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Abstract: Grasslands are one of the world’s largest ecosystems, accounting for 30% of total terrestrial
biomass. Considering that aboveground biomass (AGB) is one of the most essential ecosystem
services in grasslands, an accurate and faster method for estimating AGB is critical for managing,
protecting, and promoting ecosystem sustainability. Unmanned aerial vehicles (UAVs) have emerged
as a useful and practical tool for achieving this goal. Here, we review recent research studies that
employ UAVs to estimate AGB in grassland ecosystems. We summarize different methods to establish
a comprehensive workflow, from data collection in the field to data processing. For this purpose,
64 research articles were reviewed, focusing on several features including study site, grassland species
composition, UAV platforms, flight parameters, sensors, field measurement, biomass indices, data
processing, and analysis methods. The results demonstrate that there has been an increase in scientific
research evaluating the use of UAVs in AGB estimation in grasslands during the period 2018–2022.
Most of the studies were carried out in three countries (Germany, China, and USA), which indicates
an urgent need for research in other locations where grassland ecosystems are abundant. We found
RGB imaging was the most commonly used and is the most suitable for estimating AGB in grasslands
at the moment, in terms of cost–benefit and data processing simplicity. In 50% of the studies, at
least one vegetation index was used to estimate AGB; the Normalized Difference Vegetation Index
(NDVI) was the most common. The most popular methods for data analysis were linear regression,
partial least squares regression (PLSR), and random forest. Studies that used spectral and structural
data showed that models incorporating both data types outperformed models utilizing only one.
We also observed that research in this field has been limited both spatially and temporally. For
example, only a small number of papers conducted studies over a number of years and in multiple
places, suggesting that the protocols are not transferable to other locations and time points. Despite
these limitations, and in the light of the rapid advances, we anticipate that UAV methods for AGB
estimation in grasslands will continue improving and may become commercialized for farming
applications in the near future.

Keywords: photogrammetry; grassland monitoring; precision agriculture; biomass estimation; vege-
tation indices; effective workflow

1. Introduction

Grasslands are among the largest ecosystems on the planet, playing an important
ecological and economic role and contributing to the food security of millions of people [1].
According to FAO [2], grasslands cover 25% of the terrestrial surface, equivalent to around
68% of the world’s agricultural areas. This makes grasslands an important provider
of ecosystem services in different parts of the world [3,4]. When properly managed,
grasslands can effectively contribute to carbon sequestration and improve air and water
quality, nutrient cycling, and biodiversity, as well as food production [3,5,6].
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Grasslands store 30% of the world’s terrestrial biomass [7]. Moreover, the provision
of aboveground biomass (AGB) is one of the most important ecosystem services in grass-
lands and constitutes the basis for increasing fodder productivity [8]. Thus, a precise and
rapid method for the estimation of AGB is critical for the management and protection of
grasslands [9–11] and for enhancing the sustainability of these ecosystems [12].

Current approaches to estimating AGB can be classified as either ground-based or
remote sensing (RS) methods. Ground-based methods can be either destructive or non-
destructive. Destructive methods traditionally involve cutting the grass in the field, fol-
lowed by drying and weighing it in the laboratory [13]. Although these measurements
generate the most accurate estimates of grassland biomass, they are time-consuming and
labor-intensive [14].

Ground-based methods for non-destructive measurement of grassland AGB have
been studied for decades [15,16]. These approaches estimate AGB using equations relating
biomass to measurable biophysical factors such as plant height and plant density [17].
Handheld devices are the most straightforward instruments for measuring these biophysi-
cal factors [18]. The most widely used and well-documented ground-based method for the
non-destructive measurement of AGB in grasslands is the rising plate meter (RPM) [19].
These instruments measure compressed sward height by integrating sward height and
density over a specific area [20]. The ability of RPM-based compressed sward height to
estimate AGB grass using regression models is now well established [21–23]. In view of
this, farmers use RPM devices to create electromechanical models, which produce accurate
and reliable estimates [24].

Despite the benefits of fast and regular assessments, the RPM method also has draw-
backs, including operator variability and paddock slope. Through uneven and undulating
terrain, the RPM method’s ability to measure grass height effectively can be impacted, fre-
quently leading to inaccurate measurements due to the RPM base not effectively touching
the true ground surface [25]. The RPM also presents limitations when the sward is high
and lacks a flat top structure, or when the grass sward is sparse and grows poorly and
unevenly [26]. It is also not suitable for grasses with tender erect stems, including some
tropical grasses [27]. Additionally, RPM measurements are also point measurements, and
therefore, the within-paddock spatial variability of grassland biomass production is not
taken into account because only an average paddock estimate is observed [28].

In recent years, RPM devices have become more sophisticated as technology has
advanced. Ultrasonic distance sensors are used in devices such as the GrassHopper
(TrueNorth Technologies, Shannon, Ireland) and the GrassOmeter (Monford AG Systems
Ltd., Dublin, Ireland) [18]. In addition to handheld devices, vehicle-mounted devices
have also been developed. Examples are the Pasture Meter (C-Dax Agricultural Solutions,
Palmerston North, New Zealand) and the Pasture Reader (Naroaka Enterprises, Narracan,
Australia). These sensors can monitor grass height while driving the vehicle through the
center of a towing tunnel, where optical sensors detect grass height, which is then calibrated
to estimate AGB [24].

Despite the benefits of fast and regular assessments provided by these sensing systems,
there are still several drawbacks. In particular, the precise estimation of AGB in large-scale
grassland ecosystems is difficult due to (1) limited spatial coverage, especially for handheld
equipment, hence limiting the within-field description of the variability of the sward, (2) the
requirement for heavy technical equipment, (3) limited access to the field due to grazing
animals, (4) potential disturbances at a greater frequency for repeated measurements for
vehicle-mounted sensors, and (5) applicability restrictions based on field conditions (e.g.,
soil moisture) [18,24].

RS-based methods offer potential for rapid and automated measurements to quantify
both structural and biochemical properties of the vegetation at high spatial and temporal
resolution at a range of spatial scales [18]. These methods include digital imaging (hy-
perspectral, multispectral, optical (red–green–blue, RGB), radar), photogrammetry, laser
scanning, and combinations of various sensors on different platforms [29]. Numerous
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studies have evaluated the feasibility of using satellite RS to estimate plant parameters.
Although satellite platforms offer an effective way to collect data over large areas [14], using
satellite imaging for calibrating and validating an AGB estimation model in grasslands
may be inefficient due to low spatial resolution [8]. Most satellite systems with high spatial
resolution (<5 m) are commercially operated, and therefore, image acquisition costs for
short revisit times can become a limiting factor [30]. In a fragmented agricultural landscape,
as seem in some grassland fields, where the average field size is low, high-spatial-resolution
images are required [31]. Additionally, the applicability of satellite imagery can be signifi-
cantly hampered and negatively impacted by weather conditions (cloud cover obstructing
free sight) [32].

In recent years, unmanned aerial vehicles (UAVs), also known as remotely piloted
aircraft systems, unmanned aircraft systems, or drones, have proven to be an important
and viable tool for measuring and estimating biophysical parameters at a scale appropriate
to grassland distribution [31]. With flexibility, UAVs can be operated quickly, simply, and
economically. Most importantly, they can collect imagery data at high spatial, spectral,
and temporal resolutions at exactly the point in time when the information is needed. In
fact, when surveying objects at small (5 ha) to medium (5–50 ha) spatial scales, UAV-based
photography outperforms alternative imaging acquisition technologies, such as satellites
and manned aerial systems. Specifically, in this context, UAVs show higher temporal and
spatial resolution as well as exhibit greater versatility at a lower cost [33].

In the past ten years, the number of research articles describing UAV applications
has increased dramatically, with these studies encompassing a diversity of UAV types
and applications [34]. More recently, there has been increased interest in applying UAV
remote sensing to the estimation of AGB in grasslands. In this context, structural features
of grasslands have been used for the estimation of grassland height and AGB [8,18,24].
Nevertheless, image-based approaches using UAV to estimate forage biomass are still in
their infancy [35–37]. In view of this, there is no standard process for planning, collecting,
and analyzing these data in order to extract AGB information. Considering the grassland’s
inherent properties, several aspects linked to data collection and analysis methodologies,
as well as the study species and study site, can affect the accuracy and prediction of the
resulting models. The methods often used to estimate AGB in grasslands by UAV imagery
are similar to those used to monitor arable crops [38]. However, arable crops generally show
lower heterogeneity than grasslands. Grasslands often exhibit substantial spatio-temporal
heterogeneity due to highly diverse floristic compositions and co-occurrence of different
phenological stages [18]. This heterogeneity affects the assessment of AGB in grasslands
using UAVs [39]. AGB estimation in grasslands may be inaccurate or imprecise if these
aspects are not taken into account.

A comprehensive review of the different methods and factors influencing the AGB
estimation in grasslands is therefore essential to understand how each stage of the process
affects outcomes so that subsequent data collection and analysis can produce accurate
and reliable data. Although the utility of UAVs is well known in biomass estimation
in agriculture, recently developed applications of UAVs to AGB estimation in grassland
ecosystems have not yet been evaluated or systematically reviewed. To date, the majority
of review studies of UAV for biomass estimation in agriculture have been broad, involving
numerous fields and different remote sensing systems, and the description of biomass
estimation with little emphasis on grassland-specific properties. To address this gap, we
systematically review the use of UAVs in the estimation of AGB in grassland ecosystems. We
perform a comprehensive literature review of the topic to (1) give an overview on common
practices of the use of sensors, scale of work, ground truth methods, data processing, and
analysis methods and (2) to identify which spectral and structural data are most accurate
with respect to AGB estimation. We conclude by discussing the challenges and future
prospects of UAV remote sensing in AGB estimation in grassland ecosystems.
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2. Materials and Methods

Using the PRISMA protocol [40], we conducted a systematic review and meta-analysis
of studies that use Unmanned Aerial Vehicles (UAVs) to estimate biomass in grassland sys-
tems. Figure 1 presents a flow diagram of the study selection process. In the identification
step, relevant literature was retrieved from Google Scholar and Web of Science using search
terms comprising keywords related to UAVs (“UAS”, “UAV”, “unmanned aerial system”,
“unmanned aerial vehicle”) and to aboveground grassland biomass (“grass”, “grassland”,
“pasture”, “forage”, “biomass”, “aboveground biomass”, “above ground biomass”). The
search was limited to English-language research articles published from January 2011 to
August 2022. We considered all types of grassland systems. This review did not consider
studies classified as review papers, book chapters, reports, or Ph.D. theses.
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Figure 1. PRISMA flow diagram for study selection.

A total of 487 articles were obtained as a result of the Google Scholar and Web of
Sciences searches. To be included in the review, a study was required to fulfill the following
three criteria: (1) the study uses UAV and no other system type; (2) it focuses on grassland
ecosystem; (3) it presents AGB estimation from UAV imagery. The articles identified in
the first step were screened, and we consulted the title and abstract. After the screening
phase, 85 research articles remained. We confirmed each study’s eligibility by reading the
full text, after which 21 studies were discarded because they did not contain extractable
data for the following four features of interest: site attributes, biomass measures, UAV
platform, and sensors. In total, 64 studies were retained, which had extractable data
for all four features. For each article, we extracted metadata (Appendix A), including
information related to the characteristics of the study site, grassland species composition,
UAV platforms, flight parameters, sensors, field measurement, biomass indices, data
processing, and analysis method.

3. Results and Discussion

An automated search of Google Scholar and Web of Sciences resulted in a final set
of 64 papers that used UAV imagery to estimate AGB of grassland areas (Table A1). The
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following sections provide a detailed description of meta-analysis findings, including
general features of the articles and biomass estimation data analysis.

3.1. General Characteristics of Studies

Figure 2a presents the locations of the 64 studies considered in this review. In total,
grasslands located in 15 countries were studied. Germany accounted for the largest number
of studies (N = 14), followed by China (N = 10), the United States of America (USA) (N = 7),
Australia (N = 5), Belgium (N = 4), Finland (N = 5), Brazil (N = 4), Estonia (N = 3), and
Norway (N = 3). Studies in Canada, Ecuador, Ireland, Israel, Japan, Spain, South Korea,
and Switzerland were represented by one publication each.
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Figure 2b presents the number of articles published annually from 2012 to 2022. The
first article, published in 2014 in the USA [41], used high-resolution imagery from a UAV to
estimate biomass in a natural grassland site in the USA. From 2014 to 2017, only six papers
were published, and subsequently, the number of publications increased steadily. Figure 2c
shows only journals that published more than two papers. The most represented journals
include Remote Sensing (16 papers), Sensors (4 papers), and Ecology Indicator (4 papers).

Considering the representation by continents, thirty-two of the sixty-four studies
were conducted in European countries, twelve in Asia, eight in North America, seven in
Oceania, and only five in South America, and no studies were conducted in the African
continent. Although there are many significant areas of grassland in Europe and North
America, which are often part of mixed farmland systems, much of the world’s grass-
land area is located in the extensive natural grasslands of Central Asia, Sub-Saharan and
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Southern Africa, North and South America, and Australia/New Zealand. Considering
the scenario above, the productivity of journal articles about UAV applications for AGB
biomass estimation in grassland regions with the largest representation of this vegetation
worldwide is generally low. Studies should preferably be carried out in grassland biomes
across several areas and continents [42]. More numerous and diverse grassland systems
should be studied in order to improve UAV applications for AGB biomass estimation in
grassland, particularly grasslands in regions that will be specifically impacted by climate
change (e.g., tropical regions) [43], which are currently significantly under-represented in
the available research survey.

3.2. Characteristics of the Study Sites

Regarding the characteristics of the study sites, 64 articles reported the type of grass-
land. Of these, 34 studies investigated fields as experimental sites, 18 investigated natural-
ized grasslands, and 12 investigated grassland farms. In addition, 62 publications reported
whether the site included mono or multi-species grasslands. Of these, 46 publications
studied multi-species grasslands, 15 studied mono-species systems, and 1 studied both
systems (mono and mixed grasses). Fertilization conditions were described in 27 publica-
tions, of which only 3 studied organically fertilized grasslands. Animal presence in the
grasslands was reported in 14 studies, of which 9 analyzed the effect of grazing activities
on the biomass estimation.

The heterogeneity of the experimental site is an important feature since many studies
suggest that increasing the species richness of grassland can reduce AGB estimation models’
performance. According to Wijesingha et al. [44], biomass prediction for species-poor and
homogenous grasslands had higher accuracy than biomass prediction for species-rich,
diverse grasslands. Michez’s et al. [45]’s results also suggest that the low species diversity
in their experimental site (timothy-dominated pastures) probably improved the biomass
modeling process. Grüner et al. [46] reported that the high variability of the canopy
surface in legume–grass mixtures results in lower prediction accuracy compared with more
homogeneous arable crops. They achieved r2 values of 0.46 and up to 0.87 depending
on the sward composition for mixed legume–grass swards and pure legumes and grass
stands. Villoslada et al. [47] indicated similar trends in modeling accuracies, where sites
characterized by the presence of more productive communities or a higher herbage yield
show lower prediction accuracies than short-sward sites.

