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Abstract: Light-absorbing particles (LAPs) deposited on snow can significantly reduce surface albedo
and contribute to positive radiative forcing. This study firstly estimated and attributed the spatio-
temporal variability in the radiative forcing (RF) of LAPs in snow over the northern hemisphere during
the snow-covered period 2003–2018 by employing Moderate Resolution Imaging Spectroradiometer
(MODIS) data, coupled with snow and atmospheric radiative transfer modelling. In general, the RF
for the northern hemisphere shows a large spatial variability over the whole snow-covered areas
and periods, with the highest value (12.7 W m−2) in northeastern China (NEC) and the lowest
(1.9 W m−2) in Greenland (GRL). The concentration of LAPs in snow is the dominant contributor to
spatial variability in RF in spring (~73%) while the joint spatial contributions of snow water equivalent
(SWE) and solar irradiance (SI) are the most important (>50%) in winter. The average northern
hemisphere RF gradually increases from 2.1 W m−2 in December to 4.1 W m−2 in May and the
high-value area shifts gradually northwards from mid-altitude to high-latitude over the same period,
which is primarily due to the seasonal variability of SI (~58%). More interestingly, our data reveal a
significant decrease in RF over high-latitude Eurasia (HEUA) of −0.04 W m−2 a−1 and northeastern
China (NEC) of −0.14 W m−2 a−1 from 2003 to 2018. By employing a sensitivity test, we find the
concurrent decline in the concentration of LAPs in snow accounted for the primary responsibility for
the decrease in RF over these two areas, which is further confirmed by in situ observations.

Keywords: light-absorbing particles (LAPs); remote sensing; snow albedo; radiative forcing

1. Introduction

Land surface albedo is defined as the ratio of solar radiation reflected by the land
surface to total incident solar radiation and constitutes a key parameter in the regulation of
Earth’s energy budget [1]. For snow-covered regions at middle and high latitudes, albedo
is one of the most potent positive feedback processes influencing the northern hemisphere
climate [2]. Pure snow has the highest albedo of all natural surfaces and, as such, exerts a
measurable cooling effect on regional climate [3]. Deposition of light-absorbing particles
(LAPs), such as black carbon, dust, and organic carbon, could observably change the
optical characters of snow [4–9], thereby contributing to positive radiative forcing via
reduced albedo and enhanced absorption of incident solar irradiance [10–13]. Cui et al.
(2021) [14] noted that, under all-sky conditions, a ~2% reduction occurred in albedo due
to snowpack LAPs with ~3 W m−2 radiative forcing over snow-covered portion for the
northern hemisphere, which was approximately equivalent to doubling the concentration
of atmospheric CO2 [15].
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Our understanding of radiative forcing (RF) by LAPs in snow is primarily based on a
limited set of ground-based observations, model simulations, and remote sensing retrievals,
and thus remains incomplete [16–18]. To date, several investigations have capitalised on
the high accuracy of ground-based observations to explore RF. Of these, a previous study
by Dang et al. (2017) [19] presented January–March RF in northern China (7–18 W m−2),
North America (0.6–1.9 W m−2), and the Arctic (0.1–0.8 W m−2), measured during a single
year, and Ganey et al. (2017) [20] reported a daily averaged RF of 21.6 ± 5.9 W m−2 for
an Alaskan icefield during the 2014 ablation season. Other studies both presented 6-year
(2005–2010) records of energy balance measurements for the Senator Beck Basin, Colorado,
which showed that daily mean RF in springtime were 31–49 W m−2 in the alpine zone and
45–75 W m−2 in the sub-alpine zone [10,21]. Recognising the high-resolution of these in situ
measurements, ground-based observations nonetheless remain poorly representative on
regional and global scales owing to their inherently limited spatial coverage and temporal
discontinuity [22–24].

Regional and global climate models have been used to capture the estimate of RF more
comprehensively. In a study of the Arctic and northern China albedo, the Community At-
mosphere Model (CAM5) was coupled with the Snow, Ice, and Aerosol Radiative (SNICAR)
model to implement a sensitivity study of seasonal RF variability [25]. They reported
that the RF in northern China was spatially variable, ranging from maximum values of
5–10 W m−2 to <2 W m−2 [25]. Meanwhile, Young et al. (2014) [26] combined the Fall3D
and SNICAR models to simulate the RF from an eruption of Alaska’s Redoubt Volcano
and reported that mean daily RF adjacent to the vent attained values as high as 96 W m−2.
A more current study by Skiles et al. (2019) [27] coupled a multi-layer, physically based
snow-process model (SNOWPACK) and the SNICAR model to simulate daily RF values
of 30 W m−2 in the snowmelt seasons at the Senator Beck Basin Study Area. However,
non-negligible uncertainties still exist although the numerical models play a huge part in
the understanding of LAP causing climate forcing [27].

