclude it (approximating a situation where it was estimated in-scene for example by a
darkest pixel per band method). In Figure 3 we show a plot of the 40 radiance spectra
(left) and the associated reflectance spectra (right). We created a 100,000 such groupings of
40 reflectance spectra and with their associated radiance. The goal is to train a machine
learning model to take the radiance spectra as an input and output the reflectance spectra.
Two-thirds of our data was randomly selected for training and the remaining sets of spectra
used for testing.
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Figure 3. At-sensor radiance for 39 spectra and the mean plotted in black (left-hand plots) along
with the true reflectance for these materials and the mean of their reflectance in black (right-hand
plots). The top row of plots have an atmosphere with greater absorption and the bottom row has
less absorption.

Figure 4 shows reflectance and radiance values from different endmember means,
showing that there is significant variation in both the radiance and reflectance values for
different groupings of endmembers and atmospheres. These plots indicate the error in
QUAC assumption Q3, that the mean of a group of reflectance spectra is constant.

Figure 4. The mean reflectance spectrum for 10 different groupings of spectra (left) and the reflectance
and radiance values in two different bands for the mean from 15,000 of our observations.

2.2. Gaussian Process Atmospheric Compensation

The Gaussian process model can be described using conditional probabilities as fol-
lows. Let x = (Radλ1 , ..., RadλN ) denote the N−dimensional vector of values for the mean
of a set of radiance endmembers, and let y = (Refλ1 , ..., RefλN ) be the N−dimensional mean
vector of the reflectance for these endmembers. Let z be the 2N−dimensional concatenation
of x and y,

z =
(
Radλ1 , ..., RadλN , Refλ1 , ..., RefλN

)
.

We use capital letters X, Y, and Z for the arrays consisting of k observations of each
type, which are of size k× N, k× N, and k× 2N respectively.

Making the assumption that Z is a multivariate normal random variable, we can
compute the mean µz and covariance Σz. Let µx and µy be the means for the radiance and
reflectance so that µz is the concatenation of µx and µy. If we denote the covariance of the
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Z by Σz, the covariance of X by Σxx, and the covariance of Y by Σyy, then the covariance
matrix Z can be written in block form as[

Σxx Σxy
Σyx Σyy

]
.

Then for a given radiance x0 which is the mean of endmembers, we get the conditional
probability distribution for the reflectance as the multivariate normal distribution [8]

P(y|x = x0) = N (µ̄; Σ̄)

where

µ̄ = µy + ΣyxΣ−1
xx (xo− µx) (1)

Σ̄ = Σxx − ΣyxΣ−1
xx Σxy. (2)

This conditional probability density function is depicted in the case where x is one
dimensional and y is two dimensional in Figure 5. The predicted mean reflectance is then
the expected value of the reflectance given the observed radiance,

E[y|x = xo] = µ̄.

Figure 5. The conditional probability density function for a multivariate normal distribution is a
lower dimensional multivariate normal distribution.

Our description of a Gaussian processes (GP) model was in the context of predicting
reflectance from radiance. More generally, GP is a machine learning method for predicting
an output vector from an input vector in a Bayesian framework assuming the Gaussian
probability distributions. It is often used for predicting financial or cyclical weather patterns
from data, where the input is the value of some measurement over time, and the output is
the values over a following set of times. It can be applied to any function of a continuous
parameter (e.g., time or in our case wavelength) where the measured output value at
any finite set of input parameter values is a multivariate Gaussian random variable. This
includes the case of continuous input variables (infinite dimensions) but the computation
is done on a discrete input parameters subset for obvious computational reasons.

This predicted mean reflectance can be used in atmospheric correction similar to how
the ‘universal mean’ is used in QUAC, as follows. First, for each band the minimum value
over all pixels in the image for that band is determined, and this minimum value is used as
the offset, which is an estimate for the upwelling radiance. This offset is subtracted from
every pixel in the image, and then a collection of endmembers is collected from the image.
The mean of these endmembers is the radiance vector x0, and the predicted reflectance
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is µ̄. The gain for the atmospheric conversion is µ̄/y, which is multiplied per-band for
every spectrum in the image to complete conversion to reflectance. We call this method of
atmospheric correction GPAC (Gaussian Process Atmospheric Correction).

Two examples of mean of the radiance endmembers (left) and predicted reflectance
from GPAC (right) are shown in Figure 6 using observations from our test data. Observe
that the method accurately predicts the mean reflectance spectra even though these means
differ from each other significantly. This enables us to perform accurate atmospheric
correction in situations where the assumption in QUAC of a universal mean is not a
reasonable assumption.

Figure 6. (left) Two different mean radiance spectra for different endmember groups and different
atmospheres. (right) The true mean reflectance for each endmember set, the GPAC predicted mean
reflectance, and the QUAC-style universal mean. Observed that the GPAC predicted mean appears
to be a better approximation to the actual mean.

The covariance matrices computed from the radiance and reflectance training data for
the parameters computations in 1 are shown in Figure 7. From this figure we can see that
Σxx is a covariance matrix for reflectance spectra, Σyy is a covariance for radiance spectra,
and the off diagonal matrices indicate a conversion between units.