The distinct plant architectures in heterogeneous grasslands may have an impact on
image acquisition due to poor modeling of plant extremities, resulting in a larger variability
than monocultures and reflecting in lower r2 values [48]. It has also previously been
demonstrated that the complexity of sward structures, vegetation height, and plant species
richness all influence the spectral properties of training samples [47]. The high heterogeneity
in some grassland fields can also intensify the mixed pixel effect, an important remote
sensing issue that affects the ability to monitor phenology [49]. This, in turn, influences the
overall prediction accuracy. In addition, the potential for generalization of some studies
is limited because they are based on approaches using site-specific data, which makes
the relationships obtained difficult to transfer to other areas. Thus, study site selection
should take into account local and regional variations, with the goal of incorporating a fair
representation range of vegetation into the data collection process.

3.3. UAV Data Collection, UAV Data Processing, and Analysis Methods

In general, studies used a similar workflow to estimate AGB in grasslands using
UAV data, as shown in Figure 3. Even though not all studies followed all of the steps,
the standard process was adopted by many of the publications considered in this review.
Typically, workflows included the following steps: (1) UAV imagery recording concurrent
with ground control points (GCP) and ground-based field data collection; (2) UAV data
processing, including pre-processing, creation of photogrammetric 3D point clouds and/or
orthomosaics, georeferencing of point clouds and orthomosaics, creation of canopy height
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models (CHM) using digital terrain models (DTM) and digital surface models (DSM)
derivate from a digital elevation model (DEM), derivation of structural, textural, and/or
multispectral, hyperspectral, or RGB spectral index; (3) generation of predictive AGB
models using UAV-derived variables as predictors and ground-based AGB and/or CHM,
and/or vegetation index. The overall goal of the next sections is to provide a comprehensive
workflow description for AGB estimation in grasslands using UAV, with a specific focus on
the main elements of the three steps: (1) field data collection, (2) image pre-processing, and
(3) data analyses.
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3.3.1. Field Data Collection

Data sampling as ground-based data collection and UAV flight is a critical step in
AGB estimation. Some elements must be taken into consideration for an accurate data
collection to ensure a reliable result. Table A2 presents a summary of field data information
collected from the papers reviewed. Items recorded include location, type of field, type of
grassland, number of sites, UAV platform, sensors, flight altitude, image front and side
overlap, number of GCPs, ground sample distance (GSD), frequency of data collection,
biomass ground truth, total number of biomass samples, biomass sample size, and canopy
height measurement.

Ground-Based Data Collection

Field measurements, such as biomass sampling and plant height measurements, are
established methods for biomass estimation in grassland monitoring [50]. The quantitative
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collection of data in the field is essential to establish, train, and evaluate biomass estimation
models derived from UAV images. Additionally, in grassland ecosystems, the accuracy
of canopy height and AGB estimation can be improved by using ground-measured data
for calibration [51]. Grasslands typically have heterogeneous vegetation, and species
contribution and yield vary in the field throughout the growing season, being influenced
by different factors such as cutting intensity, soil management, and fertilization [48]. For
reliable and precise biomass estimations in areas with such complex vegetation variety and
high dynamics, sampling should be performed on a frequent temporal basis and with a
large number of samples [52]. Morais et al. [53] reviewed the use of machine learning to
estimate AGB in grasslands and concluded that the size of the field sampling is the most
important factor to improve estimation accuracy, and increasing the size of the datasets
should be one of the main priorities to improve the estimation models.

Regarding the frequency of the sampling, most parts of the studies performed only
one field sampling (n = 25). The study of Borra-Serrano et al. [54] had the highest sampling
frequency, with 22 collections in one year. The average number of field samples was 90, and
the range was between 13 and 1403. According to Geipel et al. [55] the capacity of a model
to perform well when applied to new scenarios improves with the size and variation of the
calibration dataset, and many researchers have too small datasets to produce generalizable
models. Qin et al. [56] concluded that, despite taking into account the spatial heterogeneity
of AGB in vegetation patches, they are unable to validate the applicability of inversion
results for each grassland type due to the small sample size. Capolupo et al. [57] also
suggest that a larger and more representative training model sample size would improve
model accuracy in their study. The intrinsic complexity and repeatability of field trial
design, as well as the small sample size, were also constraints in the study of Lin et al. [58].

Compared to crops, the heterogeneous sward structure with high spatiotemporal vari-
ability in grasslands has the potential to alter the spatial distribution of biomass depending
on the growth stage. As the results indicate, most studies use data from a minimal time
span (e.g., a fraction of the growing season), limiting the ability to predict biomass in these
complex and dynamic environments. When biomass prediction models are calibrated
to the site, year, and even phenological stage of dominant plants, they become more ro-
bust [59]. In addition, the frequent collection of data over the course of the growing season
could ensure that the dataset is diverse and that the models can be applied to various
locations [42]. In this sense, Lussem et al. [16] recommended evaluating different swards
under varying conditions and sites over multiple years. Pranga et al. [60] evaluated several
growth periods, but the observation period was only one year with three cutting treatments.
They also suggested that future research should incorporate data from other seasons/years,
as well as different locations/conditions.

Regarding the AGB data collection method, samples were collected manually in 22
studies, mechanically in 20, and both methods in two studies. In seven studies, the method
to collect samples was not specified, and in two studies, biomass samples were not directly
collected but estimated by RPM calibration. There were two main procedures to sample
AGB on the ground, collecting from quadrants or harvesting the entire plot. The sizes of the
quadrants used for sampling varied between papers from 0.01 to 1 m2. The most frequently
used sizes were 0.25 m2 (16 papers) and 1 m2 (13 papers). The mechanical collection was
the method used for all studies that sampling the entire plot and the size of the sampling
ranged from 1 to 19.5 m2.

Morais et al. [53]’s review concluded that the data collection procedure had a minimal
impact on AGB estimation in grassland using machine learning methods. In their study,
the average r 2 was lowest for the papers that used manual cutting (0.65) compared to
mechanical harvesting (0.75). However, these findings are not statistically significant and
are primarily a result of the different number of observations. We found comparable results,
with an average r2 for manual cutting of 0.68, which was lower than the r2 observed for
mechanical harvesting (0.82). These results can also indicate that the number of observations
can have a greater impact on the accuracy of AGB estimation than the collection procedure.
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In fact, similar to Morais et al. [53]’s results, we found that studies that employed manual
cutting had both the lowest and greatest r2 values (0.25 and 0.98). It should be noted,
however, that the study with the lowest r2 used 96 samples [61], whereas the study with
the highest r2 used 520 samples [62].

The plant cutting height is possibly a significant factor to take into account when
collecting AGB samples in the field since it is challenging to cut vegetation right at ground
level. Grassland biomass is distributed vertically in a pyramidal pattern, with increased
biomass density closer to the ground [63]. In an Irish meadow, 40–60% of total biomass
was distributed 0–10 cm aboveground, 30% was 20–30 cm aboveground, and less than 20%
was more than 30 cm aboveground [64]. Only 17 of the studies included in this review
reported the cutting height, which ranged from 2 to 10 cm above the ground. However,
just two studies mentioned a height correction in the terrain model to compensate for
the cutting height. In order to reduce the impacts of any residual stubble, Borra-Serrano
et al. [54] used a correction factor of 5 cm to their baseline DTM. Karunaratne et al. [65]
applied a constant offset of 7 cm to baseline DSM to compensate for the mowing height and
pasture accumulation prior to the first measurement period. In this way, considering the
distribution pattern of biomass in grasslands, we recommend that future models account
for this factor to try to reduce discrepancies in reported results.

As for canopy height measurements, 29 studies did not mention the use of these data
for biomass estimation. At least three studies mentioned the use of canopy height data
in the field for biomass estimation but did not specify the data collection method. Of the
22 studies that used canopy height for biomass estimation, 11 used a ruler, tape, or height
stick. In eight studies, the RPM was used to measure compressed canopy height. In three
studies, field equipment such as a ground-based platform (PhenoRover) [66], Lidar Laser
Scan [67], and the Rapid Pasture Meter (machine) [68] was used.

Most studies using SfM (Structure from Motion) to derive canopy height models for
grassland have obtained reference measurements in the field with a height stick or a ruler
and RPM since this equipment is more accessible and easier to use than mechanical equip-
ment. However, because grassland plants differ significantly in canopy height, single or
multiple tiller height measurements using manual methods would inevitably result in un-
certainty about canopy height [69]. Bastitoti et al. [70] reported a high correlation between
height measured with a ruler and a UAV with a multispectral sensor (r2 = 0.89).The canopy
heights estimated from UAV imagery and those measured using the ruler varied by about
8 cm. When comparing canopy surface models from UAV with manual reference measure-
ments from height sticks, Grüner et al. [71] achieved r2 values of 0.56 to 0.70 depending
on the sward structure, species composition, and growing stage, while Viljanen et al. [26]
report r2 values of 0.61 to 0.93. Zhang et al. [51] also found that even though LiDAR-derived
canopy height was lower than the ground-measured data, it showed a strong correlation
with the height measured with a ruler (r2 = 0.92). Wang et al. [72] reported that when
compared to ground data measured with a ruler, LiDAR consistently overestimated the
canopy height.

Because it effectively analyzes both canopy height and density, RPM is one of the
most frequently used techniques for physical measurements of grassland sward height and
the assessment of standing biomass [73]. Bareth et al. [50] report r2 of 0.89 between RPM
measurements and UAV-derived sward height. According to Lussem et al. [18], the perfor-
mance of low-cost UAV-derived DSMs for estimating forage mass varies (r2 = 0.57–0.73)
depending on the harvest cut, but RPM measurements outperform the UAV model. How-
ever, canopy density, architecture, and plant developmental stage limit the accuracy of
linear connections between RPM-based measurements and biomass. The results of some
studies suggest that the agreement between the RPM and the UAV-borne equipment for
measuring canopy height varied depending on canopy height and that the agreement was
negatively impacted by low and high canopy heights in general [26,54,74]. RPM measure-
ments demonstrated lower accuracy in sparse swards or tall, non-uniform canopies but
better accuracy in dense swards and when the canopy has reached a height of 20–30 cm [26].
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This inconsistency could be caused by the compression of the pasture induced by the RPM
and canopy closure at high canopy heights. In the case of low canopy heights, this inconsis-
tency may be caused by the ground being visible in the images, which reduces the digital
surface model as a result of the photogrammetry software’s point cloud interpolation.
Considering this, RPM seems more suitable for measuring low grasses in their early phases
of development.

Despite the significance of ground truth data for AGB model estimations, it is critical
to remember that the available methodologies for measuring AGB and canopy height
ground-based can also be subjective [75]. In addition, usually, ground truth data are either
measured at a few locations in the field or at a single point on a plot and therefore do not
necessarily provide a complete representation of the region of interest. In this way, in order
to improve the validity of the ground-measured biomass data, it is important to take into
account the limitations of the method and the biases of over- or under-estimate canopy
height and AGB.

UAV Platforms

Multirotor platforms were the most commonly used UAV systems in the reviewed
studies (87.66%), among which the quadcopter was the most widely deployed (58.46%)
(Figure 4). In a review of studies on the use of UAVs and machine learning for agro-
environment monitoring, Eskandari et al. [76] reported that fixed-wing models were the
most used between 2015 and 2018. However, from 2018 to 2019, there was an increase in
the use of quadcopter and hexacopter models, and these became the most used. Multirotor
UAVs have increased in popularity since they are extremely versatile, with the ability to
hover, rotate, and take images from nearly any angle. However, multirotor UAVs also
present some disadvantages. Due to their vertical takeoff and landing and ability to hover,
multirotor platforms demand more energy to fly, resulting in reduced sustainability and
shorter flight periods [75]. If the survey height is low, backwash from the rotors may
affect the vegetation being monitored by producing plant movements [77]. Multirotors are
sometimes associated with inadequate Global Positioning System (GPS) receivers, which
can lead to decreased position accuracy, particularly in hilly places where GPS coverage is
limited [76]. When compared with fixed-wings, the most significant disadvantage of rotor
UAVs is their short range and flight time [78]. Fixed-wing aircraft tend to have a faster top
speed, a longer flying time, and a greater range than rotorcraft. Fixed-wing systems are
useful for collecting data across broad areas for these reasons. Nonetheless, fixed-wing
aircraft have less mobility and require more landing space.
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According the review study of Poley and McDermind [75], there is no consistent
difference in the accuracy of the biomass estimate model between studies using fixed-wing
and multirotor platforms, and the selection of UAV platform depends on the research
objective. A fixed-wing could be suitable if the study area is extensive, as in natural
grasslands or larger grassland fields. A multirotor would be preferable for smaller and
more challenging places, such as small grasslands and heterogeneous fields, where detailed
vegetation imagery from a more stable platform is required.

Flight Parameters

Multiple interconnected elements during the UAV flight influence the quality of UAV-
based outputs and, consequently, the AGB estimation. Because the precision of the output
terrain data is determined by the accuracy of estimating tie points—and as a result, the
reconstructed surface geometry—flight altitude is an important parameter. Reduced flight
height results in smaller coverage areas, an increase in the number of flight missions
required for a specific study site, and potentially increased variability in environmental
conditions (e.g., cloudiness, sun angle), which complicates radiometric adjustment and
decreases spectral accuracy. On the other hand, increasing altitude shortens flight time
and allows one to cover larger areas, which can be important for maintaining relatively
constant environmental conditions during the flight mission [79]. Higher altitude flights
produce sparser point spacing, resulting in a less detailed DSM. For low-altitude flights,
the result is a more irregularly shaped DSM, and these effects must be considered [80].

The 64 studies reviewed here deployed UAV flights at altitudes ranging from 2 to
120 m. The two flights with the lowest altitudes of 2 m were carried out in two studies by
Zhang et al. [8,81] that evaluated the use of high-resolution images in generating quadratic
models. The highest altitude flight (120 m) was carried out by Wang et al. [72] in a study
testing if the relationship between tallgrass AGB measurements and spectral data is constant
at different image spatial resolutions associated with different flight altitudes. The modal
value for UAV altitude was 50 m (23% of studies), followed by 30 m (16%), 20 m (14%),
120 m (10%), 40 m (8%), less than 10 m (8%), 100 m (6%), 25 m (3%), 70 m (3%), 35 m (2%),
80 m (2%), 140 m (2%), 75 m (1%), 110 m (1%), 115 m (1%), and 120 m (1%).

Considering that plants and particularly grass leaves can be as thin as 2 cm, a higher
spatial resolution may improve texture resolution and, as a result, biomass prediction
accuracy. In the studies addressed in this review, most of the flights were performed
at altitudes considered low (less than 100 m), with the most commonly used altitude
being 50 m. Wang et al. [41] reported that surveying at 5 m above the canopy was more
accurate than surveying at 20 or 50 m above the canopy in a tallgrass prairie ecosystem.
Grüner et al. [82]’s study with different flight heights of 50 and 20 m resulted in an image
resolution of 2–4 cm, which then had to be resampled to 4.5 cm. These authors recommend
that different ground resolutions should be avoided in future studies to keep unified
conditions for data analysis. Viljanen et al. [26] employed 30 and 50 m flight heights to
estimate AGB in a mixed grassland field. The results for the 30 m flights produced lower
reprojection errors (0.53–0.58) than the 50 m flights (0.783–1.25). The flights from a 30 m
flying height also provided slightly better 3D RMSE (2.7–2.9 cm) than the 50 m flying height
(2.8–5.0 cm). Näsi et al. [83] estimated grassland AGB using two flying heights of 50 and
140 m. Their study suggested that although employing datasets from 140 m produced
promising results, adopting lower-height data can enhance AGB estimations.

