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Abstract: Quantification of hydrologic model prediction uncertainty for various flow quantiles is
of great importance for water resource planning and management. Thus, this study is designed
to assess the effect of subbasin spatial scale on the hydrological model prediction uncertainty for
different flow quantiles. The Soil Water Assessment Tool (SWAT), a geographic information system
(GIS) interfaced hydrological model, was used in this study. Here, the spatial variations within the
sub-basins of the Omo Gibe River basin in Ethiopia’s Abelti, Wabi, and Gecha watersheds from
1989 to 2020 were examined. The results revealed that (1) for the Abelti, Wabi, and Gecha watersheds,
SWAT was able to reproduce the observed hydrograph with more than 85%, 82%, and 73% accuracy
in terms of the Nash-Sutcliffe efficiency coefficient (NSE), respectively; (2) the variation in the spatial
size of the subbasin had no effect on the overall flow simulations. However, the reproduction of the
flow quantiles was considerably influenced by the subbasin spatial scales; (3) the coarser subbasin
spatial scale resulted in the coverage of most of the observations. However, the finer subbasin spatial
scale provided the best simulation closer to the observed stream flow pattern; (4) the SWAT model
performed much better in recreating moist, high, and very-high flows than it did in replicating dry,
low, and very-low flows in the studied watersheds; (5) a smaller subbasin spatial scale (towards to
distributed model) may better replicate low flows, while a larger subbasin spatial scale (towards
to lumped model) enhances high flow replication precision. Thus, it is crucial to investigate the
subbasin spatial scale to reproduce the peak and low flows; (6) in this study, the best subbasin
spatial scales for peak and low flows were found to be 79–98% and 29–42%, respectively. Hence, it is
worthwhile to investigate the proper subbasin spatial scales in reproducing various flow quantiles
toward sustainable management of floods and drought.

Keywords: subbasin spatial scale; GIS; parameter uncertainty; flow quantiles; watershed management;
parameter sampling distribution; sensitivity rank variation

1. Introduction

Hydrological prediction is primarily useful for flood protection and water resource
planning [1]. Moreover, understanding water quality, which affects stream flow, chemical
concentrations, and the distribution of habitats and animals, necessitates an examination
of low flows. Furthermore, the analysis of extreme flows (high and low flows) is of great
importance for infrastructure development. As a result, it is critical to pay more attention
to the prediction and reproduction of flow quantiles (e.g., high, moist, mid-range, dry, and
low flows). Several studies have been developing several types of hydrological models to
mimic hydrological processes and water quality [2–7].
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Both the fully distributed and semidistributed models are able to account for the
heterogeneity of a watershed by discretizing catchments into many homogenous units
as opposed to lumped models [8–10]. However, fully distributed models are more data-
intensive and have greater processing requirements than the framework for semidistributed
hydrological modeling. Due to this advantage, the semidistributed hydrological model is
preferred by many researchers in this field for evaluating water resources. A key feature
of semidistributed hydrological models is the discretization of the basin into several sub-
basins. In Soil and Water Assessment Tool (SWAT) modeling, a basin is discretized into
smaller subwatersheds based on land use, soil, and slope categorization, and each of these
subwatersheds is then further divided into finer hydrological response units (HRUs). The
approach used to designate homogeneous units as subbasins or HRUs may thus have
an impact on hydrological models’ capacity to replicate the frequency and geographical
distribution of the information provided. Approaches to SWAT hydrological modeling
frequently employ default discretization; however, doing so may make the modeling
more uncertain [11]. To make informed decisions about water resource management,
hydrological prediction uncertainty must be quantified. Measurement errors in the model’s
inputs, together with the model’s parameters, organizations, and other elements, are among
the most significant causes of uncertainty in hydrological predictions [12,13]. The input data
used in hydrological models are the main source of uncertainties [3,14,15], and numerous
studies have concentrated on quantifying these uncertainties [16,17]. However, due to the
spatial scale of the model subbasins, relatively few studies have taken into consideration the
flaws in the hydrological model while reproducing the various flow quantiles. The SWAT
model integrates input variables at the subbasin and HRU levels to estimate basin responses
using regionally distributed inputs. As a result, the geographic area throughout which
the input data are integrated to form parameters may have an effect on the model output.
Temperature and rainfall measurements, both of which contain equivalent quantities of
subbasin-level meteorological data, are examples of data at the subbasin level. Realizing
that when aggregating geographical data at finer resolutions, it is necessary to represent
geographic features at the right subbasin sizes, which reduces the number of data units
needed to describe the original spatial data by the same number of spaces. Based on the
data, it appears that this division has a lower spatial resolution. As the subbasin increases
in size, streamflow prediction may be less responsive to variations in rainfall measured
at specific stations. Because the aggregation procedure may change the geographical and
statistical aspects of the input data, the framework for hydrological modeling obtains a
new source of uncertainty. Thus, depending on the geographical subbasin sizes of the
input data, the hydrological model’s output may differ. The causes of variability in the
subbasin are also intimately linked to the geographic size of the subbasin, according to [18].
The model’s forecast may be exceedingly inaccurate since the magnitude of the subbasin
contributes to an anomaly in addition to the measurement error already present in the
input data. As a result, it is critical to discretize watersheds in a way that takes into account
the variety of soil and land uses, together with the spatial variation in both temperature
and rainfall measurements. When subbasin partitioning has properly reflected the variety
of the basin, in terms of input data, it is believed that the model predictions will not differ
considerably after a specific number of subbasins.