Remote sensing affords a refined approach to balancing accuracy and spatio-temporal
representation when evaluating real-time RF, thereby helping narrow the gap between our
understanding of snowpack LAPs and estimates of their global radiative impact [28,29].
For instance, Bryant et al. (2013) [30] employed data retrieved from the NASA Moderate
Resolution Imaging Spectroradiometer (MODIS) to estimate ablation season RF in the
southern Colorado Rockies during the period 2000–2010, and they reported an interannual
range of 20–80 W m−2. In the European Alps, the instantaneous RF values were reported in
2014 of up to 153 W m−2, using Landsat 8 Operational Land Imager (OLI) datasets coupled
with optical sensor output from an Unmanned Aerial Vehicle (UAV) [31]. Elsewhere, Chen
et al. (2021) [32] employed MODIS data to retrieve wintertime RF values for northwestern
China (Xinjiang) during the period 2001–2018, during which the regional mean value
was 20.43 ± 7.3 W m−2. It should be noted that most prior remote-sensing-based studies
have focused on specific locations, limited periods, and/or specific contributory factors.
In contrast, the characters and drivers of long-term RF variability have received far less
attention; as a result, our understanding of RF remains fundamentally incomplete. Thus,
to strengthen research into regional- and global-scale climatic and hydrologic change,
a systematic evaluation of longer-term seasonal and interannual RF is warranted [33].
Compared with the spatial and seasonal patterns, understanding the long-term changes of
northern hemisphere RF over the last several decades is also arguably of greater importance
to the scientific community due to its sensitivity to climate change and its key role in global
climate and hydrology [2,34]. To date, however, little attention has been focused on long-
term variability due to the inherent limitations of existing methods. Although previous field
campaigns have compiled a large number of snow samples and provided extensive LAPs
content data for the northern hemisphere snowpack, long-term measurements of LAPs
in seasonal snow at stationary sites remain rare [10,33,35–37] and cannot reflect regional-
and global-scale variance effectively. For instance, whereas ice cores afford long-term,
high-resolution datasets, they are geographically restricted to specific areas, such as the
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Arctic, Antarctic, and High Mountain Asia [38,39]; extensive tracts subject to seasonal
snow are thus poorly represented. Conversely, numerical climate models are subject
to parameter uncertainties and biases inherited from emission inventories, resulting in
considerable simulation uncertainty [40,41]. For instance, although the CMIP6 emission
inventory (developed in partnership with the Community Emissions Data System) has
improved existing inventories, made the methodology more consistent and reproducible,
this dataset nonetheless overestimates Asian emissions of anthropogenic-source LAPs (e.g.,
black carbon and organic carbon) over the last decade (IPCC6 AR6, 2021).

To better investigate the long-time sequenced RF variability across the northern hemi-
sphere over the snow-covered period, we sought to answer two questions: First, how do
the spatial characteristics of northern hemisphere RF vary on monthly scales, and which
factors are primarily responsible for this variability? Second, are temporal variations in
RF significant on both seasonal and interannual scales, and if so, what are the dominant
factors driving such temporal variability in different regions? We employ satellite data cou-
pled with radiative transfer modelling to retrieve RF values for the northern hemisphere,
after which we quantitatively calculate the contributions of various physical factors to RF
variations. This paper is organised as follows. A short summary of all the materials and
methodology utilised is in Section 2. Section 3.1 represents the December–May monthly
averaged RF across the northern hemisphere during the period 2003–2018. Section 3.2
analyses the impacts of different factors on spatial variations in RF. Section 3.3 gives the
seasonal variations of RF as well as qualitative and quantitative analysis of the relationships
between RF and influencing factors. Section 3.4 analyses the variations of RF at an interan-
nual scale and discusses the significant decrease in regional RF and the contributions of
different factors to this decrease. Sections 4 and 5 cover the discussion and conclusions.

2. Materials and Methods
2.1. MODIS Datasets

To retrieve RF, we use MODIS collection 6 products obtained from the National Aero-
nautics and Space Administration (NASA (Washington, DC, USA): https://earthdata.nasa.
gov/ (accessed on 15 October 2022)). Specifically, the MCD43 series dataset is a widely used
and rigorously validated surface albedo product that provides local noontime solar zenith
angles and percentage cell snow cover. For this study, we utilise 0.05◦ spatial resolution
(climatic cell grid), daily composite MCD43C3 data (weighted to the 9th day of every 16-day
observation cycle), which comprises both Aqua and Terra measurements, collected between
December and May over the period 2003–2018. Daily albedo is inversed through the Bidi-
rectional Reflectance Distribution Function (BRDF) and albedo parameter product [42,43]
for daily cloud-free grid cells. Initial MODIS BRDF observations are subsequently inversed
to provide black-sky and white-sky albedo values, calculated at local solar noon.

Black-sky albedo is the directional hemispherical reflectance (DHR) and is defined
as a function of the solar zenith angle under conditions of zero diffuse solar radiation. In
contrast, white-sky albedo is the bi-hemispherical reflectance (BHR) under isotropic illumi-
nation without direct beam solar radiation; this parameter is thus independent of the solar
zenith angle. The albedo is strictly quality controlled, therefore, by the quality of the BRDF.
Here, we use cells for which the BRDF quality flag is ≤4 when the noontime zenith angle is
<80◦, such that cells with >50% fill values, which are without full BRDF inversions due to
non-functional or noisy detectors, are eliminated [44]. Although insufficient observations
can mean that albedo is not effectively derived from BRDF inversions, the magnitude of
inversions is processed through a prior empirical algorithm which performed well under
most scenes [45,46], and the uncertainty of these albedo data is mostly less than 5% [47].
Annual land cover type is derived from MCD12C1 (0.05◦ spatial resolution), which is
served to minimise the impact of the forest canopy to accurately access land surface albedo.

https://earthdata.nasa.gov/
https://earthdata.nasa.gov/
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2.2. CERES Datasets

The Clouds and the Earth’s Radiant Energy System (CERES) project estimates radiation
budgets at the land surface and the top of atmosphere (TOA) at 1◦ spatial resolution.
We employ the SYN1deg products (which provide surface daily averaged downward
shortwave solar radiation fluxes and fractions of cloud cover) to calculate RF values
under all-sky conditions. SYN1deg combines both Terra and Aqua observations and
includes initial, hourly geostationary measurements of narrowband radiance, which are
then calibrated via MODIS to maintain consistency [48].

2.3. ERA5 Snow Water Equivalent Data

ERA5 re-analysis datasets are the current generation products provided by the Euro-
pean Centre for Medium-Range Weather Forecasts (ECMWF; Hersbach et al., 2020 [49])
and exhibit greatly improved spatial resolution and performance over its predecessors.
This is particularly true for the estimation of liquid water in snow, the snow cover fraction
derivation equation, and the evolution of snow density [50–53]. For our study, we use the
ERA5 snow water equivalent (SWE) product at 0.25◦ spatial resolution and hourly interval.
The data are processed with the Interactive Multisensor Snow and Ice Mapping System
(IMS), which provides gridded snow depth as well as snow cover fractions using in situ
station observations [54].

2.4. Radiation Transfer Models

The Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) model was
developed in 1998 by the University of California, specifically for analysing radiative
transfer issues of satellite-borne remote sensing and atmospheric radiation balance data.
Incorporating standard atmospheric models, underlying surface models, and cloud models
along with latitude-specific vertical-distribution models for aerosols, the SBDART model
could calculate direct and diffuse radiation in the form of surface downward shortwave
fluxes under both clear and cloudy conditions.