The results obtained by DiMaggio et al. [48] indicate that flying at 50 m height can
increase the area that is covered without considerably losing AGB estimation accuracy.
The authors also recommended testing different altitudes to understand the relationship
between pixel resolution and field data for AGB estimation. Karunaratne et al. [65] also
evaluated the influence of different flight heights in their grassland AGB estimation models.
The results indicate that the model generated at 25 m outperformed the other flying altitude
models. However, the authors pointed out that, practically speaking, acquiring UAV data
at a 100 m altitude provides a lot of benefits for farm-scale applications: (a) more coverage
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of the land extent, (b) faster UAV data acquisition, and (c) smaller file sizes that allow for
faster pre- and post-processing of collected datasets.

In this way, to establish best practice guidelines for using UAVs for on-farm applica-
tions and to adapt to changing technological advancements, it is also necessary to better
understand the impacts of flying at various altitudes on the prediction quality of grassland
AGB models. We also recommend that considering the specifications of the employed sen-
sor, researchers should establish what GSD is necessary for identifying features of interest
to AGB estimation. Then, in order to balance the necessary spatial resolution, tolerable
error, and point cloud density with the most effective coverage of the study region, fly at
the highest altitude where this GSD is possible [75].

The sequence in which the UAV flies also has an impact on data quality. The deter-
mination of forward and side image overlap is an important part of mission planning,
especially for SfM photogrammetric reconstructions, which require features observed in
multiple photos for building digital models, orthomosaics, and 3D models. The percentage
of image overlap can affect the quality of the final SfM product, with more overlap leading
to more precise final models. High overlap, on the other hand, necessitates the acquisition
of more photos, increasing data volumes and computing time [79]. There are optimal
overlap thresholds for specific vegetation types based on the surveyed area’s specific char-
acteristics and type of study. Agriculture fields and grasslands, which have low feature
diversity and a relatively flat topography, demand a higher percentage of overlaps in order
to extract tie points for the SfM algorithm [76]. Many studies examined in this review have
employed considerable front and side overlap (median of about 80–70%). In the majority of
the studies, a forward overlap of 80% and a side overlap of 60–75% resulted in high-quality
orthoimages. The data are in agreement with the study by Eskandari et al. [75], which
points out that the median for forward and side overlap is 80% and 70%, respectively, for
UAV flights carried out in grasslands. Viljanen et al. [26]’s results also confirmed the main
conception that the large image forward and side overlaps of approximately 80%, combined
with self-calibration during photogrammetric processing, can provide a non-deformed
photogrammetric block.

Sensor Technology

UAVs’ ability to fly considerably closer to the ground than satellites or full-scale
manned aircraft expands the range of sensors available and the spectral imaging. The
spectral data obtained by an UAV can be simple RGB (red–green–blue) from an off-the-shelf
camera or more specialized when employing multispectral, thermal, or even hyperspectral
cameras. Among the studies reviewed here, visible sensors (RGB) are the most commonly
employed sensor technology (48% of studies), followed by multispectral (29%), hyper-
spectral (16%), and LiDAR (Light Detection and Ranging) (7%) (Figure 5a). In terms of
resolution, the sensors used in sensing can be classified as high resolution (between 0 and
10 cm), medium resolution (10 to 20 cm), and low resolution (more than 20 cm) [76]. The
most commonly used data sources across the research are of high spatial resolution ranging
from 0 to 10 cm (Figure 5b). Most studies (>80%) used data at high spatial resolution (0 to
10 cm), with visible and multispectral images being the preferred image types. Very few
(<4%) studies used image data at low spatial resolution (>20 cm).

The increasing number of UAVs equipped with RGB commercial cameras has facili-
tated research using these low-cost sensors for grassland monitoring [16,24]. Compared
to multispectral, hyperspectral, or thermal sensors, RGB sensors have a lower spectral
resolution but a higher spatial resolution, and it is possible to calculate vegetation indices
and estimate plant height from the same set of photographs. RGB sensors are also a more
economical option, which is a significant benefit, especially for farm-scale applications.
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Near-infrared (NIR) multi- and hyperspectral sensors have become more commonly
accessible for UAVs over the past decade [30]. Initially, researchers used modified off-the-
shelf RGB and near-infrared (NIR) cameras, as in the studies of Zhao et al. [9], Lee et al. [84],
and Fan et al. [85]. These modified off-the-shelf RGB cameras were then replaced by
specialized multispectral or hyperspectral cameras, which have decreased in cost and
weight. Multispectral cameras, along with RGB cameras, are among the most commonly
used sensors in the studies examined (30%). Multispectral sensors (e.g., MicaSense RedEdge
3 camera, Micasense, WA, USA) provide more spectral bands (e.g., red edge: 760 nm;
near-infrared (NIR): 810 nm). The advantages of obtaining more spectral information for
vegetation applications at an extremely high resolution collaborated for the increase in the
use of multispectral sensors. The availability of a downwelling light sensor and radiometric
calibration target are also key advantages of multispectral images. This allows the images
to be radiometrically calibrated for repeatable and exact measurements less affected by
environmental factors [60]. Hyperspectral sensors also measure reflectance in a wide range
of spectral wavelengths. Such data are frequently processed into 3D point clouds utilizing
Structure from Motion (SfM) procedures to offer information about the structure, texture,
and variability of grassland areas [75]. This integration offers a lot of potential for accurate
AGB estimation in grasslands. Especially when specific or many wavelengths are desired,
multispectral and hyperspectral sensors can be used to obtain precise estimates of AGB.
However, hyperspectral and multispectral sensors are still significantly more expensive
than digital RGB cameras, which may be a drawback in farm-scale applications.

Even with the limitation on the spectral resolution range, the indices generated by RGB
sensors can be cost-effective and have been applied in grassland for biomass estimation
with acceptable or high levels of accuracy [16,18,83]. When evaluating several sensor types
for detecting biophysical properties of vegetation, multiple studies discovered that RGB
data from low-cost digital cameras produced AGB estimations comparable to or better
than data from more expensive multispectral or hyperspectral sensors [18,46,71,83]. Few
studies compared results from different sensors among the articles investigated for this
review. However, in the studies that compared sensors, in most cases, there was no signifi-
cant difference in accuracy in AGB estimation between RGB and other sensors. Lussem
et al. [18] confirmed the potential of RGB techniques in AGB grassland modeling, achieving
equivalent performance (r2 = 0.7) using RGB or multispectral VIs. Näsi et al. [83] also stated
that RGB can produce good results for AGB grassland modeling, even though it is inferior
to the results of hyperspectral sensors. Compared with multispectral or hyperspectral
imaging, the higher spatial resolution of RGB imagery could probably influence its ability
to predict vegetation biomass more accurately [46,71].

The spectral resolution of UAV visible sensors is anticipated to continue to increase.
Given the affordable prices, this platform will continue to be heavily utilized in AGB
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estimates in grasslands. However, because the passive optical sensors mostly collect data
from the top of the vegetation, there is little information available regarding the vertical
structure of the vegetation, which limits the biomass estimate’s accuracy. Another issue
with optical imagery techniques is the possibility of natural light saturation when detecting
high-density biomass plants.

Compared to optical sensors, LiDAR is an active remote sensing technology that can
capture the vertical structure and height of vegetation as well as the three-dimensional
coordinates of the target (Figure 6) [78]. LiDAR sensor is also unaffected by lighting con-
ditions. In grassland ecosystems, UAV LiDAR has recently been employed to estimate
canopy height and AGB. The study of Wang et al. [72] demonstrated that the LiDAR sensor
has high potential for providing highly accurate grassland vegetation measurements, such
as canopy height and fractional cover, which can then be used to estimate AGB on a large
scale. The authors, however, pointed out that LiDAR alone would underestimate grass-
land canopy height and that field data calibration is required to achieve centimeter-level
accuracy. Li et al. [69] concluded that incorporating LiDAR data considerably improved
the performance of the spectral index in modeling and estimating AGB in grasslands in a
non-destructive manner. Zhang et al. [51]’s results demonstrate that grassland AGB can be
estimated using UAV LiDAR data under various grazing intensities.
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The study by Zhao et al. [61] indicates that, despite the tremendous potential for
grassland AGB estimation, UAV LiDAR’s sensor has a propensity to miss canopy data
at canopy tops in grassland ecosystems. The canopy information loss can occur because
UAV LiDAR collects data using a top-to-bottom view, and laser pulses may not completely
penetrate the vegetation canopy. The challenge for UAV laser pulses to penetrate the canopy
is further increased by the density of grassland vegetation, which may be, in some cases,
much higher than in a forest [86]. According to Zhang et al. [51], the propensity of LiDAR
sensors to not completely penetrate the high-density grassland canopy and the difficulty in
receiving returns from the ground led to an underestimation of most canopy heights and
the majority of fractional covers in the LiDAR data. As these attributes are used for AGB
estimation, an underestimation in the data can lead to limitations in AGB estimation from
LiDAR data.

Despite these limitations, LiDAR has been shown to outperform image-based tech-
niques in terms of ground point capture and physical biomass parameter estimation [87],
making it a promising technology for AGB estimation in grasslands. Nevertheless, in
practice, the fact that commercial LiDAR sensors adapted for UAVs are still substantially
more expensive than spectral sensors emphasizes the need to carefully evaluate the most
cost-effective sensor for each specific aim.
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3.3.2. Image Pre-Processing

The data collected by the UAV cannot be utilized directly to estimate biomass. In
this way, a preprocessing step is usually included to guarantee that the data are suitable
for further processing. Images taken from a UAV flight can be converted into 3D data
using SfM-based software. Then, several objects can be classified from 3D data. Different
companies have offered software solutions for processing photographs captured by UAVs,
including functionalities for generating 3D spatial data for use in GIS (Geographic Informa-
tion Systems) platforms, digital terrain and elevation models, generation of georeferenced
orthophotos, and area and volume measurements. The different SfM software packages
use different algorithms and processing options, which can affect the final outputs [88]. Of
the 51 papers that mentioned the use of processing software, 52% (28 papers) used Agisoft
Metashape (Agisoft LLC, St. Petersburg, Russia) to process UAV imagery data, followed by
Pix4Dmapper (Pix4D, S.A., Lausanne, Switzerland) with 32% (17 papers). Furthermore,
five papers employed other software, such as QGIS, ArcMap, and TerraScan.

None of the papers assessed in this review compared image preprocessing software,
but previous studies have used Agisoft Metashape and Pix4Dmapper programs and eval-
uated the performance of both types of software. Kitagawa [89] captured characteristics
from two experiments and compared them. Agisoft Metashape exhibited a clearer image
but poor displacement extraction, whereas Pix4Dmapper had a z-value fluctuation but
excellent displacement extraction. Isacsson [90] also examined the orthomosaic accuracies
created from the same survey using Pix4Dmapper and Agisoft Metashape and also found
that using Agisoft Metashape results in larger x and y position errors, whereas using
Pix4Dmapper results in higher z error. Fraser et al. [91] compared the Agisoft Metashape
and Pix4Dmapper software packages over a forested area of 235.2 ha. They concluded that
Agisoft Metashape produced more detailed UAS-SfM outputs.

GCPs are high-visibility materials that are georeferenced using the Global Positioning
System (GPS) after they are placed in a visible site to provide a point of reference for
determining the position of the UAV in the area being photographed. By identifying
GCPs with known coordinates visible in the imagery, a transformation that describes the
relationship between the point cloud coordinate system and a real-world coordinate system
can be used to georeference the point cloud that results from the reconstruction of SfM
data [92]. Among the papers evaluated in this review, at least 62% (N = 33) mentioned the
use of GCPs for the geometric correction of UAV images.

Reliable ground reference data are necessary for successful georeferencing [76]. Hence,
the quantity and location of GCPs at the study site are crucial [75]. The geometric accuracy
of surface and terrain models created from UAV imagery is likely to improve with more
GCPs [44,54]. In the study of Wijesingha et al. [44], the small number of GCP was pointed
out as a possible reason for the limitations of the DSM generated from the UAV data. The
authors used only four GCP, which is the minimum for proper geo-referencing. They
concluded that increasing the number of GCPs could increase the precision of SfM data
and improve the model performance. It is also critical to place GCPs correctly [75]. The use
of ground control points only around the edges of the study area rather than within plots
can reduce the accuracy of surface and terrain models, so more GCPs should be placed
throughout the entire area of interest [93]. Borra-Serrano et al. [54] reported that as grasses
grew taller, GCP targets became more challenging to detect in imagery due to elongated
plants. They recommended opening the area around the targets to guarantee they can be
seen in all images throughout the growing season.

After the geometric correction step, the georeferenced sparse cloud is converted into a
dense point cloud. The software computed the depth information by the image alignment
for all points of the images. In the last step of pre-processing, the dense point cloud can
be exported in the form of a DEM. DEMs are used to build a CHM of the grassland field
(Figure 7). For this purpose, two types of DEMs are usually built: (1) DTM, corresponding
to the ground, and (2) DSM derived from the imagery collected with the presence of canopy
on the terrain.
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There are two main methods for extracting CHM information from UAV data. One
method is to generate both DSM and DTM in raster format. This method considers the
difference between DSM and DTM as the CHM [26]. This method is relatively simple, and
since the analysis is carried out using raster analysis, the calculation is quick. However,
applying interpolated DSMs and DTMs may lead to unwanted data smoothing. In the
context of heterogeneous pasture growth, the use of such datasets could lead to the loss of
information regarding the variability of CHM [65]. The second method uses the raw SfM
point cloud dataset instead of an interpolated DSM raster. To determine CHM for every
single point in the point cloud, the difference between the interpolated DTM raster of the
study region is used [44]. Viljanen et al. [26] evaluated both methods and concluded that
both provided similar DTMs and correlations to the AGB in grasslands.

A high-quality DTM with precise and accurate terrain representation is critical for ex-
tracting reliable estimates of vegetation structure from UAV imagery and therefore produce
a reliable AGB estimation [75]. In areas with a dense vegetation canopy, such as some grass-
land fields, producing high-quality DTMs can be challenging [94]. Zhang et al. [8] pointed
out that the density of grassland influenced the quality of DTM generated by an RGB sensor.
An accurate DTM could not be produced because there were not enough ground points if
the vegetation density was too high, but it was simple to extract ground points if it was
moderate. In an ideal scenario, a reference DTM would be created beforehand when there
is no vegetation, but this is not feasible, for example, in natural grasslands [95]. When a
DTM is unavailable to represent the bare ground, point cloud classification is a frequently
used technique to discriminate ground points (DTMs) and canopy height points (CHMs)
from the same set of images [83]. Batistoti et al. [70] also found a solution by manually
collecting GPS points to create the DTM, but this method is too time-consuming for large
grassland fields. Alternatively, hybrid approaches combining SfM-derived DSMs with
DTMs derived from LiDAR sensors have been explored [45]. Even so, special attention
should be paid to potential errors in the LiDAR DTM, which is primarily based on ground
point density and terrain variability. It is also important to notice that although producing
input data such as DTM is a relatively simple task with LiDAR, the costs to obtain such
products are high compared to RGB-only imagery [96].