Several studies have attempted to determine the impacts of spatial discretization on
the outputs of hydrological models [11,19–23], but the findings are often inconclusive. For
instance, Mamillapalli, et al. [24] observed that adding more subbasins improved the SWAT
model’s accuracy. However, according to [25], the size and number of subbasins are not
key considerations for calculating runoff in SWAT. The majority of prior investigations
have analyzed how subbasin size affects the replication of the entire observed hydrograph,
but they have not examined how subbasin spatial scale affects the reproduction of the
various flow quantiles. To gain a better understanding of low and high flow behavior, it
is critical to investigate how the subbasin division level influences the formation of the
hydrograph’s various flow quantiles. Moreover, hydrological modeling prediction may
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be hampered by the uncertainty related to the subbasin spatial scale in recreating the
observed hydrograph. Regarding this, some studies have shown how the spatial scale of a
subbasin affects parameter uncertainty [26,27]. When compared to marginally significant
parameters, meaningful parameters, for instance, have a very tight range of uncertainty
about a variety of watershed configurations, which implies the use of parameter sensitivity
analysis to identify the dominant parameters that best capture the system’s hydrological
response [26]. Hence, the level of model uncertainty must be minimized by a thorough
analysis of parameter sensitivity [28,29].

Several methods have been suggested by previous studies to quantify hydrologic
model parameter uncertainty [29–39]. The most commonly used approaches to quantify the
hydrologic model parameter uncertainty include: Sequential uncertainty fitting version 2
(SUFI-2) [40], generalized likelihood uncertainty estimation (GLUE) [41], Bayesian recursive
estimation technique [42], generalized polynomial chaos expansion [43], shuffled complex
evolution metropolis algorithm [44], and maximum likelihood Bay [45]. SUFI-2 is the most
frequently used method for daily and monthly calibration and validation of hydrological
parameters, sensitivity analysis, and uncertainty analysis [30]. It is straightforward to
complete the calibration process within the time limits that can be achieved with SUFI-2’s
semiautomated design [36]. As a result, this work uses the SUFI-2 method to examine the
parameter uncertainty in the hydrological modeling of various flow phases. This study
will also assess the uncertainty in hydrological modeling at the subbasin spatial scale for
various flow phases. It is well known that the precision of the physical and climatological
input data, the state of watershed management, and spatial representation have an impact
on the uncertainty of hydrological modeling. This study takes into account three unique
watersheds with various spatial sizes to address this issue. However, model uncertainties
between the three watersheds are assumed to be constant. Moges et al. [46] explore this
type of model uncertainty in their work.

The following is the study’s research structure. Section 2 describes the Material and
Methods. Sections 2.1 and 2.2 introduce the research area and data description, respectively.
Section 2.3 describes the Methods employed in the study. Section 3 presents the findings of
the investigation, while Section 4 discusses them. Section 5 contains conclusions.

2. Materials and Methods
2.1. Study Area

Located in southwestern Ethiopia, the Omo Gibe River Basin has a drainage area of
79,000 km2. The Omo Gibe River Basin has the third-highest potential for runoff volume
(16.6 km3) in the nation, after the Abbay (54.8 km3) and Baro-Akobo (23.6 km3) River
Basins [47]. This basin, which is second only to Abbay in terms of potential for hydropower
development, accounts for the majority of the country’s current hydropower-generating
growth. The Abelti, Wabi, and Gecha watersheds, which are subbasins of this river basin,
were selected to examine the change in hydrological modeling parameter uncertainty with
watershed management and the validity of input data. The Gecha watershed is located in
the basin’s reach’s southwest corner, although the Abelti and Wabi watersheds are found
in the basin’s higher reaches (Figure 1).