Based on the two-stream theory [55] and incorporating snowpack LAPs, the Snow,
Ice, and Aerosol Radiative (SNICAR) model developed by Flanner et al. (2007) [56] is a
multi-layer heterogenous radiative transfer schema used to calculate snow albedo. SNICAR
has been applied extensively in Earth System Models and is a reliable tool for simulating
snow albedo accurately [57,58]. In their recent study, Dang et al. (2019) [59] modified
SNICAR by incorporating the delta-Eddington Adding-Doubling [60] scheme, which
repeatedly calculated the transmittance, reflectance, and refractive boundary for individual
snow layers before combining all layers to calculate the optical characteristics for the
snow column totally. In superseding the methodology by Toon et al. (1989) [55], this
approach achieves higher overall accuracy. In our study, we use the newest version of
SNICAR (SNICAR-Adv3) to compute snow albedo under multiple incident radiation and
snow water equivalent conditions, effective snow grain sizes, solar zenith angles, and
LAP contents [61]. In this study, we assume the spherical snow grain shape and external
mixing of LAPs-snow with one-layer snowpack when combining the remote sensing
snow products derived from MODIS and simulated results by SNICAR as in previous
studies [56,62]. For each calculation, we assume clear-sky conditions for direct incident
radiation (black sky) and cloudy conditions for the diffuse component of irradiance (white
sky) with a continuous 300–2500 nm downward solar spectrum of a 10 nm interval in
SNICAR to refer to broadband albedo.

2.5. Radiative Forcing Retrievals

The deposition of LAPs in snow principally reduces the snow albedo in the ultraviolet
as well as visible wavelengths and has little influence on near-infrared (NIR) wavelengths.
By comparison, snow grain sizes (SGS) and solar zenith angle (SZA) affect the snow albedo
basically in NIR wavelengths. Definitely, snow albedo reduces as SGS increases and SZA
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decreases [4,5,14]. The snow albedo is quantitatively retrieved from MODIS data along
with radiative transfer models in this study.

2.5.1. Retrievals of Blue-Sky Albedo from MODIS

For both clear-sky and cloudy conditions, we utilize SBDART to compute direct and
diffuse spectral incident radiation with a 10 nm interval, level-surface noontime values
for a range of latitudes at 1◦ intervals. We then correct the plane-radiation to terrain-
radiation in conjunction with the local slope and aspect, obtained through the Shuttle Radar
Topography Mission (SRTM) digital elevation model, which is according to the terrain
correction algorithm as follows [63]:

cosβ = cosθ0cosθT + sinθ0sinθTcos(φ0 − φT) (1)

where θ0 refers to the solar zenith angle for a horizontal surface; φ0 denotes the solar
azimuth angle (φ0 = π/2 at local noon); θT and φT are slope inclination and aspect, respec-
tively; and β indicates the local solar zenith angle.

MCD43 includes albedo at local noontime in different conditions (black-sky and white-
sky albedo). SNICAR also simulates snow albedo under two radiation scenarios (direct
and diffuse). The actual albedo at wavelength λ (also known as blue-sky albedo: αblue−clear

MODIS,λ )
under clear-sky conditions can be presented:

αblue−clear
MODIS,λ = f clear

di f ,λ·α
white−sky
MODIS,λ +

(
1 − f clear

di f ,λ

)
·αblack−sky

MODIS,λ (2)

where α
white−sky
MODIS,λ and α

black−sky
MODIS,λ are white-sky and black-sky albedo from MODIS. f clear

di f ,λ
represents the proportion of diffuse components in the total solar irradiance under clear-
sky conditions and can be calculated as follows [64]:

f clear
di f ,λ=

Eclear
di f (λ; ϕ)

Eclear
di f (λ; ϕ) + Eclear

dir (λ; ϕ)·cosβ
(3)

where ϕ refers to latitude, Eclear
di f (λ; ϕ) and Eclear

dir (λ; ϕ) are the diffuse and direct compo-
nents of solar irradiance calculated by SBDART, respectively, under clear-sky conditions.
The blue-sky albedo under cloudy-sky conditions (αblue−cloudy

MODIS,λ ) can be calculated analo-
gously. Subsequently, the CERES cloud fraction (CF) is used to calculate blue-sky albedo
under all-sky conditions (αblue−all

MODIS,λ):

αblue−all
MODIS,λ = CF·αblue−cloudy

MODIS,λ + (1 − CF)·αblue−clear
MODIS,λ (4)

2.5.2. Identification of Snow-Covered Area and Retrievals of Snow Albedo

The identified snow-covered area (ISCA) requests the Normalized Difference Snow
Index (NDSI) and snow albedo at band 4 (αblue−all

MODIS,λ=555 nm) are greater than 0.6 [63]. The
empirical formula between Fractional Snow Cover (FSC) and NDSI is as follows:

FSC = −0.01 + 1.45·NDSI (5)

It should be noted that the FSC of ISCA is >86% when NDSI > 0.6, which results in
the FSC not necessarily 100%. Hence, the snow albedo (αblue−all

snow,λ ) needs to be separated
from the mixed pixels, which is not covered completely by snow:

αblue−all
MODIS,λ = FSC·αblue−all

snow,λ + (1 − FSC)·αunderlying, λ (6)

where αunderlying, λ is the albedo of other underlying surface types [65].
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2.5.3. Retrievals of Snow Grain Sizes

The snow grain sizes (SGS) are retrieved at a wavelength of ~1240 nm (MODIS band 5)
by fitting the snow albedo simulated and retrieved from SNICAR and MODIS, respectively,
according to the method of Nolin and Dozier (2000) [66], which algorithm is not affected by
water vapour or liquid water and has been extensively applied in previous studies [67,68].
This method exactly has uncertainty (less than 20%) in retrieving snow grain size [58,69],
which is an economical and practical tool to perform quick access to hemisphere-scale
assessment of the properties of the snowpack.