3.3.3. Data Analyses

The ability of UAV image-derived models to accurately predict AGB is influenced by
a variety of parameters connected to analysis methodologies. Table A3 summarizes the
data analysis methods and essential results of the 64 papers considered in this review.

Most studies used statistical regression methods such as linear regression (LR), poly-
nomial regression (PR), stepwise linear regression (SWL), multiple linear regression (MLR),
and partial least squares regression (PLSR). LR was the most commonly used method
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(n = 25). PLSR was used in 13 studies and MLR in 9 studies. Viljanen et al. [26] obtained
the highest r2 value (r2 = 0.98) with MLR in a mixed grass experimental site using an RGB
and HS sensor. The lowest r2 value (r2 = 0.25) was obtained by Zhao et al. [61] with SWL
to estimate AGB in a mixed natural grassland field using a LiDAR sensor. Among the
machine learning methods, random forest (RF) was the most popular and was employed by
16 studies. The highest median r2 among all the papers assessed was obtained by Villoslada
et al. [62] with RF and MLR (0.981), followed by Oliveira et al. [97] also using RF and MLR
(0.97). RF has demonstrated competitive accuracy in biomass estimation when compared to
other estimation methods used in agricultural applications [83]. Morais et al. [53] reviewed
the use of machine learning to estimate biomass in grasslands. RF was also the method
with the most applications, followed by PLSR.

The results of the different studies are highly variable and difficult to compare since
they substantially depend on the type of grassland being monitored, the sensor (RGB,
multispectral, hyperspectral, LiDAR), the usage of ground data, and 3D data. In the
case of Zhao et al. [61] for instance, the lower result can be explained by the loss of
canopy information in UAV LiDAR, which is an important factor influencing the estimation
accuracy of AGB. Wang et al. [72] found comparable results (r2 = 0.34) using a linear
regression model and UAV LiDAR to estimate AGB in an experimental grassland site. On
the other hand, Da Costa et al. [92] estimated AGB in a natural grassland using UAV LiDAR
and simple linear regression but obtained a higher r2 value (r2 = 0.78).

Evaluating the result from different papers that use machine learning to estimate
AGB in grasslands, Morais et al. [53] inferred that MLR has the greatest median r2 (0.76),
followed by PLSR (0.75) and RF (0.69). We found similar results evaluating the papers that
informed the r2 value for AGB estimation. Among the methods with more applications
used in the papers evaluated in this review, RF has the greatest median r2 (0.798). However,
it differed slightly from the other methods, being followed by MLR (0.785), LR (0.78), and
PLSR (0.776). Considering the small difference among the statistical methods, we agree
with Morais et al. [53] that the accuracy of the analyses depends more on the quantity and
quality of the data from field samples than on the type of statistical regression.

Among the papers assessed, at least 11 evaluated different regression methods for
AGB prediction models using the same dataset. LR, MLR, and PLSR were commonly
evaluated with other methods, probably because they are common regression techniques
for predicting plant traits. Askari et al. [98] evaluated two regression techniques, PLSR
and MLR, to estimate AGB using a multispectral sensor in a mixed grassland. The authors
concluded that both PLSR and MLR techniques produced accurate models for AGB using
only spectral data (r2 = 0.77 and 0.76, respectively). The results from both techniques were
considered robust enough to be employed, although the PLSR produced better model
outputs. Comparing statistical methods for analyzing hyperspectral data from a grassland
trial, Capolupo et al. [57] also found that PLSR was more effective at predicting AGB using
specific vegetation indices. Lussem et al. [99] evaluated PLSR with other analysis methods,
RF and support vector machine regression (SVR), with and without a combination of both
structural (sward height; SH) and spectral (vegetation indices and single bands) features.
In their study, however, the PLSR models were outperformed by the RF and SVR models.
PLSR also was outperformed by other analysis methods (SVR, RF, and cubist regression
(CBR)) in the study of Wengert et al. [100] using spectral data from a hyperspectral sensor.

Borra Serrano et al. [54] also evaluated PLSR with different regression models and
one machine learning method (MLR, PCR, and RF) to estimate AGB using an RGB sensor
in a monoculture grassland trial. Using spectral and structural data, MLR outperformed
both the machine learning approach and other regression techniques in terms of AGB
estimation. Geipel et al. [55] evaluated two regression methods, powered partial least
squares regression (PPLSR) and LR, to estimate AGB using a hyperspectral sensor in a
mixed grassland in an experimental site. Their results showed that PPLSR modeling
approach fitted with reflectance data produced models with high AGB prediction accuracy
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(r2 = 0.91). On the other hand, LR models using spectral indices and canopy height as
predictor variables did not achieve satisfactory prediction accuracies.

Inputs

The selection of parameter(s) acquired from UAV data is probably the main element
impacting the accuracy and prediction of AGB estimation in grasslands [75]. Spectral
and structural (e.g., height) characteristics of grasslands are the most frequent inputs for
predicting AGB using UAV data. Among the papers reviewed, 18 informed the use of only
structural data as input, and 18 used only spectral data. Other 15 papers used both, while
11 papers used spectral and structural data combined with another data type. The study
of Cunllife et al. [59] using canopy height and canopy volume as inputs had the highest
r2 (0.95) value among those that employed only structural data to estimate AGB. Among
the studies that only used spectral data, Villoslada et al. [62] had the highest value for r2

(0.98). For those studies that used both structural and spectral inputs, Oliveira et al. [97]
obtained the best results (r2 = 0.97) by evaluating different spectral indices and bands from
a multispectral sensor, as well as eight canopy metrics from an RGB sensor. The mean r2

value was 0.74 for studies that used only structural data, 0.77 for papers that only used
spectral data, and 0.81 for papers that combined both structural and spectral data.

All studies that only employed structural measures used RGB and LiDAR data to
generate metrics that represented the structure of the vegetation, and the most commonly
used structural variable was canopy height. Some studies also used data such as vegetation
volume, vegetation cover, and density volume factor. For vegetation with sparser or
more varied canopies, such as grasslands, variables that reflect this heterogeneity, such as
coefficient of variation, standard deviation, or percentiles of height, can be significant [75].
Zhang et al. [8] observed a significant correlation between AGB in a natural grassland
and logarithmic regression using mean height derived from a UAV-RGB sensor (r2 = 0.80).
Wijesingha et al. [44] evaluated different canopy height metrics derived from a UAV-RGB
sensor to estimate AGB in a mixed grassland farm. The results showed that among the
canopy height metrics, the 75th percentile achieved the strongest explanatory power (r2 =
0.63). Da Costa et al. [101] assessed different structural metrics derived from LiDAR data
to estimate AGB from a natural grassland in the Brazilian savanna. The most accurate
method employed metrics that represent canopy height (H98TH = height 98th percentile)
and coverage (COV = cover percentage of first return above 1.30 m). For the estimation
of AGB in a mixed natural grassland, Barnetson et al. [25] selected the maximum canopy
height derived from a UAV-RGB sensor to closely approximate the settling height of the
RPM measure.

The majority of studies that employed only spectral data used multispectral sensors
(n = 9), followed by hyperspectral sensors (n = 3), RGB sensors (n = 3), and a fusion
of different sensors (n = 3). These spectral datasets can be used as narrow bands or
processed to derive a vegetation index (VI). VIs (ratios or linear combinations of bands)
have been widely used in remote sensing research for vegetation identification, as they
emphasize the differences in reflectance of the vegetation. The use of vegetation indices
to characterize and quantify biophysical parameters of agricultural crops has two major
advantages: (a) reducing the dimension of multispectral information through a simple
number while minimizing the impact of lighting and target conditions, and (b) providing
a number highly correlated to agronomic parameters. Several studies have found strong
relationships between biomass measurements and RS-derived VIs [57,62,98,102]. Based
on this relationship, a simple statistical methodology can be constructed to estimate plant
biomass with the most suitable VI and optimal regression results.

Table A4 shows all 78 vegetation index formulations cited in at least one study for
AGB estimation in grassland. Among the articles examined in this review, at least 38 used
vegetation indices for biomass estimation analysis. Of the top five, the Normalized Dif-
ference Vegetation Index (NDVI) was the index used in most studies (N = 27), followed
by Normalized Difference Red Edge (NDRE) (N = 16), the Green Normalized Difference
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Vegetation Index (GNDVI) (N = 14), the Green Chlorophyll Index (GCI) (N = 10), and the
Modified Chlorophyll Absorption in Reflectance Index (MCARI) (N = 9).

The results show a wide variety of indices, some of which might be more specific to
certain indicators (e.g., Grassland Index, Plant Senescence Reflectance Index). However,
most indices were used only once, and a few studies have compared the efficiency of
multiple indices. The overall prevalence of NDVI was expected since this index is widely
employed in various study scales to represent green vegetation abundance and net primary
productivity in grasslands. Although it was the most used index and showed a good
correlation for biomass estimation in a few studies [66,68], NDVI also has some limitations.
NDVI presents sensitivity to the effects of soil brightness, soil color, atmosphere, and leaf
canopy shadow and shows saturation in high-density vegetation. In fact, in some studies,
NDVI did not perform better than preceding modeling strategies [60,95,103]. The study of
Geipel et al. [104] showed that NDVI-based models appeared to be saturated at the first
harvest dates and did not achieve an acceptable prediction level. This conclusion is similar
to that of Karunaratne et al. [65] and Togeiro de Alckmin et al. [105], who suggested that
predicting dry biomass only based on NDVI (as in previous studies) is ineffective. This is
probably related to the saturation effect that occurs when the plant achieves higher levels
of leaf area index. Indeed, Ref. [60] reported that with leaf area index (LAI) values larger
than 3, NDVI exhibited a lower biomass estimation capability. EVI and GNDVI, on the
other hand, saturate less at increasing LAI values and have been identified as significant
predictive variables. In at least two studies comparing different vegetation indices to
estimate biomass in grasslands, GNDVI performed better than NDVI [95,103].

Furthermore, it is important to consider a diverse set of vegetation indices in order
to avoid the issues that come with less sensitive indices such as NDVI. When assessing
various vegetation indexes, it is also critical to consider saturation, sensitivity, plant growth
phases, canopy structure, and environmental impact [102].

Recently, several methods investigated the integration of different data by combining
spectral and non-spectral data, and they found an improvement in the assessment of
AGB in grasslands. According to the study of Lussem et al. [99], the combination of
structural and spectral features can improve the estimation accuracy for AGB in grasslands.
Viljanen et al. [26] reported that using MLRand RF to combine structural and spectral
information resulted in a small improvement in AGB estimation. For the AGB estimation
of perennial ryegrass in the study by Pranga et al. [60], the combination of spectral and
structural characteristics from a multispectral camera utilizing random forest produced the
best results. When combining vegetative indices and 3D features at various flight altitudes,
Karunaratne et al. [65] observed a consistent improvement of AGB estimation.

The structural features, such as canopy height, were more significant for the AGB pre-
diction models than the spectral features when both were combined [99]. Michez et al. [67]
obtained an RMSE of 0.09 kg m2 by combining VIs and canopy height and concluded
that the canopy height had the highest significance in the multilinear regression model.
Grüner et al. [82] developed AGB estimation by comparing RF and PLS models of spectral
features with and without texture. They concluded that adding texture features improved
the estimation models significantly. When predicting AGB using a fused dataset (from the
RGB camera and the MS camera), Pranga et al. [60] likewise discovered that the canopy
height characteristics were of the utmost significance; nevertheless, estimating the AGB
with only the CH features produced rRMSE of 30–35%. Comparatively, the rRMSE of the
AGB estimation was generally 10% lower.

It is important to note, however, that although these methods show promising results,
combining spectral and non-spectral data in an applied setting can be more challenging
because it requires employing several sensors or constructing complex data processing
chains [95].
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4. Challenges and Future Prospects

UAV remote sensing for AGB estimation in grasslands is still challenging, mainly due
to the intrinsic characteristics of this ecosystem. The vegetation communities in grasslands
are mainly composed of a variety of site-specific plant species that can contrast in size and
phenology stage. Additionally, because grasslands are perennial, monitoring systems must
be able to adapt to a wider variety of measuring conditions [52]. Future research should
consider the inherent characteristics of these ecosystems, seasons, management practices,
data collection parameters, and automation techniques in order to establish robust methods
that can be transferred into management tools for grassland professionals [48]. We also
strongly recommend that future studies provide more information on the agronomic aspect
of the research area. A detailed overview of soil characteristics, spatial heterogeneity of
species distribution, climate, grassland classification, and management practices used
enables independent analyses and cross-study comparisons.

A significant constraint of UAV studies for AGB model estimation in grasslands is the
low number of sampling intervals or limited representativeness due to the small number
of sites and management intensities that can be assessed [100]. Furthermore, additional
points must be explored. For example, because most studies only consider one growing
season, future research could include more observations throughout different growing
seasons. In this way, researchers will produce more high-quality datasets describing the
temporal dynamics of vegetation in grassland ecosystems, which is recommended for
improving AGB estimation models. Models created using a dataset based on numerous
years, different management practices, and preferably multiple sites are more generalizable.
As a result, they may better represent conditions at other sites and over different years [106].
Additionally, models should also be validated on a range of grassland fields from diverse
locations and years to improve their practical applicability [100].

Apart from data collection, data processing and analysis are major factors in using
UAVs for AGB estimation in grasslands. The processing of UAV data differs significantly
from the processing of satellite data, creating a new demand for data processing software
and suitable workflows. Additionally, image processing takes more time as spatial and spec-
tral resolutions rise; therefore, more effective methods must be designed. Future directions
for AGB grassland estimate may be accomplished by the ongoing reduction and cost-
effectiveness of sensors, platforms, and computer hardware, as well as strong algorithms.

5. Conclusions

The present manuscript provides a comprehensive review of the most recent results in
the field of UAV for AGB estimation in grasslands. Several factors can have a significant
impact on the performance and generalizability of vegetation AGB estimation in grass-
lands throughout the data collection to data processing and analysis. Our findings are
summarized as follows:

• The frequency of publications on grassland AGB estimation with UAV has increased
over time and continues to rise, indicating the scientific community’s interest.

• The frequency of studies is poorly distributed around the world, with South American
and African grasslands appearing to be underrepresented. As a result, additional
research should be conducted on some important grassland areas.

• The type of grassland, the heterogeneity, and the growth stage can strongly influence
the AGB estimation model.

• Collecting ground-based data is a crucial step in estimating AGB in grasslands. The
biomass sampling method seems to have a small influence on the accuracy of the
AGB model estimation, whereas the number of samples is one of the main factors to
improve the estimation accuracy.

• The measurement of canopy height is an important variable, especially for models that
use structural data as input. However, the methods for collecting canopy height at
the field level present limitations. RPM measurements demonstrated lower accuracy
in sparse swards or tall, non-uniform canopies, and a measuring tape is based on an
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“average height”, but determined visually and rather subjective. The biases of each
method must be taken into account to reduce inconsistencies in the results.