2.2. Data Description

ArcSWAT requires the following input data: digital elevation model (DEM), land
use land cover (LULC), soil map, and weather data. The hydrological department of
Ethiopia’s Ministry of Water and Energy provided a 30 m resolution DEM and mea-
sured flows of the study watersheds. The Water and Land Resources Center at Ad-
dis Ababa University provided the LULC data. The soil map was created using the
United Nations Food and Agricultural Organization’s (FAO) Digital Map of the World
(https://data.apps.fao.org/map/catalog/srv/eng/catalog.search#/home, accessed on
21 May 2022) and meteorological data received from the Ethiopian meteorological institute.
As can be found from their web address, field surveys, remote sensing as well as other

https://data.apps.fao.org/map/catalog/srv/eng/catalog.search#/home
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natural data, professional judgement, and laboratory research were used to develop the
soil data and its maps. The Abelti watershed (15,746 km2), the largest gauged subbasin
of the Omo Gibe River Basin, has 60.76% agricultural land and a distribution of 9.28%
range grass, 3.83% scrub/shrub, 24.67% wooded area, and 3.83% scrub/shrub. Urban
space, undeveloped land, and wetlands make up the remaining 1.46%. In this basin’s
1866 km2 Wabi watershed, there are 17.75% wooded regions, 59.26% agricultural areas,
4.34% scrub/shrub areas, 17.39% range grass areas, and other places, including urban
areas and barren lands, accounting for 1.28%. Moreover, the Gecha watershed (175 km2)
has 2.64% range grass, 39.82% farms, and 57.60% wood. The Abelti watershed’s seven
monitoring stations and data from observations made from 1989 to 2020 reveal that the
region’s yearly mean temperature is 19.98 ◦C and its yearly average rainfall is 1417 mm,
with the summer months experiencing the region’s largest rainfall events (June–August).
The 15,746 km2 drainage basin of the Abelti stream gauging station was where the daily
streamflow data were collected. Notably, 1050 to 3563 m above the mean sea level is within
the research area. Seven, two, and two weather stations were employed for the Abelti, Wabi,
and Gecha subbasins, respectively, to collect observed daily weather data during a record
period of 32 years (1989–2020). In the Abelti, Wabi, and Gecha subbasins, one weather
station corresponds to approximately 2249, 933, and 87 km2, respectively. Compared to
their distributions within themselves, meteorological stations are rather few in number in
the studied area. Additionally, the hydrological studies in the three chosen basins provide
essential details on the variations in hydrological processes in basins with a predominance
of agricultural use (such as Abelti and Wabi) and forest use (such as Gecha).
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2.3. Methods
2.3.1. The SWAT Model

The uncertainty of the hydrological modeling parameter in the research basin was
evaluated using the SWAT model [18,48]. This model was selected to satisfy the study goals
due to its broad use and effective execution [4,11,49–53]. The applicability of the SWAT
model in the upper Omo Gibe basins, which also include the Abelti and Wabi watersheds
in our research, was reported more recently [54]. SWAT modeling divides the Abelti, Wabi,
and Gecha watersheds into a number of subbasins, which are then discretized into smaller
HRUs with a variety of land use, soil, and slope characteristics. Each subsurface basin’s
runoff is individually calculated and routed to determine the total surface runoff of the
drainage basins. The SWAT model requires the following input data types to represent the
features of the study basin: meteorological data (i.e., solar radiation, rainfall, wind speed,
relative humidity, and temperature), land use, soil, and DEM. Using the equation indicated
below, the water balance is computed [48]:

Wt = SWo +

t

∑
i=1

(
Rday −Qsur f − Ea −Wseep −Qgw

)
i

(1)

where SWt is the final soil water content (in millimeters of water), SW0 is the soil water
content at the start of day i (in millimeters of water), and t is the time (in days); Rday is the
amount of rainfall in millimeters of water for day i, Qsurf is the amount of surface runoff
in millimeters of water for day i, evapotranspiration (Ea) is the quantity of water lost by
evaporation throughout day i, Wseep is the quantity of water, expressed in millimeters of
water per day i, that enters the vadose zone from the soil profile, and Qgw is the amount of
return flow in millimeters of water for day i (mm water).

The flow through the channel was routed using the variable storage coefficient ap-
proach, and the potential evapotranspiration was calculated using the Penman-Monteith
method. The Thiessen polygon method was used to determine the mean area rainfall in
the watersheds of Abelti, Wabi, and Gecha. The surface runoff volume was calculated
using the modified Soil Conservation Service runoff curve number (SCS-CN). The SCS-CN
depends on the permeability of the soil, the type of land used, and the preexisting soil
water conditions. In-depth information about the SWAT model is provided by [48].