An advantage of the conditional probability in the Gaussian process is that we can
unpack the model to determine what it is learning. This method is not a black box.
In Figure 8, we plot the first four eigenvectors of the covariance matrix Σ̄ along with
transmittance spectra. These eigencvectors show that the conditional probability is learning
variation in the transmittance for atmospheres of varying physical properties.
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Figure 7. The covariance matrices computed from the radiance and reflectance data for the parameters
for the conditional probability.

Figure 8. Cont.
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Figure 8. The transmittance for various atmospheres plotted along with the first eigenvector (top)
and the next three eigenvectors (bottom) for the matrix Σ̄.

2.3. Denoising Autoencoder Atmospheric Compensation

An autoencoder is a deep learning neural network that passes data through a series of
layers that decrease in size leading to a dimensionally smaller representation of the data
(encoding), and then passing the lower dimensional representation through a symmetric
series of layers back to the original data shape (decoding). When trained well, the process
learns a representation of the data in the reduced dimensional space so that the encoding
stage removes noise and the decoding stage recovers the data in the original space [9–12].
A diagram of the architecture of our autoencoder is shown in Figure 9.

Figure 9. The autoencoder neural network used for converting from radiance to reflectance. Details
for the network architecture are included in the labels.
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Our autoencoder is trained on the reflectance and radiance data described previously
(removing the last 3 bands to provide an appropriate even number for the autoencoder),
providing the full 40× 372 2-D array of endmembers and mean for each rather than just the
mean. One training data observation with both radiance (input for the autoencoder) and
reflectance (output) is shown in Figure 10. All of our data and methods are provided open
access (https://www.kaggle.com/code/billbasener/autoencoder-atmospheric-compensati
on/notebook, https://github.com/wbasener/DeepLearningAtmosphericCompensation/,
accessed on 23 December 2022).

Figure 10. The training data for the auto encoder is an array of the radiance endmembers (upper-left)
and array of the reflectance endmembers (lower-left). The plots for each of these is shown to the right.

3. Results

We tested all three methods: Gaussian Process Atmospheric Compensation (GPAC),
Universal Mean Regression (UMR), and our Denoising Autoencoder (DA) for atmospheric
correction on our test data. The data consisted of 100,000 observations, where each ob-
servation has an X input array of 40 radiance spectra and a Y output variable of these
40 spectra in reflectance. The radiance was created from the reflectance by applying a
MODTRAN atmospheric absorption. For each observation, the reflectance spectra were a
random selection from a library of over 1000 spectra and the parameters for the MODTRAN
atmosphere were randomly selected. The data was randomly split into 66,667 training ob-
servations and 33,333 test observations. The test set is then 33, 333× 39 = 1, 299, 987 unique
radiance-reflectance pairs of spectra (We exclude the mean for scoring, so each group has
39 rather than 40). The radiance spectra generated by this process are an approximation to
at-sensor radiance minus the offset. This offset is often approximately removed via dark
pixel subtraction in practice, so we focus on measuring the prediction of the gain.

Evaluation Metrics

The GPAC and DA methods are the novel methods described in Section 2, and the
UMR method is what is used within the QUAC atmospheric correction process to estimate
reflectance from sensor radiance minus the offset. We applied each method to the radiance
spectra in each test observation to determine predicted reflectance spectra. (The GPAC
and UMR methods each produce a mean reflectance which is used to determine a gain,
which is then applied to each radiance spectrum to obtain the reflectance, while the DA
directly provides a predicted reflectance for each radiance spectrum.) We then computed
the following metrics.

1. Mean Correlation: The mean of the correlations between each predicted reflectance
spectrum with the corresponding true reflectance.

2. Standard Deviation in Correlation: The standard deviation of the correlations between
each predicted reflectance spectrum with the corresponding true reflectance.

3. Percent with all bands in ±15% of True: The percent of spectra (out of the 1,299,987) for
which the predicted reflectance is within ±15% of the true reflectance for all bands.

4. Percent with >98% of bands in±15% of True: The percent of spectra (out of the 1,299,987)
for which the predicted reflectance is within ±15% of the true reflectance for at least
98% of the bands.

https://www.kaggle.com/code/billbasener/autoencoder-atmospheric-compensation/notebook
https://www.kaggle.com/code/billbasener/autoencoder-atmospheric-compensation/notebook
https://github.com/wbasener/DeepLearningAtmosphericCompensation/
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The mean correlation between the predicted and true spectra is an important metric
because most material detection and identification process incorporate correlation (in native
or PCA space), and moreover the chemical bonds in materials appear as features (minima,
maxima, slopes, etc.) in the spectra, and correlation between spectra captures these better
than absolute difference. It is clear from our test that the GPAC method provides the most
accurate (highest mean) and most consistent (lowest standard deviation) results when
measured by correlation between predicted reflectance and true reflectance.