• Quadcopters were the most widely used platform, accounting for almost 60% of all
platforms. Nevertheless, the type of platform has a low impact in AGB grassland
estimation, and the selection of the platform depends more on the research objective.

• The modal value for UAV flight altitude among the studies was 50 m. Adopting lower
altitude flights seems to enhance AGB estimations as this increase the spatial resolution.
For farm-scale applications, however, collecting UAV data at higher altitude offers
more advantages. We suggest flying at the highest altitude where the desirable GSD
is possible.

• Large image forward and side overlaps of approximately 80%, combined with self-
calibration during photogrammetric processing, can provide better data quality.

• In terms of sensor type, RGB was the most commonly employed (48%). Despite MS
and HS sensor has the advantage to provide more spectral bands RGB data seems
capable to produce models with comparable accuracy. In terms of cost–benefit and
data processing simplicity, RGB sensors appear to be the most suitable for estimating
AGB in grassland at the moment. The emergence of reliable and cost-effective LiDAR
and hyperspectral sensors will have a significant impact on future research.

• For the reliable estimation of vegetation structure in grasslands from UAV imagery, a
high-quality DTM with a precise and accurate representation of the terrain is neces-
sary. However, UAV-derived DTMs may underestimate or overestimate field terrain
differences depending on the canopy’s density and the spatial resolution of the image.

• The accuracy of georeferencing models increases when a larger number of ground
control points are equally distributed throughout the study area.

• Linear regression was the most commonly used regression model (n = 25). Random
forest was the most popular machine learning method (n = 16). The findings suggest
that the accuracy of the analysis methods is more dependent on the quantity and
quality of data from field samples rather than the method itself.

• The most common inputs for AGB prediction in grasslands using UAV are spectral
and structural data. Canopy height metrics were the most used structural data. At
least 68% of the articles used vegetation indices for biomass estimation, with NDVI
being the most commonly used. The results indicate that models that employed both
data types (structural and spectral) outperformed models that only used one.
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Appendix A

Table A1. Studies using UAV data to estimate grassland above ground biomass (AGB).

No. Title Ref Year Journal Main Objective

1
Modeling above-ground biomass in tallgrass

prairie using ultra-high spatial resolution
sUAS imagery

[41] 2014 Photogrammetric Engineering
& Remote Sensing

To examine relationship between herbaceous AGB for the
tallgrass prairie and its biophysical parameters derived from

ultra-high-spatial-resolution imagery.

2
Estimating plant traits of grasslands from

UAV-acquired hyperspectral images: a
comparison of statistical approaches.

[57] 2015 International Journal of
Geo-Information

To investigate the utility of hyperspectral images acquired from
UAV for predicting vegetation traits in grasslands considering

the plant phenology and fertilization on spectral data.

3
Mapping Herbage Biomass on a Hill Pasture

using a Digital Camera with an Unmanned Aerial
Vehicle System

[84] 2015 Journal of The Korean Society of
Grassland and Forage Science

To develop a simple and cost-effective low-altitude aerial
platform system with a commercial digital camera on an UAV

system to collect images and estimate the herbage biomass using
statistical analyses.

4
Ultra-fine grain landscape-scale quantification of
dryland vegetation structure with drone-acquired

structure-from-motion photogrammetry
[59] 2016 Remote Sensing of Environment

To develop a new technique to quantify biomass and associated
carbon stocks in heterogeneous and dynamic short sward

semi-arid rangelands.

5 Hyperspectral aerial imaging for grassland
yield estimation [104] 2017 Advances in Animal Biosciences To investigate the potential of UAV imaging spectroscopy for

in-season grassland yield estimation.

6
Modeling Aboveground Biomass in Hulunber

Grassland Ecosystem by Using Unmanned Aerial
Vehicle Discrete Lidar

[72] 2017 Sensors

To investigate if the canopy height, fraction cover, and
aboveground biomass can be derived using models established
from UAV-based discrete LIDAR data with desirable accuracy at

quadrat and subplot scales.

7

Low-cost visible and near-infrared camera on an
unmanned aerial vehicle for assessing the herbage

biomass and leaf area index in an Italian
ryegrass field

[85] 2018 Grassland Sciences

To demonstrate the use of a UAV system equipped with a
low-cost visible and near-infrared (V-NIR) camera to assess the

spatial variability in herbage biomass and LAI in an Italian
ryegrass field.

8
Estimating biomass and nitrogen amount of

barley and grass using UAV and aircraft based
spectral and photogrammetric

[83] 2018 Remote Sensing

To develop and assess a methodology for crop biomass and
nitrogen estimation, integrating spectral and 3D features that can

be extracted using airborne miniaturized multispectral,
hyperspectral, and color (RGB) cameras.

9

A novel machine learning method for estimating
biomass of grass swards using a photogrammetric

canopy height model, images and vegetation
indices captured by a drone.

[26] 2018 Agriculture
To develop and assess a novel machine learning technique for
the estimation of canopy height and biomass of grass swards

utilizing multispectral photogrammetric camera data.
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Table A1. Cont.

No. Title Ref Year Journal Main Objective

10
Estimation of Grassland Canopy Height and

Aboveground Biomass at the Quadrat Scale Using
Unmanned Aerial Vehicle

[8] 2018 Remote Sensing To develop a novel method for estimating the quadrat-scale
aboveground biomass of low-statute vegetation.

11
Evaluation of grass quality under different soil

management scenarios using remote
sensing techniques.

[98] 2019 Remote Sensing

To evaluate the efficiency of hyperspectral and multispectral
(UAV and satellite) remote sensing techniques for predicting and
mapping grass biomass and crude protein under conventional

grassland management in a temperate maritime climate.

12 Estimating pasture biomass and canopy height in
Brazilian savanna using UAV photogrammetry. [70] 2019 Remote Sensing

To estimate the canopy height using UAV photogrammetry and
to propose an equation for the estimation of biomass of Brazilian

savanna (Cerrado) pastures based on UAV canopy height.

13
Canopy height measurements and

non-destructive biomass estimation of Lolium
perenne swards using UAV imagery.

[54] 2019 Grass and Forage Science

To develop a methodology for monitoring the spatial and
temporal dynamics of biomass accumulation of perennial

ryegrass plots throughout the growing season in an affordable,
easy-to-use, reliable, and non-destructive way using an RGB

camera mounted on a UAV.

14
Biomass Prediction of Heterogeneous Temperate

Grasslands Using an SfM Approach Based on
UAV Imaging

[71] 2019 Agronomy

To develop of prediction models for dry matter yield in
temperate grassland based on canopy height data generated by

UAV RGB imaging over a whole growing season including
four cuts.

15

Estimation of spatial and temporal variability of
pasture growth and digestibility in grazing

rotations coupling unmanned aerial vehicle (UAV)
with crop simulation models

[68] 2019 PLOS One
To monitor, assess and manage changes in pasture growth,

morphology, and digestibility by integrating information from
an UAV and two process-based models.

16
Estimating biomass in temperate grassland with

high resolution canopy surface models from
UAV-based RGB images and vegetation indices

[18] 2019 Journal of Applied Remote
Sensing

To evaluate the potential of low-cost UAV-based canopy surface
models to monitor sward height as an indicator of grassland

biomass and compare with established methods for
biomass monitoring.

17 Mapping and monitoring of biomass and grazing
in pasture with an unmanned aerial system [67] 2019 Remote Sensing

To evaluate the potential of UAV as a tool for the characterization
of pasture 3D structure (sward height) and aboveground

biomass at a very fine spatial scale.

18
Comparing UAV-Based Technologies and RGB-D

Reconstruction Methods for Plant Height and
Biomass Monitoring on Grass Ley

[37] 2019 Sensors

To evaluate aerial and on-ground methods to characterize grass
ley fields, composed of different species mixtures and estimate
plant height, biomass and volume, using digital grass models,

and avoiding the unnecessary destruction of the swards.
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19
Evaluating soil-borne causes of biomass
variability in grassland by remote and

proximal sensing
[73] 2019 Sensors

To investigate the relationship between soil characteristics and
biomass production to identify high- and low-yielding regions

within the field and their possible soil-borne causes.

20 Evaluation of 3D point cloud-based models for
the prediction of grassland biomass [44] 2019

International Journal of Applied
Earth Observation and

Geoinformation

To evaluate 3D point clouds derived from a terrestrial laser
scanner (TLS) and an UAV-borne SfM approach for grassland

biomass estimation over three grasslands with different
composition and management practice in northern

Hesse, Germany.

21
Estimating Plant Pasture Biomass and Quality

from UAV Imaging across
Queensland’s Rangelands

[25] 2020 AgriEngineering
To demonstrate the use of UAV hyperspectral remote sensing to
detect both crude protein and acid detergent fiber in a range of
native pastures across the rangelands of Queensland, Australia.

22 Deep learning applied to phenotyping of biomass
in forages with UAV-based RGB imagery [96] 2020 Sensors

To propose a deep learning approach to estimate biomass in
forage breeding programs and pasture fields using only

UAV-RGB imagery and AlexNet and ResNet deep
learning architectures.

23
A Pilot Study to Estimate Forage Mass from

Unmanned Aerial Vehicles in a
Semi-Arid Rangeland

[48] 2020 Remote Sensing
To develop a method to estimate forage mass in rangelands

using high-resolution imagery derived from the UAV using a
South Texas pasture as a pilot site.

24

Development and validation of a phenotyping
computational workflow to predict the biomass

yield of a large perennial ryegrass breeding
field trial

[66] 2020 Frontiers in Plant Science

To validate a computational phenotyping workflow for image
acquisition, processing, and analysis of spaced-planted perennial
ryegrass to estimate the biomass yield of 48,000 individual plants

through NDVI and plant height data extraction.

25
The potential of UAV-borne spectral and textural
information for predicting aboveground biomass

and N fixation in legume-grass mixtures
[82] 2020 PLOS One

To develop harvestable biomass and aboveground nitrogen
fixation estimation models from UAV multispectral imaging of

legume–grass mixtures with varying legume proportions
(0–100%).

26

Comparison of Spectral Reflectance-Based Smart
Farming Tools and a Conventional Approach to

Determine Herbage Mass and Grass Quality
on Farm

[107] 2020 Remote Sensing

To evaluate two spectral reflectance-based smart farming tools
for determining herbage mass and quality of multi-species

grasslands—a portable NIRS and a model to analyze
multispectral imagery.

27
Investigating the potential of a newly developed

UAV-based VNIR/SWIR imaging system for
forage mass monitoring

[102] 2020
Journal of Photogrammetry,

Remote Sensing and
Geoinformation Science

To investigate the potential of a multi-camera system with a
novel approach to extend spectral sensitivity from

visible-to-near-infrared (VNIR) to short-wave infrared (SWIR)
(400–1700 nm) for estimating forage mass from an aerial

carrier platform.



Remote Sens. 2023, 15, 639 25 of 47

Table A1. Cont.

No. Title Ref Year Journal Main Objective

28

The fusion of spectral and structural datasets
derived from an airborne multispectral sensor for
estimation of pasture dry matter yield at paddock

scale with time

[65] 2020 Remote Sensing To develop empirical pasture dry matter (DM) yield prediction
models using an UAV-borne sensor at four flying altitudes.

29 High-throughput switchgrass phenotyping and
biomass modeling by UAV [69] 2020 Frontiers in Plant Science

To exploit UAV-based imagery (LiDAR and multispectral
approaches) to measure plant height, perimeter, and biomass

yield in field-grown switchgrass in order to make predictions of
bioenergy traits.

30
Monitoring Forage Mass with Low-Cost UAV

Data: Case Study at the Rengen
Grassland Experiment

[16] 2020
Journal of Photogrammetry,

Remote Sensing and
Geoinformation Science

To investigate the potential of sward height metrics derived from
low-cost UAV image data to predict forage yield.

31

Can Low-Cost Unmanned Aerial Systems
Describe the Forage Quality Heterogeneity?

Insight from a Timothy Pasture Case Study in
Southern Belgium

[45] 2020 Remote Sensing

To investigate the potential of off-the-shelf UAS systems in
modeling essential parameters of pasture productivity in a

precision livestock context: sward height, biomass, and
forage quality.

32

Machine learning estimators for the quantity and
quality of grass swards used for silage production

using drone-based imaging spectrometry
and photogrammetry

[97] 2020 Remote Sensing of Environment
To develop and assess a machine learning technique for the

estimation of the quantity and quality of grass swards based on
drone spectral imaging and photogrammetry.

33

An efficient method for estimating dormant
season grass biomass in tallgrass prairie from

ultra-high spatial resolution aerial imaging
produced with small unmanned aircraft systems.

[42] 2020 International Journal of
Wildland Fire

To investigate the viability UAV image data to estimate dormant
season grassland biomass, based on the assumption that

grassland canopy height correlates with grassland biomass.

34 Fine scale plant community assessment in coastal
meadows using UAV based multispectral data [47] 2020 Ecological Indicators

To assess the potential of UAVs and multispectral cameras for
classifying and fine-scale mapping of plant communities in

coastal meadows.

35
Using multispectral data from an unmanned
aerial system to estimate pasture depletion

during grazing
[28] 2021 Animal Feed Science and

Technology

To develop and validate empirical models to estimate pasture
depletion in paddocks while cattle are grazing using an
UAV-borne multispectral sensor with rising plate meter

measurements as the reference data.

36 Monitoring ecological characteristics of a tallgrass
prairie using an unmanned aerial vehicle [108] 2021 Restoration Ecology

To evaluate the potential applications of UAV derived data
within restored tallgrass prairies using an affordable sensor

and UAV.
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37
Predicting pasture biomass using a statistical

model and machine learning algorithm
implemented with remotely sensed imagery

[109] 2021 Computers and Electronics in
Agriculture

To test the performance of an integrated method combining
remote sensing imagery acquired with a multispectral camera
mounted on an UAV, statistical models, and machine learning

algorithms implemented with publicly available data to predict
future pasture biomass loads.

38 Forage yield and quality estimation by means of
UAV and hyperspectral imaging [55] 2021 Precision Agriculture

To investigate the potential of in-season airborne hyperspectral
imaging for the calibration of robust forage yield and quality

estimation models.

39 Prediction of Biomass and N Fixation of
Legume–Grass Mixtures Using Sensor Fusion [46] 2021 Frontiers in Plant Science To develop a multi-temporal estimation model for aboveground

biomass and nitrogen fixation of two legume–grass mixtures.

40

The Application of an Unmanned Aerial System
and Machine Learning Techniques for Red

Clover-Grass Mixture Yield Estimation Under
Variety Performance Trials

[103] 2021 Remote Sensing To present a rapid, non-destructive, low-cost framework for
field-based red-clover DM yield modeling.

41
A novel UAV-based approach for biomass

prediction and grassland structure assessment in
coastal meadows

[62] 2021 Ecological Indicators

To compare two temporal pre-harvest dry matter prediction
capabilities under one- and two-year clover–grass cultivation

fields with three different treatments and compare the
performance of three machine learning algorithms and their
corresponding variable importance rankings in estimating

clover–grass mixture dry matter.