2.3.2. Parameter Sensitivity

Overparameterization in distributed hydrological models is a well-known and preva-
lent problem [55–57]. Sensitivity analysis approaches are frequently employed to reduce the
number of parameters that must be fitted to input-output data [58–60]. In addition, [11,29]
reported that a particular subset of the original parameters had an effect on streamflow
generation using the SWAT model in the Yongdam and Gilgel Abay watersheds (South
Korea and Ethiopia, respectively), indicating the requirement of implementing sensitivity
analysis of parameters during calibration. Sensitivity studies are commonly described
using the words “local” and “global.” While a global analysis provides sensitivity with
respect to a parameter’s whole distribution, a local analysis establishes sensitivity with
respect to parameter point estimates. The latter has the benefit that the results from global
sensitivity analysis are more reliable [61]. The parameters that affect streamflow simulation
using SWAT were therefore identified using the global sensitivity analysis approach, which
was used in this study’s model parameter sensitivity analysis. Therefore, before SWAT
model calibration, global sensitivity analysis is conducted to identify the most sensitive
parameters. It is based on how each parameter’s target function alters on average, as
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all other parameters do [29]. The global sensitivity analysis uses multiple regression to
determine each parameter’s sensitivity [61]:

g = α +

n

∑
i=1

βibi (2)

where g represents the value of the objective function, α is the regression constant, and
β is the parameter coefficient. The statistical properties of t-stat and p-value are then used
to quantify the relative significance of each parameter b; a higher absolute value of t-stat
and a lower p-value denotes a more sensitive parameter. The statistics of the parameter
sensitivity are obtained using multiple regression. When using the t-test, the accuracy with
which the regression coefficient is measured is expressed as t, where t is the coefficient of a
parameter divided by its standard error. When a parameter’s coefficient is large in relation
to its standard error, that parameter may be regarded as sensitive to the simulation. A
parameter’s t-statistic and the values in the student’s t-distribution table can be compared to
obtain the p-value (available in most statistical handbooks). Each term’s p-value evaluates
whether the coefficient is equal to zero, the null hypothesis (no effect). The null hypothesis
can be disproved if the p-value is low (0.05). As a result of the relationship between changes
in the predictor value and changes in the response variable, a predictor with a low p-value
is therefore likely to be a useful addition to the model. On the other hand, a higher p-value
indicates that the predictor is not related to changes in the response, showing that this
parameter is not particularly sensitive. A thorough literature search was conducted to
determine the 17 (Table 1) crucial SWAT model parameters that have the greatest impact on
estimates of streamflow [11,29,48,62–65].

Table 1. SWAT model flow parameters used in the study basin.

Parameter Name
with Their Extension Parameter Descriptions Unit Valid Ranges

ALPHA_BF.gw Baseflow alpha factor (days) 0–1

ALPHA_BNK.rte Baseflow alpha factor for
bank storage (-) 0–1

CH_K2.rte Effective hydraulic
conductivity in main channel (mm/h) −0.01–500

CH_N2.rte Manning’s “n” value for the
main channel (-) −0.01–0.3

CN2.mgt (r) SCS runoff curve number (-) −0.2–0.2

ESCO.hru Soil evaporation
compensation factor (-) 0–1

GW_DELAY.gw Groundwater delay time (days) 0–500

GW_REVAP.gw Groundwater
“revap” coefficient (-) 0.02–0.2

GWQMN.gw Threshold depth of water in
the shallow aquifer (mmH2O) 0–500

HRU_SLP.hru Average slope steepness (-) 0–1

OV_N.hru Manning’s “n” value for
overland flow (-) 0.01–30

REVAPMN.gw Threshold depth of water (mm) 0–500
SLSUBBSN.hru Average slope length (-) 10–150

SOL_AWC (..).sol (r) Available water capacity
of the soil layer

(mmH2O/mm
soil) 0–1

SOL_BD (..).sol (r) Moist bulk density (g/cm3) 0.9–2.5

SOL_K (..).sol (r) Saturated hydraulic
conductivity (mm/h) 0–2000

SURLAG.bsn Surface runoff lag time (days) 0.05–24
Note: Parameter names with (r) indicate relative change, whereas the rest parameters are replaceable. During the
calibration process, parameter limits for each study watershed are maintained.
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2.3.3. Hydrologic Model Calibration and Validation

To capture the hydrologic phenomenon, the hydrological modeling technique necessi-
tates various working procedures. In this study, the Abelti, Wabi, and Gecha watersheds
will be analyzed using the SWAT model for the years 1989 to 2020. Furthermore, to achieve
a better hydrologic prediction performance, the observed runoff data of each watershed
will be divided into three distinct parts with different purposes; (1) warmup, (2) calibration,
and (3) validation. The values of the parameters in the performed hydrologic simulation
will then be determined and validated using these observed runoff data.