2.5.4. Retrieval of RF

The snow albedo retrieved from MODIS (αblue−all
MODIS,λ) is fitted to a continuous spectrum

(300–2500 nm with a 10 nm resolution) according to the methodology from Cui et al.
(2021) [14]. Then, the broadband snow albedo reduction caused by LAPs (∆αLAPs

MODIS, noon) is
calculated under all-sky conditions at local noon time, multiplying the deviation between
pure snow albedo simulated from SNICAR (αblue−all

pure,λ ) and snow albedo retrieved from

MODIS (αblue−all
MODIS,λ) by solar irradiance:

∆αblue−all
broadband =

∫ 2500 nnm
300 nm

(
αblue−all

pure,λ − αblue−all
MODIS,λ

)
· Eall,λ · dλ∫ 2500 nm

300 nm Eall,λ · dλ
(7)

RFdaily = ∆αblue−all
broadband · SWall (8)

where SWall denotes the daily mean downward solar fluxes (shortwave) under all-sky
conditions via CERES.

2.6. Attribution of Spatio-Temporal Variability in Radiative Forcing

As previous studies (e.g., Wu et al., 2021 [70]; Cui et al., 2021 [14]; Jin et al., 2022 [71]),
RF is dependent primarily on the concentration of LAPs, snow grain size (SGS), snow water
equivalent (SWE), solar zenith angle (SZA), cloud fraction (CF), and solar irradiance (SI).
An impurity index (Iimp) is utilised to represent the LAP concentration in snow [31,58]:

Iimp =
ln
(

αblue−all
MODIS,band4

)
ln
(

αblue−all
MODIS,band5

) (9)

where αblue−all
MODIS,band4 and αblue−all

MODIS,band5 are the snow albedo retrieved from MODIS at wave-
lengths of 555 nm (band 4) and 1240 nm (band 5), respectively. The RFdaily could be
calculated as follows:

RFdaily = f (LAPs, SGS, SWE, SZA, CF, SI) (10)

The spatial variability in RF due to LAPs can be expressed as

RFdaily(LAPs) = f
(

LAPs, SGS, SWE, SZA, CF, SI
)

(11)

where SGS, SWE, SZA, CF, SI denote spatially averaged values of SGS, SWE, SZA, CF,
and SI. We quantify the spatial variability due to other factors (RFdaily(Xi)) in a similar
manner, after which we apply multiple linear regression to fit RF:

RF f it
daily = ∑n

1 ai·RFdaily(Xi) (12)
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where RF f it
daily is the fitted RF, ai denotes the regression coefficients, Xi represents the

various factors driving variability in RF, and n is the number of those driving factors. The
attribution of the spatial variance in RF can therefore be expressed as follows:

RF f it
daily − RF f it

daily= ∑N
1 ai·(RFdaily(Xi)− RFdaily(Xi)) (13)

in which RF f it
daily − RF f it

daily is the RF anomaly (RF f it
daily, anomaly). Equation (13) can be written

as:

RF f it
daily, anomaly =

N

∑
1

ai·RFdaily, anomaly(Xi) (14)

According to Huang and Yi (1991) [72] and Cui et al. (2021) [14], the fractional
contribution of factors to the spatial variability in RF (FCXi

RF) can be calculated as:

FCXi
RF =

1
m

m

∑
j=1

(
ai·RFdaily,anomaly(Xi)j

)2

∑6
i=1

(
ai·Rdaily,anomaly(Xi)j

)2 (15)

in which m denotes the length of the data set. Similarly, we obtain the fractional contribution
of factors to temporal RF variability by calculating the spatial-mean Xi for monthly and
multi-year averages.

2.7. Sensitivity of Interannual Variation of RF

Sensitivity tests are conducted to assess the impact of different factors on the interan-
nual variation of RF from 2003 to 2018 referring to the similar method of Räisänen et al.
(2017) [73]. The sensitivity diagnosis of certain factors is through recalculating RF using
Equations (1)–(8) while other factors are fixed as multi-year mean averages. We recalculate
six experiments to isolate the single effects of each factor. Then the Mann–Kendall (MK) test,
which is a non-parametric test to identify the significance of the trend in time series data,
is applied to analyze the trend in RF caused by different factors. These tests enable us to
quantify the absolute RF sensitivity caused by different factors (W m−2 per year). The sen-
sitivity estimate (regression slope), which is a result of RF variability and the strength of the
relationship of the driving factors, would be helpful for us to understand the interannual
variability of RF.

3. Results
3.1. Spatial Distributions of RF in the Northern Hemisphere

Focusing on the 2003–2018 identified snow-covered area (ISCA), Figure 1 shows the
spatial distributions of average radiative forcing due to snowpack LAPs between December
and May. ISCA is distributed widely throughout the northern hemisphere and can be
separated into six broad regions according to geographical distribution and RF magnitude.
These regions include high-latitude North America (HNA), Greenland (GRL), high-latitude
Eurasia (HEUA), mid-latitude North America (MNA), mid-latitude Eurasia (MEUA), and
northeastern China (NEC). We note that there are no data for much of some regions, such
as Russia, Canada and Europe, which are covered by forests (Figure S1), as snow radiation
cannot transparent the canopy, although these areas are represented covered by snow.
So, the RF statistics are calculated only for the ISCA and our study period, consistent
with prior research [14]. In general, the average RF for the northern hemisphere over the
snow-covered period is 3.4 W m−2, with the highest value (12.7 W m−2) observed in NEC
and the lowest (1.9 W m−2) in GRL. For HNA, HEUA, MNA, and MEUA, the RF values are
3.2, 3.1, 3.6, and 3.1 W m–2, respectively, which are comparable to the northern hemisphere
average and consistent with field-based measurements [19,74–78]. The spatial patterns
depicted in Figure 1 also align with the simulated model output [25,40,56,79–81].
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Figure 1. Spatial distributions of average December–May (a) radiative forcing for the period 2003–
2018 and (b) statistics for regionally averaged radiative forcing for the northern hemisphere ISCA. 
Boxes are the 25th and 75th quantiles; horizontal lines represent the 50th quantiles (medians). Red 
dots denote averages, and whiskers represent the 5th and 95th quantiles. 