42
UAV Multispectral Imaging Potential to Monitor

and Predict Agronomic Characteristics of
Different Forage Associations

[110] 2021 Agronomy

To show a first screening of the potential of airborne
multispectral images captured with UAVs for the monitoring

and prediction of several in situ agronomic parameters of
different forage associations by exploring the relationships

between a few spectral indices UAV-based and simultaneous
field measurements over several fields of forage associations.

43
Improving Accuracy of Herbage Yield Predictions
in Perennial Ryegrass with UAV-Based Structural
and Spectral Data Fusion and Machine Learning

[60] 2021 Remote Sensing

To examine the potential of UAV-based structural and spectral
features and their combination in herbage yield predictions

across diploid and tetraploid varieties and breeding populations
of perennial ryegrass.

44
Effects of plateau pikas’ foraging and burrowing
activities on vegetation biomass and soil organic

carbon of alpine grasslands
[56] 2021 Plant and Soil

To quantitatively assess the foraging and burrowing effects of
plateau pikas on vegetation biomass and soil organic carbon at

plot scale.
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45

Estimating dry biomass and plant nitrogen
concentration in pre-Alpine grasslands with

low-cost UAS-borne multispectral data–a
comparison of sensors, algorithms, and

predictor sets.

[94] 2021 Biogeosciences Discussions

To investigate the potential of low-cost UAS-based multispectral
sensors for estimating aboveground biomass (dry matter) and

plant community nitrogen concentration of managed
pre-alpine grasslands.

46
Remote sensing data fusion as a tool for biomass

prediction in extensive grasslands invaded by
L. polyphyllus

[111] 2021 Remote Sensing in Ecology and
Conservation

To develop prediction models from sensor data fusion for fresh
and dry matter yield in extensively managed grasslands with

variable degrees of invasion by Lupinus polyphyllus.

47
Improved Estimation of Aboveground Biomass of

Disturbed Grassland through Including Bare
Ground and Grazing Intensity

[112] 2021 Remote Sensing

To estimate alpine meadow AGB from multi-temporal drone
images at a micro-scale and improve estimation accuracy in

relation to two types of external disturbances
(mowing-simulated grazing and rodents).

48
Biomass estimation of pasture plots with

multitemporal UAV-based
photogrammetric surveys

[106] 2021
International Journal of Applied

Earth Observation and
Geoinformation

To investigate the use of multitemporal UAV-based imagery and
SfM photogrammetry to estimate the AGB of pastures at a fine

spatial scale.

49

Remotely piloted aircraft systems remote sensing
can effectively retrieve ecosystem traits of alpine

grasslands on the Tibetan Plateau at a
landscape scale

[113] 2021 Remote Sensing in Ecology and
Conservation

To propose a framework for monitoring ecosystem traits by UAV
visible remote sensing, verify the feasibility in monitoring
ecosystem traits, quantify the contribution of each band in

prediction, validate the prediction model, and generate
high-spatial-resolution maps of ecosystem traits.

50 Estimation of forage biomass and vegetation
cover in grasslands using UAV imagery [95] 2021 PLOS One

To test and compare three approaches based on multispectral
imagery acquired by UAV to estimate forage biomass or

vegetation cover in grasslands.

51 Using UAV LiDAR to Extract Vegetation
Parameters of Inner Mongolian Grassland [51] 2021 Remote Sensing

To investigate the ability of Riegl VUX-1 to model the AGB at a
0.1 m pixel resolution in the Hulun Buir grazing platform under

different grazing intensities.

52
Hyperspectral retrieval of leaf physiological traits

and their links to ecosystem productivity in
grassland monocultures.

[114] 2021 Ecological Indicators

To evaluate the remotely sensed retrieval of plant physiological
traits and test the links between the intra- and inter-species trait

variations and ecosystem productivity based on a grassland
monoculture experiment.

53
A non-destructive method for rapid acquisition of

grassland aboveground biomass for satellite
ground verification using UAV RGB images

[81] 2022 Global Ecology and
Conservation

To develop and assess the vertical and horizontal indices from
UAV RGB images as predictors of grassland AGB at quadrat

scale using the RF machine learning technique and verify
whether the indices and methods are suitable for different

grassland ecosystems over a large region.



Remote Sens. 2023, 15, 639 28 of 47

Table A1. Cont.

No. Title Ref Year Journal Main Objective

54
Analysis of UAV LIDAR information loss and its
influence on the estimation accuracy of structural

and functional traits in a meadow steppe
[61] 2022 Ecological Indicators

To investigate how UAV LIDAR information loss may occur and
how it may influence the estimation accuracy of grassland

structural and functional traits by comparing it with terrestrial
laser scanning (TLS) and field measurements in a meadow

steppe of northern China.

55

Estimation of aboveground biomass production
using an unmanned aerial vehicle (UAV) and

VENµS satellite imagery in Mediterranean and
semiarid rangelands

[49] 2022 Remote Sensing Applications:
Society and Environment

To develop a synergistic UAV and satellite imagery method to
estimate AGB by integrating high-resolution UAV data with
moderate resolution satellite data, and to assess AGB under

different grazing pressures.

56
Beyond trees: Mapping total aboveground

biomass density in the Brazilian savanna using
high-density UAV-LiDAR data

[101] 2022 Forest Ecology and Management
To assess the ability of high-density UAV-LiDAR to estimate and
map AGB across the structurally complex vegetation formations

of the Cerrado in Brazil.

57

Quantification of Grassland Biomass and
Nitrogen Content through UAV Hyperspectral

Imagery—Active Sample Selection for
Model Transfer

[52] 2022 Drones

To evaluate the use of UAV hyperspectral imagery for the
quantification of forage yield and nitrogen nutrition status and

implement and validate a supervised approach for
model transfer.

58
Estimating Grass Sward Quality and Quantity
Parameters Using Drone Remote Sensing with

Deep Neural Network
[115] 2022 Remote Sensing

To investigate the potential of novel neural network architectures
for measuring the quality and quantity parameters of silage

grass swards, using drone RGB and hyperspectral images, and
compare the results with the random forest (RF) method and

handcrafted features.

59

Herbage Mass, N Concentration, and N Uptake of
Temperate Grasslands Can Adequately Be

Estimated from UAV-Based Image Data Using
Machine Learning

[99] 2022 Remote Sensing

To estimate aboveground dry matter yield (DMY), nitrogen
concentration (N%), and uptake (Nup) of temperate grasslands

from UAV-based image data using machine learning
(ML) algorithms.

60
Silage Grass Sward Nitrogen Concentration and

Dry Matter Yield Estimation Using Deep
Regression and RGB Images Captured by UAV

[116] 2022 Agronomy

To assess the suitability of CNN-based approaches by comparing
different deep regression network architectures and optimizers

to estimate grass sward nitrogen concentration (N) and dry
matter yield (DMY) using RGB images collected from a drone.

61
Nitrogen variability assessment of pasture fields
under an integrated crop-livestock system using

UAV, PlanetScope, and Sentinel-2 data
[117] 2022 Computers and Electronics in

Agriculture

To evaluate the spatial distribution of N in pasture fields
cultivated under an integrated crop–livestock system (ICLS)

using unmanned aerial vehicle (UAV) and satellite data.
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62
Effects of disturbances on aboveground biomass

of alpine meadow in the Yellow River Source
Zone, Western China

[118] 2022 Ecology and Evolution

To quantify the singular and combined effects of artificial
grazing and pika disturbance severities on AGB and its changes
in an alpine grassland on the Qinghai–Tibet Plateau, assessing

the relative importance of both disturbances.

63 UAV-based prediction of ryegrass dry matter yield [119] 2022 International Journal of
Remote Sensing

To determine the accuracy of UAV-based prediction of
percentage cover, vegetation volume, and DM yield in autumn
from ryegrass sub-plots and compared to the current manual

practice of harvesting, drying, and weighing.

64 Multisite and Multitemporal Grassland Yield
Estimation Using UAV-Borne Hyperspectral Data [100] 2022 Remote Sensing

To develop and evaluate UAV-based models with the goal of
forage yield estimation of eight grassland habitats along a

gradient of management intensities.

Table A2. A summary of data field collection from papers assessed in the review.

Reference Local Type of Field Type of
Grassland

Number
of Sites

UAV
Platform Sensors

Flight
Altitude

(m)

Overlap,
Side

Overlap
(%)

GCP GSD
(cm/Pixel)

Frequency of
Data Collection

Biomass
Ground

Truth Data

Total
Number of

Biomass
Samples

Biomass
Sample

Size (m2)

Canopy
Height

Measure-
ment

(Alvarez-
Hess et al.,
2021) [28]

Australia Grassland
Farm Mono 2 Quadcopter MS 50 80/80 10 n/a 2 collections in

one year
RPM

calibration 529 n/a RPM

(Adar et al.,
2022) [49] Israel Natural

Grassland Mixed 2 Quadcopter RGB n/a 80/80 15 to 20 n/a

5 collections
between April
2018 and April

2020

Not
specified 600 0.25 n/a

(Askari et al.,
2019) [98] Ireland Experimental

Site Mixed 1 Rotary MS 30 and 120 75/75 n/a 2.86 and
11.29

6 collections in
2017, 2

collections in
2018

Mechanical 126 n/a n/a

(Barnetson,
Phinn and

Scarth, 2020)
[25]

Australia Natural
Grassland Mixed 19 Hexacopter RGB and

HS 50 85/85 n/a 1

5 collections
2019 and 1

collection in
2020

Mechanical n/a 0.25 Electronic
RPM

(Batistoti
et al., 2019)

[70]
Brazil Experimental

Site Mono 1 Quadcopter RGB 50 80/60 5 1.55

7 collections in
2017 and 8

collections in
2018

Not
specified 66 n/a Ruler

(Blackburn
et al., 2021)

[108]
USA Natural

Grassland Mixed 19 Fixed-wing MS 122 80/75 n/a n/a 1 collection in
2017 Manual 190 0.01 n/a

(Borra-
Serrano et al.,

2019) [54]
Belgium Experimental

Site Mono 1 Dodeca-
copter RGB 30 80/80 35 0.6 22 collections in

one year n/a 154 1.05 RPM
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Reference Local Type of Field Type of
Grassland

Number
of Sites

UAV
Platform Sensors

Flight
Altitude

(m)

Overlap,
Side

Overlap
(%)

GCP GSD
(cm/Pixel)

Frequency of
Data Collection

Biomass
Ground

Truth Data

Total
Number of

Biomass
Samples

Biomass
Sample

Size (m2)

Canopy
Height

Measure-
ment

(Capolupo
et al., 2015)

[57]
Germany Experimental

Site Mono 1 Octocopter HS 70 n/a n/a 2 2 collections in
one year Mechanical 120 12 RPM

(Castro et al.,
2020) [96] Brazil Experimental

Site Mono 1 Quadcopter RGB 18 81/61 n/a 0.5 1 collection in
2019 Mechanical 330 4.5 n/a

(Cunliffe,
Brazier and
Anderson,
2016) [59]

USA Natural
Grassland Mixed 7 Hexacopter RGB 15–20 70/65 10 to 18 0.4 to 0.7 1 collection in

2014
Not

specified n/a 1 n/a

(da Costa
et al., 2021)

[101]
Brazil Natural

Grassland Mixed 1 Hexacopter LiDAR 100 n/a n/a n/a 1 collection in
2019 Manual 20 1 n/a

(De Rosa
et al., 2021)

[109]
Australia Grassland

Farm n/a 2 Quadcopter MS 80 n/a n/a 5 n/a RPM
calibration 504 n/a n/a

(DiMaggio
et al., 2020)

[48]
USA Natural

Grassland Mixed 1 Quadcopter RGB 30, 40, and
50 80/80 6 2.5 1 collection in

2018 Manual 20 0.25 n/a

(Fan et al.,
2018) [85] Japan Experimental

Site Mono 1 Quadcopter MS 100 50/50 13 2 1 collection in
2016

Not
specified 36 0.25 Not

specified

(Franceschini
et al., 2022)

[52]
Germany Experimental

Site Mono 1 Octocopter RGB and
HS 30 n/ 4 to 8

RGB = 0.8
and 1.5;
Hyper =

7.8 and 15.6

2 collections in
2014 and 3 in

2017

Not
specified 245 n/a n/a

(Gebremedhin
et al., 2020)

[66]
Australia Experimental

Site Mono 1 Quadcopter MS 20 75/75 9 2 3 collections in
2018

Manual
and

mechanical

480
individual
plants for
calibration

and 500
plots for

validation

n/a

Ground-
based

platform
(Phe-

noRover)

(Geipel and
Korsaeth,

2017) [104]
Norway Experimental

Site
Mono and

Mixed 1 Octocopter HS 50 n/a n/a n/a 3 collections in
2016

Manual
and

mechanical
120 n/a n/a

(Geipel et al.,
2021) [55] Norway Experimental

Site Mixed 2 Octocopter HS 50 80/60 n/a n/a

3 collections in
2016 and 3

collections in
2017

Mechanical 707 ~ 9 n/a

(Grüner,
Astor and

Wachendorf,
2019) [71]

Germany Experimental
Site Mixed 1 Quadcopter RGB 20 80/80 7 0.07 to 0.08 4 collections in

2017 Manual 192 0.25 Ruler

(Grüner,
Wachendorf
and Astor,
2020) [82]

Germany Experimental
Site Mixed 1 Quadcopter MS and

RGB 20 and 50 100/100 8 2 and 4 3 collections in
2018 Manual 144 0.25 n/a
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Reference Local Type of Field Type of
Grassland

Number
of Sites

UAV
Platform Sensors

Flight
Altitude

(m)

Overlap,
Side

Overlap
(%)

GCP GSD
(cm/Pixel)

Frequency of
Data Collection

Biomass
Ground

Truth Data

Total
Number of

Biomass
Samples

Biomass
Sample

Size (m2)

Canopy
Height

Measure-
ment

(Grüner,
Astor and

Wachendorf,
2021) [46]

Germany Experimental
Site Mixed 1 Quadcopter MS and

RGB n/a n/a 7 n/a

3 collections in
2018 and §

collections in
2019

Not
specified 140 0.25 n/a

(Hart et al.,
2020) [107] Switzerland Grassland

Farm Mixed 6 Quadcopter MS 50 80/80 8 5 4 collections in
2018 Mechanical 162 6.5 and 1 n/a

(Insua,
Utsumi and
Basso, 2019)

[68]

USA Grassland
Farm Mixed 2 Quadcopter MS and

LiDAR 100 75/75 n/a 6

2 collections in
2015 and 2

collections in
2016

Mechanical n/a 0.25

Rapid
Pasture
Meter

(machine)
and ruler

(Jenal et al.,
2020) [102] Germany Experimental

Site n/a 1 Octocopter RGB 30 n/a 16 4 1 collection in
one year Mechanical 156 0.54 ×

5.46 m2 n/a

(Karila et al.,
2022) [115] Finland Experimental

Site Mixed 1 Quadcopter RGB and
HS 30 and 50 n/a n/a

RGB = 0.8,
Hyper = 4

cm

4 collections in
2017 Mechanical 220

3.9 (n =
96), ~19.5
(n = 16),
4.5 (n =

108)

n/a

(Karunaratne
et al., 2020)