For the uncertainty analysis, the SUFI-2 approach [30] is employed. It is an inverse
optimization tool that uses a global search algorithm and the Latin hypercube sampling
methodology to assess the activities of objective functions. Because it allows for variable
objective functions while producing appropriate model calibration results, it is a superior
modular calibration strategy. This method is connected to the SWAT-CUP calibration
package. The model’s effectiveness is assessed using Nash-Sutcliffe efficiency (NSE), the
most well-liked likelihood function for SUFI-2 in the literature [58,66–69].

SE = 1− ∑n
i=1(Oi − Pi)

2

∑n
i=1
(
Oi −O

)2 (3)

where Pi, Oi, and O represent the simulated, measured, and average values, respectively.
The statistical distribution ranges of the output variables obtained using Latin hyper-

cube sampling for parametric uncertainty replication, which are set at 2.5% and 97.5%,
excluding the worst 5% of calculations [70]. In this study, we evaluated the agreement
between simulation and observational results using the percentage of measurements falling
inside the 95% prediction uncertainty (95PPU), the P-factor, and the relative width of a
95% probability band, the R-factor. Notably, 1 for the P-factor and 0 for the R-factor are
used to describe a simulation that perfectly matches the measured data. According to the
literature, P-and R-factors should be equivalent to and/or greater than 0.7 and less than
1.2, respectively [70]. The calculations of the P-and R-factors are presented as follows:

P =

T

∑
t=1

Zt

T
× 100, (4)

Zt =

{
1 i f Qo

t ∈
(

Qs
t,2.5%, Qs

t,97.5%

)
0 otherwise

(5)

R = 1/T
T

∑
t=1

(
Qs

t,97.5% −Qs
t,2.5%

)
/σobs (6)

where T represents all of the time steps in the collected data, the model’s time step is given
by t, and the observed discharge must fall within the 95 PPU range for Zt to equal 1. At
time step t, Qo

t represents the observed data; S designates the simulated data, O denotes
the observed data, and σobs denotes the standard deviation of the measured data, Qs

t, 97.5%
and Qs

t, 2.5% represent, respectively, the simulated upper and lower limits at time t (the
cumulative distribution level at 97.5% and 2.5%).

2.3.4. Spatial Scales of the Subbasin for Modeling High and Low Flows

To examine the impacts of the subbasin spatial scale on distinct flow regimes, quantile
curve analysis was carried out to identify phases that might serve as generic signals of river
flows. The quantile curve intervals for this instance were based on the work of [11,71–73].
Various flow phases have been developed by many researchers. For example, [71] and [11,72]
categorize it as five and seven, respectively. In this investigation, we followed the quantile
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curve categorization by [11], which is described as very-high-flow (0–5%), high-flow (5–10%),
moist-flow (10–40%), mid-range-flow (40–60%), dry-flow (60–90%), low-flow (90–95%), and
very-low-flow (95–100%). Hence, this study examined how the subbasin spatial scale affected
these seven different categories of “flow phases”. To more accurately estimate flood damage
and water quality, it may be helpful to analyze the high and low flows at the proper spatial
scale for a subbasin.

Of the two alternatives available in SWAT for stream definition, in this study, the
stream network density and subbasin count were varied using the DEM-based stream
definition. After calculating the flow direction and accumulation, a threshold area that
determines the drainage area needed to create a stream’s beginning is identified. The
essential stream area threshold, which is used to establish the characteristics of the stream
network, may be used to determine the size and overall number of created subbasins.
Figure 2 depicts three independent but consecutive study watersheds (2%, 10%, and 20%),
which were utilized to specify the stream network and subbasin configuration to specify a
minimum threshold area. In fact, 2% of the watershed area is very similar to the default
minimum threshold value in ArcSWAT. For each subbasin discretization scenario in the
Abelti, Wabi, and Gecha watersheds, a comparable minimal threshold drainage area that is
necessary to produce a stream’s origin was employed. As a result, this percentage drainage
area is used to construct several subbasins in each of the watershed scenarios, yielding
subbasin subdivision levels of 30, 8, and 4 for the Abelti watershed, 27, 3, and 3 for the
Wabi watershed, and 23, 3 and 3 for the Gecha watershed.
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(Note: A = watershed area).