Between winter and spring, the spatial coverage of ISCA varies from month to 
month. For instance, during December and January (Figure 2a,b), ISCA extends primarily 
over mid-latitude regions (MNA, MEUA, and NEC) but is absent from high latitudes 
(HNA, GRL, and HEUA), where the polar night precludes satellite-based detection of 
snow cover and renders RF negligible [14]. Between those two months, the spatial patterns 
of northern hemisphere RF are broadly similar, with January values being somewhat 
higher than those for December. Regionally, RF values are highest in NEC, followed by 
MNA and MEUA. In February, as the mid-latitude snow cover begins to shrink (Figure 
2c), RF values continue to rise in NEC, MNA, and MEUA owing to increased solar radia-
tion. Furthermore, values in the margins of MNA, MEUA, and NEC are routinely higher 
than those for internal regions; we attribute this pattern to the thinner, less continuous 
snow cover in marginal areas, which results in greater exposure of soil and vegetation and 
thus incorporation of wind-blown soil particles and plant debris [28]. Enhanced transport 
of anthropogenic pollution from adjacent snow-free areas may also be a contributing fac-
tor [78]. In contrast to the middle latitudes, ISCA retrieval at high latitudes commences at 
the end of the polar night and the onset of solar irradiation. Average RF values for HNA 
and HEUA are broadly similar, and both are higher than the values for GRL. 

Figure 1. Spatial distributions of average December–May (a) radiative forcing for the period 2003–
2018 and (b) statistics for regionally averaged radiative forcing for the northern hemisphere ISCA.
Boxes are the 25th and 75th quantiles; horizontal lines represent the 50th quantiles (medians). Red
dots denote averages, and whiskers represent the 5th and 95th quantiles.

Between winter and spring, the spatial coverage of ISCA varies from month to month.
For instance, during December and January (Figure 2a,b), ISCA extends primarily over
mid-latitude regions (MNA, MEUA, and NEC) but is absent from high latitudes (HNA,
GRL, and HEUA), where the polar night precludes satellite-based detection of snow cover
and renders RF negligible [14]. Between those two months, the spatial patterns of northern
hemisphere RF are broadly similar, with January values being somewhat higher than those
for December. Regionally, RF values are highest in NEC, followed by MNA and MEUA. In
February, as the mid-latitude snow cover begins to shrink (Figure 2c), RF values continue to
rise in NEC, MNA, and MEUA owing to increased solar radiation. Furthermore, values in
the margins of MNA, MEUA, and NEC are routinely higher than those for internal regions;
we attribute this pattern to the thinner, less continuous snow cover in marginal areas, which
results in greater exposure of soil and vegetation and thus incorporation of wind-blown
soil particles and plant debris [28]. Enhanced transport of anthropogenic pollution from
adjacent snow-free areas may also be a contributing factor [78]. In contrast to the middle



Remote Sens. 2023, 15, 636 9 of 22

latitudes, ISCA retrieval at high latitudes commences at the end of the polar night and the
onset of solar irradiation. Average RF values for HNA and HEUA are broadly similar, and
both are higher than the values for GRL.
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In March, as the mid-latitude snowpack continues to melt, RF attains peak values in
NEC and MNA. At higher latitudes, where the entire snow-covered area is now retrievable,
the ISCA reaches its maximum extent of the six-month observation period. In GRL, RF
values are uniformly higher over coastal regions than inland areas, in agreement with
field measurements [82]. In HNA, MEUA, and HEUA, RF exhibits a decreasing trend with
latitude that reflects the spatial variability of solar radiation. By April, NEC and MNA are
almost entirely free of seasonal snow, with only a few remnants remaining in high-elevation
and/or mountainous regions of MEUA (e.g., the Tibetan Plateau). Maximum RF values
occur in these mountainous areas because of the relatively strong solar irradiance at high
elevations, followed by HEUA, HNA, and GRL. By May, the RF in HEUA has exceeded
that of MEUA, and the longer daylight hours at higher latitudes means that RF values
would be higher in northern interior GRL than that over southern parts of the island.

3.2. Attribution of Spatial Variability in RF

To explore the spatial characteristics and evolution of northern hemisphere RF in
greater detail, we employ the snow impurity index (Iimp, an indicator of snowpack LAP con-
tent; Di Mauro et al., 2015 [31]) along with parameters SGS, SZA, SWE, SI, and CF (Figure 3),
which together determine the changes in RF (see Section 2.6). Generally, Iimp exhibits a
strong spatial inhomogeneity throughout the northern hemisphere during December–
May (Figure 3a), with maximum values in NEC, HEUA, and the margins of HNA. This
pattern aligns with the distribution of high RF values. Furthermore, the scatterplots
given in Figure 4a reveal a strong positive correlation between LAPs and RF (correlation
coefficient > 0.6), demonstrating the importance of Iimp in the spatial distribution of RF.
Similarly, SGS exhibits a heterogenous spatial distribution and significant correlation co-
efficient with RF (Figures 3b and 4b), whereas SWE generally increases with latitude and
thus is negatively correlated with RF. Although the spatial distributions of SZA and SI are
both largely latitude dependent, we note that the former is positively correlated with RF
and the latter negatively correlated. In contrast, CF exhibits a complex distribution, with a
generally negative impact on RF.
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Figure 4. Scatterplots of normalized radiative forcing (RF) versus RF-dependent parameters. Panels
(a–f) represent the scattering of Iimp, SGS, SZA, SWE, SI, and CF, respectively.

Augmenting the correlation analysis described above, we also sought to quantify
the fractional contributions of every influencing factor to the spatial variability of RF
(Figure 5) via the approach outlined in Section 2.6. For the northern hemisphere as a whole,
the contributions of SWE and SI are greatest between December and February, whereas
LAPs represent the dominant contributor (~60–85%) to springtime (March–May) RF spatial
variability. This pattern reflects the fact that the wintertime ISCA is distributed primarily
over middle latitudes, where LAPs exhibit minor spatial differences, whereas the springtime
ISCA is broadly distributed over both middle (high Iimp values) and high (low Iimp values)
latitudes, resulting in greater spatial variance in LAP contents (Figure S2).