[65]
Australia Grassland

Farm Mono 1 Quadcopter MS 25, 50, 75,
and 100 80/80 10 1.74, 3.47,

5.21, 6,94
4 collections in

2019 Mechanical 101 0.25 n/a

(Lee et al.,
2015) [84] Korea Grassland

Farm Mixed 1 Fixed-wing MS and
RGB 50 n/a n/a 30 2 collections in

2014
Not

specified 56 0.03 n/a

(Li et al.,
2020)[69] USA Experimental

Site Mixed 1 Hexacopter MS and
LiDAR 20 85/75 7 3 1 collection in

2019 Manual 1320 Individual
Plant Ruler

(Li et al.,
2021)[103] Estonia Experimental

Site Mixed 2 Fixed-wing MS 120 80/75 n/a 10 2 collections in
2019

Not
specified 144 n/a n/a

(Lussem et al.,
2019) [18] Germany Experimental

Site Mixed 1 Quadcopter RGB 25 85/85 12 n/a 9 collections in
2017 Mechanical n/a 4.5 RPM

(Lussem,
Schellberg
and Bareth,
2020) [16]

Germany Experimental
Site Mixed 1 Quadcopter RGB 20 90 15 2

2 collections in
2014, 2

collections in
2015, and

collections in
2016

Mechanical 140 15 RPM

(Lussem et al.,
2022) [99] Germany Experimental

Site Mixed 1 Octocopter RGB and
MS 95

RGB =
80/80; MS

= 75/70
15 RGB = 0.7,

MS = 2.3

3 collections in
2018 and §

collections in
2019

Mechanical 832 3 n/a

(Michez et al.,
2019) [67] Belgium Experimental

Site Mixed 1 Octocopter RGB and
HS 50 80/80 8 RGB = 2

and MS = 5
1 collection in

2017
Not

specified 40 0.09 LiDAR
laser scans

(Michez et al.,
2020) [45] Belgium Experimental

Site Mono 1 Quadcopter MS and
RGB 30 n/a 12

RGB = 1
and MS =

2.5

1 collection in
2019 Mechanical 29 10.5 Ruler
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Reference Local Type of Field Type of
Grassland

Number
of Sites

UAV
Platform Sensors

Flight
Altitude

(m)

Overlap,
Side

Overlap
(%)

GCP GSD
(cm/Pixel)

Frequency of
Data Collection

Biomass
Ground

Truth Data

Total
Number of

Biomass
Samples

Biomass
Sample

Size (m2)

Canopy
Height

Measure-
ment

(Näsi et al.,
2018) [83] Finland Experimental

Site Mixed 2 Hexacopter RGB and
HS 50 and 140

73 and
93/65 and

82
32

RGB = 1
and 5 HS =

5 and 14

1 collection in
2016 Mechanical 32 15 Ruler

(Oliveira
et al., 2020)

[97]
Finland Experimental

Site Mixed 4 Quadcopter RGB and
HS 30 and 50 84–87/65–

81 n/a

HS = 6 and
3, RGB =
0.64 and

0.39

3 collections in
2017 Mechanical 108 Different

sizes n/a

(Alves
Oliveira et al.,

2022) [120]
Finland Experimental

Site Mixed 1 Quadcopter RGB 50 n/a n/a 1 4 collections in
2017 Mechanical 96 ~ 4 n/a

(Pereira et al.,
2022) [117] Brazil Grassland

Farm Mixed 1 Quadcopter MS 115 75/75 n/a 8 3 collections in
2019 Manual 116 1 n/a

(Plaza et al.,
2021) [110] Spain Grassland

Farm Mixed 1 Quadcopter MS 43 n/a 4 3 7 collections in
2020

Not
specified 112 0.125 n/a

(Pranga et al.,
2021) [60] Belgium Experimental

Site Mono 1 Hexacopter MS and
RGB

RGB = 40,
MS = 30 80/70 9 RGB = 0.4,

MS = 1.8
3 collections in

2020 Mechanical 1403 7.83 n/a

(Qin et al.,
2021) [56] China Natural

Grassland Mixed 82 Quadcopter RGB 20 n/a n/a 1

1 collection in
2017 and 1

collection in
2018

Manual 300 0.25 n/a

(Rueda-Ayala
et al., 2019)

[37]
Norway Experimental

Site Mixed 2 Quadcopter RGB 30 90/60 n/a n/a 1 collection in
2017

Not
specified 20 1 RPM and

Ruler

(Schucknecht
et al., 2022)

[94]
Germany Grassland

Farm Mixed 3
Quadcopter

and
Fixed-wing

MS

Quadcopter
= 70,

Fixed-wing
= 80

Quadcopter
= 80/80,

Fixed-wing
= 75/75

10 8.7–12.9
cm;

1 collection in
2018

Not
specified n/a 0.25 RPM

(Schulze-
Brüninghoff,
Wachendorf
and Astor,
2021) [111]

Germany Natural
Grassland Mixed 4 Quadcopter HS 20 80/60 6

~20 for
spectral

images and
~1 for

panchro-
matic
band

3 collections in
2018

Not
specified 223 1 n/a

(Shi et al.,
2021) [112] China Natural

Grassland Mixed 1 Quadcopter RGB 40 n/a n/a 1

1 collection in
2018 and 1

collection in
2019

Manual 432 1 n/a

(Shi et al.,
2022) [118] China Natural

Grassland Mixed 1 Quadcopter RGB 40 n/a n/a n/a

1 collection in
2018, 1

collection in
2019, and 1
collection in

2020

Manual 648 1 n/a
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Table A2. Cont.

Reference Local Type of Field Type of
Grassland

Number
of Sites

UAV
Platform Sensors

Flight
Altitude

(m)

Overlap,
Side

Overlap
(%)

GCP GSD
(cm/Pixel)

Frequency of
Data Collection

Biomass
Ground

Truth Data

Total
Number of

Biomass
Samples

Biomass
Sample

Size (m2)

Canopy
Height

Measure-
ment

(Shorten and
Trolove, 2022)

[119]

New
Zealand

Experimental
Site Mono 1 Quadcopter RGB 20 n/a n/a n/a 2 collections in

one 2018
Not

specified 370
1.5 (n =
300), 2.4
(n = 70)

n/a

(Sinde-
González

et al., 2021)
[106]

Ecuador Grassland
Farm Mono 1 Quadcopter RGB 70 80/70 8 3 1 collection in

2018 Manual 54 0.25 n/a

(Tang et al.,
2021) [113] China Natural

Grassland Mixed 4 Quadcopter RGB 10 80/65 3 2.5 1 collection in
one year Manual 623 n/a Not

specified
(Théau et al.,

2021) [95] Canada Experimental
Site Mixed 1 Quadcopter MS and

RGB 65 75/75 60 RGB = 1.7,
MS = 6.4

2 collections in
2017 Mechanical 99 0.25 n/a

(Van Der
Merwe,

Baldwin and
Boyer, 2020)

[42]

USA Natural
Grassland Mixed 11 Quadcopter RGB 40 90/85 n/a 1

1 collection in
2017 and one
collection in

2018

Manual n/a 1 n/a

(Viljanen
et al., 2018)

[26]
Finland Experimental

Site Mixed 1 Quadcopter RGB and
HS 30 and 50

RGB =
84/65, MS

= 87/81
5

RGB = 0.39
and 0.64;

MS = 3 and
5

4 collections in
2017 Mechanical 96 ~ 4 RPM and

ruler

(Villoslada
et al., 2020)

[47]
Estonia Natural

Grassland Mixed 3 Fixed-wing MS 120 n/a 11 10 1 collection in
2018 Manual 140 0.09 n/a

(Villoslada
et al., 2021)

[62]
Estonia Natural

Grassland Mixed 9 Fixed-wing MS and
RGB 120 n/a n/a RGB = 3.5,

MS = 10
1 collection in

2019 Manual 520 0.09 n/a

(Vogel et al.,
2019) [73] Germany Grassland

Farm Mixed 1 Hexacopter RGB 100 70/70 n/a n/a 1 collection in
2016

Not
specified 20 1 n/a

(Wang et al.,
2014) [41] USA Natural

Grassland Mixed n/a Hexacopter MS 5, 20, and
50 n/a n/a

5 m = 0.09;
20 m = 0.36,
50 m = 0.89

1 collection in
2013 Manual 13 0.1 n/a

(Wang et al.,
2017) [72] China Experimental

Site Mixed 1 Octocopter LiDAR

10–120 at
intervals of
10 m and

120

n/a n/a n/a 1 collection in
2015 Manual 90 1 Ruler

(Wengert
et al., 2022)

[100]
Germany

Grassland
Farm And

Natural
Grassland

Mixed 4 Octocopter HS 20 n/a 6 20 3 collections in
2018 Manual 320 1 n/a

(Wijesingha
et al., 2019)

[44]
Germany Grassland

Farm Mixed 3 Quadcopter RGB 25 80/80 n/a n/a 8 collections in
2017

Not
specified 194 1 n/a

(Zhang et al.,
2021) [51] China Experimental

Site Mixed 1 Quadcopter LiDAR
40–110 (at

intervals of
10 m)

n/a n/a n/a 1 collection in
2018 Manual 96 0.25 Ruler
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Table A2. Cont.

Reference Local Type of Field Type of
Grassland

Number
of Sites

UAV
Platform Sensors

Flight
Altitude

(m)

Overlap,
Side

Overlap
(%)

GCP GSD
(cm/Pixel)

Frequency of
Data Collection

Biomass
Ground

Truth Data

Total
Number of

Biomass
Samples

Biomass
Sample

Size (m2)

Canopy
Height

Measure-
ment

(Zhang et al.,
2022) [81] China Natural

Grassland Mixed 3 Quadcopter RGB 2 n/a n/a n/a 1 collection in
2018 Manual 208 0.25 n/a

(Zhang et al.,
2018) [8] China Natural

Grassland Mixed 3 Quadcopter RGB 2 and 20 70/70 n/a 1 1 collection in
2017

Not
specified 75 0.25 n/a

(Zhao et al.,
2021) [114] China Experimental

Site Mono 1 Hexacopter HS 30 n/a n/a 3 1 collection in
2018 Manual n/a 0.09 n/a

(Zhao et al.,
2022) [61] China Natural

Grassland Mixed 24 Fixed-wing LiDAR 100~120 80/80 n/a 1 1 collection in
one year Manual 96 1 Ruler

Table A3. Data analysis methods and essential results of the papers considered in this review.

Reference
Data Analysis Parameters Data Analysis Methods and r2

from Dry Mass (DM) 1Spectral Data Structural Data Other Data Terrain Model Source

(Alvarez-Hess et al., 2021) [28] 5 reflectance bands and 15
spectral indices n/a

AM plot data only (AP), AM plot
plus extreme data (APEX), small

polygon data only (SP), and
small polygon plus extreme data

(SPEX)

n/a SVR = 0.45

(Adar et al., 2022) [49] 12 reflectance bands n/a Mixed pixels from UAV and
satellite, vegetation cover n/a SVR = 0.76

(Askari et al., 2019) [98] 21 spectral indices n/a n/a n/a PLSR = 0.77, MLR = 0.76
(Barnetson, Phinn and Scarth,

2020) [25] n/a Canopy height n/a DTMs derived from ground
point classification

LR and Automated Machine
Learning

(Batistoti et al., 2019) [70] n/a Canopy height n/a DTM derived from ground point
classification LR = 0.74

(Blackburn et al., 2021) [108] 4 spectral bands and 26 spectral
indices n/a n/a n/a Ridge Estimated Linear models

(Borra-Serrano et al., 2019) [54] 10 spectral indices 7 canopy height metrics GDD, ∆GDD between cuts
DTMs from interpolation of

ground points and from leaf-off
flights

LR = 0.67, MLR = 0.81, PLSR =
0.58, RF = 0.70

(Capolupo et al., 2015) [57] 4 spectral indices n/a n/a n/a PLSR = 0.83
(Castro et al., 2020) [96] n/a n/a n/a n/a CNNs = 0.88

(Cunliffe, Brazier and Anderson,
2016) [59] n/a Canopy height and Canopy

volume Surface cover DTM derived from ground point
classification LR = 0.95

(da Costa et al., 2021) [101] n/a 16 canopy height metrics Vegetation cover percentage LiDAR point cloud classification LR = 0.78
(de Rosa et al., 2021) [109] NDVI n/a n/a n/a GAM = 0.60, RF = 0.68

(DiMaggio et al., 2020) [48] n/a Mean canopy height and
vegetation volume n/a DTM by selecting the bare soil

lowest point LR = 0.65
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Table A3. Cont.

Reference
Data Analysis Parameters Data Analysis Methods and r2

from Dry Mass (DM) 1Spectral Data Structural Data Other Data Terrain Model Source

(Fan et al., 2018) [85] DN of each band n/a n/a n/a MLR = 0.84

(Franceschini et al., 2022) [52] DN of each band n/a Variable importance in the
projection (VIP) n/a PLSR = 0.92

(Gebremedhin et al., 2020) [66] NDVI Mean plot height n/a n/a LR = 0.81

(Geipel and Korsaeth, 2017) [104] NDVI, REIP, and GrassI Mean plot height n/a GPS measurements taken on the
ground PPLSR, MLS and SLR = 0.77

(Geipel et al., 2021) [55] NDVI and REIP Mean plot height n/a DTM from interpolation of
ground points PPLSR = 0.91; SLR = 0.67

(Grüner, Astor and Wachendorf,
2019) [71] n/a Mean plot height n/a DTM from interpolation of

ground points LR = 0.72

(Grüner, Wachendorf and Astor,
2020) [82]

4 spectral bands and 13 spectral
indices n/a 8 GLCM texture features n/a PLSR = 0.76, RF = 0.87

(Grüner, Astor and Wachendorf,
2021) [46] 13 spectral indices 15 crop surface height

8 texture features of each spectral
band (4 bands) and 8 texture

features of mean CSH, FM, and
DM

DTM from TLS data RF = 0.90

(Hart et al., 2020) [107] MSI reflectance maps n/a Near-infrared reflectance
spectroscopy n/a LR = 0.29

(Insua, Utsumi and Basso, 2019)
[68] NDVI Plant height and average ruler

sward height Growth rate n/a LR = 0.80

(Jenal et al., 2020) [102] 12 spectral indices and spectral
ground truth n/a n/a n/a LR = 0.94

(Karila et al., 2022) [115]
RGB and HIS features (spectral

bands, several handcrafted
vegetation, and spectral indexes)

Canopy height 3D features n/a DTM from point cloud
classification

Deep pre-trained neural network
architectures and CNNs = 0.90

(Karunaratne et al., 2020) [65] 5 spectral bands and 15 spectral
indices 10 plant height metrics 4 flight altitudes DTM from point cloud

classification RF = 0.91

(Lee et al., 2015) [84] NDVI n/a n/a n/a LR = 0.77

(Li et al., 2020) [69] 4 spectral indices Plant canopy perimeter and
canopy height n/a DTM from LiDAR data LR = 0.93

(Li et al., 2021) [103] 6 spectral indices n/a n/a n/a RF = 0.9, SVR = 0.89, ANN = 0.99

(Lussem et al., 2019) [18] 6 spectral indices Mean sward height and 90th
percentile of the sward height n/a DTM from leaf-off flight Bivariate and MLR = 0.73

(Lussem, Schellberg and Bareth,
2020) [16] n/a 5 sward height metrics n/a DTM from leaf-off flight LR = 0.86

(Lussem et al., 2022) [99] 5 spectral bands and 19 spectral
indices 8 sward height metrics n/a DTM from leaf-off flight LR, PLSR, RF and SVM = 0.9

(Michez et al., 2019) [67] 4 spectral bands and 4 spectral
indices Sward height model n/a DTM from LiDAR data Multivariate models = 0.49
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Table A3. Cont.