SWAT allows the user to specify the number of HRUs for each subbasin discretization
scenario by specifying land use, soil type, and slope class thresholds as a percentage of the
entire area of the subbasin or as a specific region. For example, if a subbasin has a land use
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threshold of 10%, it means that the subbasin’s utilization area is less than 10% of the entire
area. The quantity of HRUs inside a given subbasin may change when the discretization
level varies. It is crucial to understand that the catchment’s land use and soil characteristics
may have a significant impact on the curve number parameter (CN2) of the SWAT model.
Therefore, as CN2 is frequently the most sensitive parameter in SWAT modeling studies,
subbasin discretization may also have an impact on its sensitivity [11,29,62]. In this study,
a default threshold value of 20% land use, 10% soil type, and 20% slope was employed for
the HRU definition for each subbasin discretization level.

Using the minimal drainage area necessary to create a stream’s origin as a guide,
Figure 3 depicts how, at each degree of subbasin division, the fractional order subbasin
area varies. The area of the subbasin subdivision level shrinks as the number of subbasins
increases. The outcome of this investigation is compatible with that of the study of [11].
Here, in this study, sequential percent area (2%, 10%, and 20% of the watersheds) is
considered rather than distinct subbasin numbers.
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Figure 3. Variations in subbasin area and its subdivisions within the studied area.

The SWAT model’s comparative effectiveness was evaluated to determine if reductions
in root-mean-square error (RMSE) for recreating the various stages of the actual flow
duration curve occurred when the subbasin discretization level was raised. The frequency
content of the actual and simulated streamflow was compared using the RMSE performance
metric. In their study, [72] asserts that analysis of observed and simulated FDC (flow
duration curve) segments can be done using the RMSE performance metric. The usage
of RMSE in the framework of FDC data analysis is justified by the fact that it is used
to assess the complete water cycle without taking the timing of outflow incidents into
consideration [72].

Using the following equation, one can determine the improved RMSE for the
target subbasin.

MSEIMP
Subi

Qi = [(RMSE Qi
Subi
− RMSEQi

BESTSub)/RMSEQi
Subi

] (7)

where Qi is quantile level i; Subi is subbasin i; RMSEQi
Subi

is the RMSE of subbasin i at Qi,

and RMSEQi
BESTSub is the best subbasin in terms of the RMSE for Qi.

3. Results
3.1. Hydrological Model Performance and Subbasin Discretization

The findings of the sensitivity analysis indicated (Table 1 and Figure 4) that the param-
eters ALPHA BNK, CN2, and GW DELAY were the most significant parameters in terms of
the sensitivity levels in the majority of the discretization of each subbasin, Abelti, Wabi, and
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Gecha, respectively. Furthermore, CN2 is among the three most sensitive parameters in
all the study watersheds. Because the parameter CN2 is crucial in determining how much
runoff is generated from a hydrological response unit, the three watersheds’ streamflow
models’ sensitivity to the parameter was anticipated [29,62].
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Figure 4. Sensitivity rank variation of the SWAT model’s flow parameters for the three subbasins
of Abelti, Wabi, and Gecha, as determined by the t statistic, are shown on the left, center, and
right, respectively.

Streamflow data for Abelti and Wabi (1992–2007) and Gecha (1996–2012) were used to
assess the model’s simulation capabilities. The watershed calibration periods for Abelti,
Wabi, and Gecha are (1992–2002), (1992–2001), and (1996–2009), respectively. Their separate
validation periods were (2003–2007), (2002–2007), and (2010–2012). The values of the objec-
tive function (NSE) in Table 2 show how sensitive the model’s performance corresponds to
the number of subbasin divisions and is used to replicate the observed hydrograph. The
model’s parameters were adjusted for every discretization level of the subbasin in each
watershed to assess how sensitive they were in the model. The Abelti watershed, the Wabi
watershed, and the Gecha watershed all had subbasin subdivisions of 30, 3, and 3, respec-
tively, which led to the best simulation results for the overall observed flow hydrograph.
The coarser subdivision model typically performed poorly in the watersheds compared
to its performance at a finer subbasin spatial scale. The implication of this finding is that
datasets with spatial clarity are more reliable.

Table 2. SWAT model metric valuation over the calibration and validation phases.

Watershed No. of
Subbasins

No. of
HRUs

P-Factor R-Factor NSE

Calibration Validation Calibration Validation Calibration Validation

Abelti
4 36 0.71 0.70 0.85 1.14 0.85 0.74
8 62 0.71 0.72 0.69 0.84 0.88 0.88
30 172 0.82 0.77 0.92 1.16 0.89 0.86

Wabi
3 26 0.79 0.76 0.67 0.90 0.82 0.77
3 26 0.84 0.81 0.73 1.06 0.85 0.82
27 170 0.81 0.79 0.81 0.76 0.84 0.80

Gecha
3 12 0.74 0.78 0.82 0.89 0.73 0.83
3 12 0.76 0.72 0.84 0.90 0.74 0.81
23 80 0.74 0.75 0.88 0.99 0.73 0.82

Note: best values are shown in bold for each subdivision.