Remote Sens. 2023, 15, 636 12 of 23 
 

 

 

Figure 5. Fractional contributions of LAPs, SGS, SZA, SWE, CF, and SI to the spatial variability of 
radiative forcing. Panels (a–f) represent the regions HNA, GRL, HEUA, MNA, MEUA, and NEC, 
respectively; panel (g) represents the northern hemisphere as a whole. 

Theoretical modelling [56] and laboratory experimentation [83] confirm that RF is 
more sensitive to changes in LAP content than to other influencing factors. In our study, 
neither SWE nor SI exhibit an obvious change in spatial distribution between December 
and May (Figures S5 and S6). Consequently, the largest contributor shifts from SWE and 
SI in winter to LAP content in spring. LAPs also play a dominant springtime role on a 
regional scale, with average contributions of >75% at high latitudes (HNA, HEUA, and 
GRL) and 55% at middle latitudes (MNA and MEUA; Figure 5a–e). In winter, the greatest 
contributor at high latitudes is SI, whereas SWE dominates the middle latitudes. One pos-
sible explanation for this pattern is that mid-latitude SWE is innately variable spatially 
and also relatively thin (Figure S5), thereby precluding a semi-infinite thickness at infra-
red and visible wavelengths [84] and impacting RF [78]. In contrast, the high-latitude 
snowpack is typically semi-infinite, such that RF is influenced by latitude-dependent SI 
but independent of SWE. One exception to this pattern is NEC, where SWE is routinely 
the greatest contributor to winter–spring RF spatial variability (Figure 5f), followed by 
LAPs and SI. This result reflects the combined influence of generally elevated LAP content 
[77], limited SI variability, and considerable SWE variance in NEC (Figure S5). Finally, the 
respective contributions of CF, SZA, and SGS to spatial RF variability are low for different 
regions and/or months. 

The results described above differ from our correlation analysis output, for which 
SZA and SGS are significantly correlated with RF. We posit that this disparity is primarily 
due to the non-linear characteristics of snow radiative transfer, such that RF is more sen-
sitive to the wide range of SWE values applied here than to SZA and SGS, which is in 
agreement with prior modelling results [58]. From a seasonal perspective, the LAP contri-
bution increases from winter to spring both on global and regional scales, reaching peak 
values in April over most regions. In contrast, the SI contribution in HNA, HEUA, GRL, 
and MNA declines over time. We note that although SWE plays an important role in NEC, 

Figure 5. Fractional contributions of LAPs, SGS, SZA, SWE, CF, and SI to the spatial variability of
radiative forcing. Panels (a–f) represent the regions HNA, GRL, HEUA, MNA, MEUA, and NEC,
respectively; panel (g) represents the northern hemisphere as a whole.



Remote Sens. 2023, 15, 636 12 of 22

Theoretical modelling [56] and laboratory experimentation [83] confirm that RF is
more sensitive to changes in LAP content than to other influencing factors. In our study,
neither SWE nor SI exhibit an obvious change in spatial distribution between December
and May (Figures S5 and S6). Consequently, the largest contributor shifts from SWE
and SI in winter to LAP content in spring. LAPs also play a dominant springtime role
on a regional scale, with average contributions of >75% at high latitudes (HNA, HEUA,
and GRL) and 55% at middle latitudes (MNA and MEUA; Figure 5a–e). In winter, the
greatest contributor at high latitudes is SI, whereas SWE dominates the middle latitudes.
One possible explanation for this pattern is that mid-latitude SWE is innately variable
spatially and also relatively thin (Figure S5), thereby precluding a semi-infinite thickness at
infrared and visible wavelengths [84] and impacting RF [78]. In contrast, the high-latitude
snowpack is typically semi-infinite, such that RF is influenced by latitude-dependent SI
but independent of SWE. One exception to this pattern is NEC, where SWE is routinely the
greatest contributor to winter–spring RF spatial variability (Figure 5f), followed by LAPs
and SI. This result reflects the combined influence of generally elevated LAP content [77],
limited SI variability, and considerable SWE variance in NEC (Figure S5). Finally, the
respective contributions of CF, SZA, and SGS to spatial RF variability are low for different
regions and/or months.

The results described above differ from our correlation analysis output, for which SZA
and SGS are significantly correlated with RF. We posit that this disparity is primarily due to
the non-linear characteristics of snow radiative transfer, such that RF is more sensitive to the
wide range of SWE values applied here than to SZA and SGS, which is in agreement with
prior modelling results [58]. From a seasonal perspective, the LAP contribution increases
from winter to spring both on global and regional scales, reaching peak values in April over
most regions. In contrast, the SI contribution in HNA, HEUA, GRL, and MNA declines
over time. We note that although SWE plays an important role in NEC, MNA, and MEUA
during both winter and spring, its contribution to northern hemisphere RF is non-negligible
only during winter.

In summary, LAPs are the largest contributor to spatial variability in springtime RF
both on global and regional scales, with the notable exception of NEC. During winter, SWE
and SI play dominant roles at middle and high latitudes, respectively, whereas the specific
contributions of CF, SZA, and SGS are comparatively low.

3.3. Seasonal Variability and Attribution in RF

Figure 6a shows monthly variations in RF during 2003–2018, both for the six study
regions and the whole northern hemisphere. On a hemispheric scale, RF exhibits a moderate
increase from 2.1 W m−2 in December to 4.1 W m−2 in May; this clear seasonal pattern
is a salient feature of most years between 2003 and 2018 (Figure S8). According to the
snow radiative transfer mechanism [56], the observed decrease in LAPs and SGS, coupled
with rising SWE and CF, could account for the decrease in RF, whereas increasing SI and
declining SZA would tend to enhance radiative forcing. As a consequence, the synthesis
effects drive an increase in RF over time, confirming that the overwhelmingly positive
impact of SI and SZA on monthly RF variability is greater than the combined negative
influence of LAPs, SGS, CF, and SWE.