Reference
Data Analysis Parameters Data Analysis Methods and r2

from Dry Mass (DM) 1Spectral Data Structural Data Other Data Terrain Model Source

(Michez et al., 2020) [45] 14 spectral indices Sward height model n/a DTM from LiDAR data MLR = 0.74

(Näsi et al., 2018) [83] 39 spectral bands and 13 spectral
indices 8 canopy height metrics 2 flight altitudes DTM from point cloud

classification RF and LR = 0.78

(Oliveira et al., 2020) [97] 38 spectral bands and 23 spectral
indices 8 canopy height metrics 2 flight altitudes DTM from point cloud

classification RF and MLR = 0.97

(Alves Oliveira et al., 2022) [120] n/a n/a n/a n/a CNNs = 0.79

(Pereira et al., 2022) [117] 5 spectral bands and 25 spectral
indices n/a PlanetScope and Sentinel-2A n/a RF = 0.7

(Plaza et al., 2021) [110] 6 spectral indices n/a n/a n/a PLSR = 0.782

(Pranga et al., 2021) [60] 21 spectral indices 3 canopy height metrics n/a DTMs from ground-based GPS
interpolation PLSR, RF and SVM

(Qin et al., 2021) [56] Excess Green Index Fractional vegetation cover Pika tunnel length and diameter,
pika pile diameter n/a LR = 0.446

(Rueda-Ayala et al., 2019) [37] n/a Mean plot volume n/a n/a LR = 0.54

(Schucknecht et al., 2021) [94] 9 spectral bands and 26 spectral
indices In situ bulk canopy height n/a n/a GBM = 0.59, RF = 0.67

(Schulze-Brüninghoff,
Wachendorf and Astor, 2021)

[111]
n/a Canopy surface height Terrestrial laser scanning data n/a RF = 0.81

(Shi et al., 2021) [112] RGBVI n/a Bare ground n/a LR = 0.88
(Shi et al., 2022) [118] RGBVI n/a Bare ground and mowing ration n/a LR

(Shorten and Trolove, 2022) [119] Mean spectral bands for
vegetative and soil material

Percent vegetation cover and
forage volume n/a DTM from interpolation of

ground points LR = 0.66

(Sinde-González et al., 2021) [106] n/a Density factor and volume n/a DTM from bare ground Descriptive statistic = 0.78

(Tang et al., 2021) [113] Band mean and band standard
deviation of DN values n/a n/a n/a PLSR = 0.48

(Théau et al., 2021) [95] 9 spectral indices Mean plot volume Vegetation cover classification DTMs from ground-based GPS
interpolation LR = 0.94

(Van Der Merwe, Baldwin and
Boyer, 2020) [42] n/a Canopy height model n/a DTM from interpolation of dense

point clouds LR = 0.91

(Viljanen et al., 2018) [26] 8 vegetation indices 8 canopy height metrics n/a
DTM from bare ground and
DTM from automatic point

classification
MLR = 0.98, RF = 0.97

(Villoslada et al., 2020) [47] 13 vegetation indices n/a n/a n/a RF = 0.67

(Villoslada Peciña et al., 2021)
[62] 13 vegetation indices n/a n/a

DTM from interpolating the
points classified as ground by the

Cloth Simulation Filtering
algorithm

RF = 0.981
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Reference
Data Analysis Parameters Data Analysis Methods and r2

from Dry Mass (DM) 1Spectral Data Structural Data Other Data Terrain Model Source

(Vogel et al., 2019) [73]
Reflectance of red, green, and
blue; hue: saturation, value,

NDVI, and VARI
n/a n/a n/a LR = 0.8119

(Wang et al., 2014) [41] NDVI n/a n/a n/a OLSR = 0.4

(Wang et al., 2017) [72] n/a
Mean and maximum canopy
height and fractional canopy

cover
Different flight heights DTM from LiDAR data LR = 0.34

(Wengert et al., 2022) [100] 118 spectral bands n/a n/a n/a PLSR = 0.45; RF = 0.73, SVR =
0.74, CBR = 0.75

Wijesingha et al., 2019) [44] n/a 10 canopy height metrics n/a DTM from TLS data LR = 0.62

(Zhang et al., 2021) [51] n/a 3 canopy height metrics and
Fractional vegetation cover n/a DTM from LiDAR data MLR = 0.54

(Zhang et al., 2022) [81] 6 color space indices and 3
vegetation indices

Canopy height model from point
clouds n/a n/a RF = 0.78

(Zhang et al., 2018) [8] n/a 5 canopy height metrics n/a DTM from point cloud ground
point classification LR = 0.76–0.78

(Zhao et al., 2021) [114] NDVI n/a n/a n/a PLSR = 0.85

(Zhao et al., 2022) [61] n/a 5 canopy height metrics, canopy
cover and canopy volume n/a n/a SMR = 0.25

1 SVR = support vector regression; PLSR = partial least squares regression; MLR = multiple linear regression; LR = linear regression; RF = random forest; CNNs = convolutional neural
networks; GAM = generalized additive model; PPLSR = powered partial least squares; ANN = artificial neural network; SVM = support vector machines; GBM = gradient boosting
machines; OLSR = ordinary least squares regression; CBR = cubist regression.

Table A4. Biomass indices used in the papers assessed in this review.

Vegetation Index Equation Papers

Anthocyanin Reflectance Index 1 [121] ARI1 =
(

1
G

)
−
(

1
Redge

)
[28,65]

Blue Normalized Difference Vegetation Index [122] BNDVI = (NIR−B)
(NIR+B)

[99]

Canopy Chlorophyll Concentration Index [123] CGCI =

(
(NIR−Redge)
(NIR+Redge)

)
NDVI

[28,65,99]

Chlorophyll Vegetation Index [124] CVI = NIR
Green ×

Red
Green [45,47,62,67,117]

Colouration Index [125] CI = (R−B)
R [60]

Datt1 [126] Datt1 = (NIR−RE)
(NIR−R)

[95]

Datt4 [126] Datt4 = R
G ∗ Redge [47,62]

Difference Vegetation Index [127] DVI = NIR− Red [47,62]
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Table A4. Cont.

Vegetation Index Equation Papers

Enhanced Vegetation Index [128] EVI = 2.5× NIR−Red
NIR+6Red−7.5B+1 [60,69,117]

Enhanced Vegetation Index 2 [129] EVI2 =
2.5×(NIR−R)
(NIR+(2.4×R))

[28,65,99]

Excess Green [130] ExG = 2 G− R− B [26,54,56,60,81,83,97]
Excess Green Combined with Canopy Height Model [83] ExG + CHM [18,26,97]
Excess Green-Red [131] ExGR = ExG− ExR [26,54,60,97]
Excess Red (Meyer et al., 1998) [132] ExR = 1.4 R− G [26,60,97]
GnyLi Vegetation Index [74] GnyLi = R910×R1100−R980×R1200

R910×R1100+R980×R1200
[102]

Grassland Index [50] GrassI = RGBVI + CHM [18,83,97]
Green Atmospherically Resistant Vegetation Index [133] GARI = NIR−(G−(B−Red))

NIR+(G−(B−Red))
[60]

Green Chlorophyll Index [134] GCI =
(

NIR
G

)
− 1 [28,46,60,65,82,83,97,98,102,117]

Green Difference Index [135] GDI = NIR− G [65]
Green Difference Index [136] GDI = NIR− R + G [62]
Green Difference Vegetation Index [137] GDVI = NIR− G [28,47,62,65]
Green Index (H = hue, S = saturation, V = brightness) [138] GI = 9×

(
H×3.14159

180

)
+ 3× S + V [81]

Green Infrared Percentage Vegetation Index [139] GIPVI = NIR
(NIR+G)

[47]

Green Leaf Index [140] GLI = (2×G−R−B)
(2×G+R+B)

[60,117]

Green Normalized Difference Vegetation Index [133] GNDVI = NIR−G
NIR+G [29,45–48,61,63,67,83,97,99–101,120]

Green Ratio Vegetation Index [137,141] GDVI = NIR
G [28,65,98]

Green Red Difference Index [127] GRVI = G−R
G+R [26,45,47,67,83,97,110]

Green Red Edge Vegetation Index GRVIedge =
G−Red
G+Red [110]

Greenness Red Edge Grredge =
G

Red+G+B [110]
Leaf Chlorophyll Index [142] LCI = (NIR−Redge)

(NIR−R)
[98]

Log Ratio [95] LogRh = log (NIR)
(R)

[95]

Medium-Resolution Imaging Spectrometer (MERIS) Terrestrial
Chlorophyll Index [143] MTCI = (NIR−Redge)

(Redge−R)
[28,57,65,83,97,98,102,117]

Modified Chlorophyll Absorption in Reflectance Index [141] MCARI = [((Redge− R)− 0.2)× (Redge− G)]×
(

Redge
Red

)
[46,57,60,82,83,97–99,117]

Modified Chlorophyll Absorption in Reflectance Index 2 [144] MCARI2 =
[1.5[2.5(Rnir−Rred)−1.3(Rnir−Rgreen)]]√

[(2Rnir+1)2−(6Rnir−5
√

Rred)−5]
[117]
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Vegetation Index Equation Papers

Combined Index with MCARI [145] MCARI_MTVI2 = (MCARI)
(MTVI2)

[117]

Modified Green Red Vegetation Index [146] MGRVI = (RG)
2−(RR)

2

(RG)
2+(RR)

2
[26,45,97]

Modified Non-Linear Index [147] MNLI = (NIR2−R)×(1+L)
NIR2+R+L

[98]

Modified Simple Ratio [148] MSR =
NIR

R −1√
NIR

R +1
[46,47,82,99,103]

Modified Soil-Adjusted Vegetation Index [149] MSAVI =
2 NRI+1−

√
(2 NIR+1)2−8×(NIR−Red)

2
[47,60,62,83,95,97,99,102,117]

Modified Triangular Vegetation Index [144] MTVI = 1.2[1.2(NIR− G)− 2.5(R− G)] [83,97–99]
Second Modified Triangular Vegetation Index [144] MTVI2 =

[1.5[2.5(Rnir−Rred)−2.5(Rnir−Rgreen)]]√
[(2.Rnir+1)2−6Rnir−5

√
(Rred)−0.5]

[117]

Nitrogen Reflectance Index [150] NRI = (G−R)
(G+R)

[98]

Near-Infrared to Red Edge Ratio [151] NIR.RE = NIR
RE [99]

Non-Linear Index [152] NLI = (NIR2−R)
NIR2+R

[98]

Normalized Difference Red Edge [153] NDRE = (NIR−RE)
(NIR+RE)

[29,45–
48,58,63,67,69,83,97,100,101,104,112,120]

Normalized Difference Vegetation Index [154] NDVI = NIR−R
NIR+R

[18,29,42,45–48,56,61,63,66–
69,73,84,85,97,99–101,103–106,112,116]

Normalized Green Intensity [130] NGI = G
R+G+B [60,110]

Normalized Green Red Difference Index [127] NGRDI = (G−R)
(G+R)

[18,45,47,60,99,103,117]

Normalized Pigment Chlorophyll Ratio Index [117] NPCI = (R−B)
(R+B)

[117]

Normalized Ratio Index [155] NRI = R910−R1200
R910+R1200

[102]
Optimization Soil-Adjusted Vegetation Index [156] OSAVI = NIR−R

NIR+R+0.16 [26,57,83,95,97,99,102,117]
Perpendicular Vegetation Index [157] PVI = sin(a)NIR− cos(a)R [60]
Photochemical Reflectance Index (512.531) [158] PRI = R512−R531

R512+R531
[60,83,97,102]

Plant Pigment Ratio Index Red [159] PPRI = (G−B)
(G+B)

[99]

Plant Senescence Reflectance Index [160] PSRI = R−G
NIR [98]

Ratio Vegetation Index [125] RVI = NIR
R [26,45,69,97,102]

Red Difference Index [127] RDI = NIR− R [28,65]
Red Edge Triangular Difference Vegetation Index (core only) [161] RTVIcore = 100(NIR− Redge)− 10(NIR− G) [28,47,62,65]
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Vegetation Index Equation Papers

Red Green Blue Vegetation Index Excess [74] RGBVI = (RG)
2−(RB−RR)

(RG)
2+(RB−RR)

[18,45,83,97,99,112,118]

Red Edge Chlorophyll Index [134] ReCI =
(

NIR
Redge

)
− 1 [28,57,65,83,97,98,117]

Red Edge Inflection Point [162] REIP = 700 + 40×
R670+R780

2 −R700
R740+R700

[55,83,97,102]

Red Edge Simple Ratio 2 [163] SR2 = NIR
Redge [28,46,60,62,65,82,98]

Red Edge to Red Ratio [151] RE.R =
Redge

R [99]
Renormalized Difference Vegetation Index [164] RDVI = NIR−Red√

NIR+Red
[18,46,82,83,97,99,102]

Simple Ratio [165] SR = NIR
R [65,98,99,117]

Soil Adjusted Vegetation Index [156] SAVI = (1+L)×(NIR−R)
(NIR+R)+L

[28,46,47,60,65,82,95,98,117]

Spectral Ratio 3 [166] SR3 = R
G [98]

Spectral Ratio 4 [167] SR4 = G
R [98]

Spectral Ratio 6 [168] SR6 = R
NIR [98]

Spectral Ratio 7 [169] SR7 =
Redge
NIR [98]

Transformed Vegetation Index 1 [170] TVI1 = NDVI+0.5
ABS (NDVI+0.5) ×

√
ABS (NDVI + 0.5) [95]

Triangular Vegetation Index [171] TVI = 0.5[120(NIR− G)− 200(R− G)] [117]

Triangular Greenness Index [117] TGI =
−0.5

[
(λred − λblue)

(
Rred − Rgreen

)
−
(
λred − λgreen

)
(Rred − Rblue)

] [117]

Transformed Chlorophyll Absorption Reflectance Index [144] TCARI = 3[((Redge− R)− 0.2)× (Redge− G)]×
(

Redge
Red

)
[117]

TCARI Combined Index With OSAVI [144] TCARI_OSAVI = TCARI
OSAVI [117]

Visible Atmospherically Resistant Index [172] VARI = G−R
G+R−B [18,45,60,73,99,117]

Visible Atmospherically Resistant Index Red Edge [172] VARIrededge = (Redge−1.7R+0.7B)
(Redge+2.3R+1.3B)

[117]

Wide Dynamic Range Vegetation Index [173] WDRVI = ∝NIR−R
∝NIR+R [60]
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