3.2. Impacts of Parameter Sampling Distribution on Subbasin Spatial Scale

The SUFI2 simulation employed 500 samples for sensitivity analysis. The first three
most sensitive factors in each watershed’s subbasin spatial level are shown in scatter plots
(Figures 5–7). These examples correspond to well-known features. Figures 5–7 provide



Remote Sens. 2023, 15, 611 11 of 22

dotty plots for the Abelti, Gecha, and Wabi watersheds at each subbasin spatial scale. The
consequences of parameter ALPHA BNK are more noticeable in the Abelti watershed at all
subbasin division stages, whereas GW DELAY and CN2 are more noticeable in the Gecha
and Wabi watersheds, respectively. Additionally, high-density sample areas are shown
on dotty plots with a density distribution. High- and relatively low-parameter sampling
zones are shown by the dark and light blue dotty plots, respectively, while individual
observations are indicated by the yellow symbols. The parameter samples are therefore
somewhat concentrated mostly around the peak value across all watersheds for those
subbasin subdivision levels, as evidenced by the dotty plots.
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Figure 5. Dotty plots of the coefficient of NSE against SWAT parameters (left columns represent the
most sensitive) using SUFI2 based on 500 samples from the Abelti watershed. (Note that # Subbasins
30, 8, and 4 account for 2%, 10%, and 20% of the Abelti watershed area, respectively.).

3.3. Parameter Uncertainty in Hydrological Modeling across Various Subbasin Spatial Scales

The 95PPU was calculated using the SUFI2 approach. Figures 8–10 depict the measured
and well-simulated streamflow patterns, as well as the 95PPU band. The P- and R-factors
served as the model’s performance measures and were used to compute uncertainty. Hence,
in this study, the metrics were determined using the uncertainty results for the Abelti
watershed’s subbasin subdivision scales of 4, 8, and 30, the Gecha watershed’s subbasin
subdivision scales of 3, 3, and 23, and the Wabi watershed’s subbasin subdivision scales
of 3, 3, and 27. After employing the P-to-R-factor ratio (P/R), it was discovered that the
parameter uncertainty results obtained using the SUFI2 approach for the Abelti, Gecha,
and Wabi watersheds performed outstandingly at subbasin partition sizes of 8, 3, and
3, respectively [70]. Out of the whole basin area, the mean subbasin division that yields
the lowest amount of uncertainty in the study is determined to be between 11% and 27%.
The mean subbasin division for the optimal reproduced SWAT model’s simulated flow,
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on the other hand, was determined to be 2% to 10% of the entire drainage system for
the watersheds.
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level of the subbasin segmentations of 4, 8, and 30, respectively, at the Abelti watershed.
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Figure 9. Top-down orientation of observed and best-simulated flows with their 95% confidence
level of the subbasin segmentations of 3, 3, and 23, respectively, at the Gecha watershed.

3.4. Impact of Subbasin Spatial Scales on the Reproduction of Various Flow Phases

The varied hydrograph phases must be accurately replicated for more efficient water
management and planning. Different flow quantiles may be described using the flow
duration curve (FDC). To more precisely determine the appropriate subbasin number of
various views for each hydrograph plot in the study basins, the FDCs were then divided
into seven quantiles. Figure 11 displays, for the Abelti, Wabi, and Gecha watersheds, the
95PPU plots of the best-estimated flows at various subbasin geographical sizes.
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Figure 11. Observed and best-simulated flow for the two extreme (0–5 and 95–100%) flow phases
based on the 95PPU plot and several subbasin spatial scales of the Abelti, Wabi, and Gecha catchments
(top-to-down, respectively). (Note that A = Abelti, G = Gecha, and W = Wabi together with their 2,
10, and 20 as percentages of the total area to obtain different subbasin numbers).
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Performance varied slightly across the board since the simulation used varied subbasin
geographic sizes. The modeling of these different flow phases also exhibits performance
variances in the study case (see Figure 11).

The analysis shows that the absurdly inflated estimates of very-low, low, dry, and
midrange flows were made at the lower subbasin partition scale for the Abelti catchment
scenario. On the other hand, at the upper subbasin divisional levels, the extremely high
flow was underestimated. The remaining high and moist flows, despite their appearing
to be overstated, are actually fairly minor (see Figure 11). The SWAT model performed
poorly in replicating the Abelti watershed’s dry and low flows throughout all subbasin
spatial scales, as seen in Figure 11. The simulated flow variation, on the other hand, was
extremely close to the observations, and it reproduced the moist, high, and very-high flows
with good precision. Apart from the very high flows, the Abelti watershed SWAT model
performance was found to reflect almost every flow regime across subbasin subdivisions
8 and 30. The findings could be explained by CN2’s low and high responsiveness at coarser
and finer subbasin levels, respectively, because it has been demonstrated that CN2 has a
considerable influence on the SWAT model [74].