At high latitudes, we observe similar patterns of seasonal RF variability in HNA, GRL,
and HEUA, with May values being two times higher than February values. In addition,
the majority of influencing factors (e.g., Iimp, SGS, SI, and SZA) at high latitudes reveal
comparable degrees of seasonal variance to the northern hemisphere as a whole, suggesting
that the combined positive impact of SI and SZA is responsible for rising RF between
winter and spring. At middle latitudes, the pattern of seasonal variability is more spatially
diverse. In MEUA, for example, RF increases between December and April but decreases
again in May; in MNA, a gradual increase between December and March is followed
by a strong increase in May; and in NEC, RF follows a persistently strong rising trend
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throughout the winter–spring period, with March values being more than two times higher
than December values.
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Recognising that the regional differences in seasonal RF variability reflect the com-
bined impact of LAPs, SGS, SZA, SWE, CF, and SI, we sought to quantify the fractional
contributions of each influencing factor using the methodology introduced in Section 2.6.
As presented in Figure 6b, SI constitutes the dominant contributor in all six regions and
the northern hemisphere generally, accounting for ~50–95% of seasonal variability. The
contribution of SI is greater at high latitudes than at middle latitudes. In contrast, LAPs
play a secondary role (contributing ~5–30%) and their impact appears to be more important
at middle latitudes than at high latitudes. We note that these findings differ from the results
of our spatial attribution analysis, in which LAPs are the dominant factor, suggesting that
the drivers of RF variance differ between temporal and spatial perspectives. This possibility
has not been evaluated in detail and should be prioritised in future research. Consistent
with its role in spatial RF variability, SWE also contributes to mid-latitude and northern
hemisphere scales. In contrast, the respective impacts of SGS, SZA, and CF are relatively
low.

Overall, SI makes the largest positive contribution to seasonal RF variability both on
regional and global scales, followed by the negative contribution of LAPs. Our findings
augment those of previous comparative analysis, confirming that SI plays a leading role,
whereas the impact of SZA is minor, further demonstrating the viability of the quantitative
attribution method.

3.4. Interannual RF Variance and Attribution

In this study, the MODIS satellite data are utilised to investigate interannual RF
variations in the northern hemisphere between 2003 and 2018. As shown in Figure 7g,
although RF fluctuates between 3.2 and 3.6 W m−2, it does not exhibit a clear trend over
the last 16 years. Similar characteristics also occur in GRL, HNA, MEUA, and MNA, where
trends are weak and statistically insignificant. However, for both HEUA and NEC, RF
exhibits a significant decrease (at 99% and 98% confidence, respectively) over the period
2003–2018, declining from 4.3 to 3.5 W m−2 in HEUA and from 12.3 to 11.3 W m−2 in NEC,
with corresponding average rates of −0.04 and −0.14 W m−2 a−1, respectively. Employing
the sensitivity test, we sought to establish the primary factor controlling the observed
decline in RF.
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As depicted in Figure 8, LAPs play the predominant role in the long-term pattern
of declining RF in HEUA and NEC. Specifically, LAPs account for −0.024 W m−2 a−1 of
the HEUA decline and −0.068 W m−2 a−1 of the NEC decline, thereby accounting for
around 50% of the total 2003–2018 decrease in both regions. Our sensitivity test results also
indicate that the LAP-induced decreases in both regions are significant at the 98% (HEUA)
and 99% (NEC) confidence levels (Figures S9 and S10). After LAPs, SI is the second most
important factor influencing declining RF, both in NEC and HEUA, although we note that
the SI-induced decrease is statistically insignificant. SWE contributes moderately to NEC,
whereas the relative impacts of CF, SGS, and SZA are negligible.
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4. Discussion

Our retrieved RF values align with those of Dang et al. (2017) [19], who indicated
January–February RF from NEC (~7–18 W m−2 in 2010) that are comparable to both our
16-year mean (~4.3–19.0 W m−2) and the values reported by Zhao et al. (2014) [40] for the
same period (10 W m−2). However, while Qian et al. (2014) [25] reported significant RF
values (5–10 W m−2) from NEC in April, we note that this region is essentially snow-free
by that time and suggest that satellite observations are more effective than the model
simulations at constraining snowpack extent. Consequently, modelling studies might
overestimate RF values in certain mid-latitude regions, such as NEC, owing to inaccurate
definition of the springtime snow-covered area.

As detailed information is lacking for MEUA as a whole, we compare our retrievals
with the previous in situ study of northwestern China by Shi et al. (2019) [85], who
reported January (2018) RF values of 0.2–6.9 W m−2; the multi-year average in our study is
2.7 W m−2. In MNA, Qian et al. (2009) [80] and Oaida et al. (2015) [86] provided simulated
March and spring values of 3–7 and 16 W m−2, respectively, which aligns well with our
retrievals (4.6 W m−2) for the same periods. Although these results have confirmed the
viability of monthly mid-latitude retrievals, previous work at high latitudes has typically
returned springtime RF values that are lower (<1 W m−2) than those calculated by our study,
suggesting that retrieval uncertainties are larger at high latitudes than at middle latitudes.

Previous studies indicated that snow grain shape and LAPs-snow mixing state can
also be important in determining RF [57,87–89]. They pointed out that snow nonsphericity
could reduce the forward scattering and then increase albedo compared with the spherical
counterparts. On the other hand, BC-snow internal mixing remarkably reduced albedo
compared with external mixing due to an enhancement to snow single-scattering co-
albedo [90–92]. A recent work simulated RF by considering different snow grain shapes
and mixing states of LAPs-snow, then compared it with two satellite-based snow products
retrieved from MODIS [93]. The results demonstrated that the comprehensive influence
may be negative or positive because of complex and non-linear interactions from these
factors. However, we note that we just use a retrieval method for calculations in this study,
which is reversed to the above studies. That means the snow grain shape assumption has
little influence in pure snow albedo retrieval through the method in Section 2.5.3 [19,94]
while the dirty snow albedo in this study is directly derived from the observed MODIS
product according to Equation (6). So, the albedo reduction and RF calculated according to
the retrieved pure and dirty snow albedos (Equations (7) and (8)) are little influenced by
the assumption of snow grain shape and the mixing state of LAPs-snow. Therefore, we just
use the default assumption (i.e., LAPs (equivalent BC) external mixed with spherical snow
grains) in the SNICAR model.