The two metrics measuring how well the predicted reflectance stays within plus or
minus 15% of the true reflectance provide additional import information on accuracy. This
type of comparison has been used to justify the accuracy of QUAC [7]. Often, the predicted
reflectance will be close to the true reflectance except for a small number of bands near
the water band regions, where high absorption from a particular atmosphere can result in
low signal in the radiance spectra and unnaturally high values in predicted reflectance for
GPAC and UMR. The GPAC method performed the best by these metrics as well. Notably,
for 73% of spectra the predicted reflectance with was within 15% of the true reflectance for
at least 98% of the bands, while this was true for UMR for only 41% of the spectra.

Six reflectance endmembers along with their approximated reflectance from GPAC are
shown for two different observations sets in Figure 11. Observe that along the edges of the
water band regions, that 1/SNR (where SNR for a bands λ is the max radiance over all bands
divided by the radiance value for band λ) is higher and there are poor approximations
for the individual bands. This is a common problem that arises in atmospheric correction
methods when the low SNR water bands result in poor reflectance estimates.

The results in Figure 11 show results from atmospheric correction using the GPAC that
are more accurate than using the QUAC-style universal mean regression prediction. For
example, in the upper plot observe that the UMR reflectance are close approximations up
to about 1.2 microns, then there are unrealistic features in the 1.2 to 1.5 micron range, and
then a growing over-approximation of the reflectance from 1.75 on. in the lower plot, the
universal mean regression prediction has an unrealistic feature created around 0.55–0.9 mi-
crons, and as previously an over-approximation of the reflectance from 1.25 microns on,
which seems to increase with increasing wavelength. These observations are all consistent
with the results of Table 1.

Table 1. Evaluation metrics for the Gaussian P Atmospheric Correction (GPAC), Universal Mean
Regression (UMR), and Denoising Autoencoder (DA) methods.

Metric GPAC UMR DA

Mean Correlation 0.96 0.94 0.86
Std. Deviation in Correlation 0.11 0.14 0.19
percent with all bands
in ±15% of True 43% 23% 0.3%
percent with >98% of bands
in ±15% of True 73% 41% 1.4%

Two different sets of 40 endmembers in reflectance and as predicted by the denoising
autoencoder are shown in Figure 12. Observe that the difference between the true and pre-
dicted reflectance are significant in comparison to the differences shown in Figure 11. The
predicted spectra from the denoising autoencoder differ in both value and first derivative
in comparison to true spectra.
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Figure 11. For two different observation endmeber sets and atmospheres, the true and predicted
(using GPAC and UMR) reflectance spectra for six endmembers are shown. Also shown is 1/SNR for
each band, with the SNR is the radiance value for the given band divided by the maximum radiance.

Figure 12. Two different sets of 40 endmembers in reflectance (right) and as predicted by the
denoising autoencoder (left).
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4. Conclusions

The most common automated atmospheric compensation method is QUAC [5], de-
scribed in Section 1. In this method, after estimating and removing an offset (upwelling
diffuse), a set of endmembers is selected and the UMR method is used to estimate a gain
(transmittance), which is then applied to the whole image. Some additional heuristics are
used, such as excluding vegetation or mud from the endmembers and choosing a subset
of bands for endmember selection. This universal mean is shown in Figure 4 of [5] and
its use in regression is shown in Equation (3) in [5]. Despite the approximations, this
method generates reasonable reflectance spectra that are with 15% of those generated with
physics-based methods such as FLAASH [7].

4.1. Gaussian Process Atmospheric Compensation

The theoretical design of the Gaussian process mean from GPAC should be a better ap-
proximation to the mean reflectance of a set of endmembers than a constant universal mean,
and our test indicates that this is robustly true. While we trained and tested on MODTRAN
data rather than image data, we expect that incorporating GPAC in place of UMR in QUAC
would provide substantial significant robust improvement in atmospheric compensation.

4.2. Denoising Autoencoder Atmospheric Compensation

While our denoising autoencoder method does not perform well in comparison to
the other methods we tested, we believe that it is an important first step in applying the
growing field of deep learning of physical principles to atmospheric compensation in
hyperspectral imagery and remote sensing. The challenge with the denoising autoencoder
(and a challenge with neural networks in general) is that the network has a very high
variance. That is, there is very large variance in what types of functions (from radiance
to reflectance) that can be learned by the model. This is evident in Figure 12, which
shows that the resulting predictions that do not retain the shape or derivatives of true
reflectance spectra.

We expect, based on the trajectories of other efforts in deep learning of physical phe-
nomena, that better inclusion of physical principles in the architecture of the autoencoder
could substantially improve the quality of output. For example, the inclusion of skip
connections in the ResNet Network enables layers that learn functions closer to the identity,
leading to the ability to train much larger, more complex, networks [13] with a smoother
loss function that has fewer local minima [14]. It is possible that similar architecture modifi-
cations, or maybe a hybrid approach with a Gaussian process, could aid a deep learning
model to approximate the physics involved and/or train to learn the physics better.

5. Patents

The University of Virginia is considering filing a patent based on the GPAC method
described in this paper.
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