Our results imply that shifting air pollution levels over the last 16 years have played a
key role in RF variability over both regions. In support of this scenario, Figure 9 presents
the interannual variations of light-absorbing aerosol concentrations collected from in
situ measurements made in HEUA and NEC [62,95–98]. In the former, Panchenko et al.
(2021) [95] observed a decrease of 1.5% a−1 between 1997 and 2018 in the Tomsk region
of Southwestern Siberia (central HEUA). Similarly, Dutkiewicz et al. (2014) [97] reported
that BC concentrations at Kevo, Finland (western HEUA) declined by ~1.8% a−1 during all
seasons between 1970 and 2010, with a total reduction of ~100 ng m−3 between 2001 and
2010. Elsewhere in HEUA, BC concentrations declined by 5% a−1 in Zeppelin (Ny-Ålesund)
between 2007 and 2017 and by 11% a−1 in Tiksi (northeastern HEUA) between 2010 and
2018 [62].
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NEC, the purple diamond represents Anshan, the green diamond Benxi, the blue diamond Shenyang,
the red diamond Fushun, and the black diamond Longfengshan. Spatial distribution of in-situ sites
in HEUA and NEC are shown in (c) and (d), respectively.

Meanwhile, in NEC, Guo et al. (2020) [98] observed declining BC concentrations
between 2006 and 2017, with the most significant shifts in urban areas such as Shenyang
and Anshan. Together, these observational data suggested that the measured reduction in
RF in both HEUA and NEC was driven by decreasing air pollution, thus confirming the
importance of emissions mitigation for regional and global radiative balances.

In addition, the observed decrease in Eurasian concentrations of light-absorbing sub-
stances over the past 20 years is robust, and the corresponding pattern of radiative forcing
throughout the snow-covered area of the northern hemisphere exhibits considerable re-
gional variability. In certain regions, trends are weak and/or statistically insignificant.
Recognising that the 16-year duration of our study may be insufficient to capture climatol-
ogy fully, establishing the exact causes of declining northern hemisphere radiative forcing
will require further modelling and verification. Similarly, whether the observed changes
in pollution emissions, transport, and deposition are driven by anthropogenic or natural
processes remains an open question, as does the radiative impact of LAPs on climatic and
hydrologic change. Ultimately, these and other knowledge gaps will be best addressed by
prioritising greater spatial coverage of in situ observations, collection of higher-resolution
and longer remote sensing datasets, and more advanced model simulations.

5. Conclusions

In this study, we use remote sensing to evaluate northern hemisphere snowpack RF
(December–May) between 2003 and 2018 over the snow-covered period. The extent of
the ISCA varies from month to month, reflecting the progression of winter into spring,
and radiative forcing values rise accordingly. To be specific, the spatial patterns of RF,
where primarily located in mid-latitude regions, are similar between December and January.
Furthermore, the RF at high latitudes could be retrieved after March when the polar night
duration ends. RF peak in March due to the snow ablation in most mid-latitudes but
would continue to increase in high latitudes resulting from the higher daily solar irradiance.
Following our assessment of the spatial distribution and temporal variability of RF, we
make quantitative attributions of spatial and temporal variability to radiative forcing. We
observe that SWE is the dominant contributor to spatial variability in wintertime mid-
latitude radiative forcing, whereas LAP contributes most to high-latitude RF in spring.
In contrast, SI plays a more important role in the spatial RF variability at high latitudes,
with this contribution decreasing almost monotonously over time as the LAP contribution
rises. SGS accounts for only ~10% of the spatial variance in GRL, reflecting the gradient
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distribution between coastal and inland regions during our study period. We also find
that SZA only becomes important when high values are attained over a broad latitudinal
range. On both regional and global scales, SI is the greatest contributor to temporal
radiative forcing variability, followed by LAPs; the impact of SWE is non-negligible at
mid-latitudes, where the snowpack is relatively heterogeneous. Finally, the decreasing
trends in radiative forcing over HEUA (−0.04 W m−2 a−1) and NEC (−0.14 W m−2 a−1)
between 2003 and 2018 are significant at 98% and 99% confidence levels, respectively. The
concentration of LAPs dominates this pattern, resulting in radiative forcing variations of
−0.024 W m−2 a−1 in HEUA and −0.068 W m−2 a−1 in NEC, followed by the SI, which
accounts for −0.012 W m−2 a−1 (HEUA) and −0.048 W m −2 a−1 (NEC) of interannual
variability. These results confirm that levels of airborne pollution decreased during the
observation period in both HEUA and NEC, thereby supporting the findings of previous
studies [40,68–71].
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ACRONYM Definition
BC Black carbon
BHR Bi-hemispherical reflectance
BRDF Bidirectional Reflectance Distribution Function
CAM5 Community Atmosphere Model version 5
CERES Clouds and the Earth’s Radiant Energy System
CF Cloud fraction
DHR Directional hemispherical reflectance
ECMWF European Centre for Medium-Range Weather Forecasts
FSC Fractional Snow Cover
GRL Greenland
HEUA High-latitude Eurasia
HNA High-latitude North America
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IMS Interactive Multisensor Snow and Ice Mapping System
ISCA Identified snow-covered area
LAPS Light-absorbing particles
MEUA Mid-latitude Eurasia
MNA Mid-latitude North America
MODIS Moderate Resolution Imaging Spectroradiometer
NDSI Normalized Difference Snow Index
NEC Northeastern China
NIR Near-infrared
OC Organic carbon
OLI Operational Land Imager
RF Radiative forcing
SBDART The Santa Barbara DISORT Atmospheric Radiative Transfer
SGS Snow grain sizes
SI Solar irradiance
SNICAR Snow, Ice, and Aerosol Radiative model
SNOWPACK Multilayer, physically based snow-process model
SRTM Shuttle Radar Topography Mission
SWE Snow water equivalent
SZA Solar zenith angle
UAV Unmanned Aerial Vehicle
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