Figure 12 depicts the improvements in RMSE for modeling the various flow phases in
the analyzed watersheds over the periods of calibration and validation. The calibration
phase had average RMSE advancements of 58%, 68%, and 63%, whereas its validation
period showed average RMSE improvements of 56%, 71%, and 63%, respectively, at the
Abelti, Gecha, and Wabi catchments’ different flow phases by using an appropriate subbasin
geographic level.

Remote Sens. 2023, 15, x FOR PEER REVIEW 16 of 22 
 

 

 

Figure 12. Variations in the improved RMSE (%) at various flow phases for calibration and valida-

tion conditions (top-down orientation Abelti, Gecha and Wabi watersheds). Note: A = Abelti, G = 

Gecha, and W = Wabi watersheds 2, 10 and 20 = Percentage of total area for each watershed to obtain 

various subbasin divisions VL, L, D, MR, M, H, and VH represent very low, low, dry, midrange, 

moist, high, and very high, respectively. 

4. Discussion 

This study examines the impact of subbasin spatial scale on the hydrological model 

prediction uncertainty of exceptional stream flows. Thus, for the results of a specific basin 

to be valid, a hydrological model must operate successfully in line with the necessary sta-

tistical criteria. 

A good estimate and knowledge of the behavior of the basin’s many runoff compo-

nents are just as critical as a good overall model. In general, regardless of the degree of 

spatial discretization, the SWAT model captures the hydrological processes of the re-

search basin utilizing the output of simulated hydrographs and obtained goodness-of-fit 

values [75]. However, the spatial discretization of subbasins is critical in recreating vari-

ous simulated flow phases for the different quantile flows. 

Similar to the work of [76], our results demonstrate that catchment size has no dis-

cernible influence on the sensitivity of a number of factors, such as CN2 and  

ALPHA_BNK. Another study, however, discovered that CN2 affects subbasin discretiza-

tion, demonstrating that when subbasin discretization rises, CN2’s sensitivity rank also 

rises [11]. It is true that the classification underlying soil and land use usage for every 

subbasin may vary when the subbasin subdivision level changes, which may therefore 

have an impact on CN2. The outcome matches the results of [11,77], who both concluded 

that CN2 is a crucial variable affecting hydrological simulations in all model applications. 

The largest source of uncertainty in streamflow simulations, according to some studies, 

was CN2 [78,79]. The fact that the relevance of the SWAT model parameters changed with 

Figure 12. Variations in the improved RMSE (%) at various flow phases for calibration and validation
conditions (top-down orientation Abelti, Gecha and Wabi watersheds). Note: A = Abelti, G = Gecha,
and W = Wabi watersheds 2, 10 and 20 = Percentage of total area for each watershed to obtain various
subbasin divisions VL, L, D, MR, M, H, and VH represent very low, low, dry, midrange, moist, high,
and very high, respectively.



Remote Sens. 2023, 15, 611 16 of 22

4. Discussion

This study examines the impact of subbasin spatial scale on the hydrological model
prediction uncertainty of exceptional stream flows. Thus, for the results of a specific basin
to be valid, a hydrological model must operate successfully in line with the necessary
statistical criteria.

A good estimate and knowledge of the behavior of the basin’s many runoff com-
ponents are just as critical as a good overall model. In general, regardless of the degree
of spatial discretization, the SWAT model captures the hydrological processes of the re-
search basin utilizing the output of simulated hydrographs and obtained goodness-of-fit
values [75]. However, the spatial discretization of subbasins is critical in recreating various
simulated flow phases for the different quantile flows.

Similar to the work of [76], our results demonstrate that catchment size has no dis-
cernible influence on the sensitivity of a number of factors, such as CN2 and ALPHA_BNK.
Another study, however, discovered that CN2 affects subbasin discretization, demonstrat-
ing that when subbasin discretization rises, CN2’s sensitivity rank also rises [11]. It is true
that the classification underlying soil and land use usage for every subbasin may vary
when the subbasin subdivision level changes, which may therefore have an impact on
CN2. The outcome matches the results of [11,77], who both concluded that CN2 is a crucial
variable affecting hydrological simulations in all model applications. The largest source of
uncertainty in streamflow simulations, according to some studies, was CN2 [78,79]. The fact
that the relevance of the SWAT model parameters changed with the number of subbasins
demonstrated the influence of subbasin partitioning on parameter responsiveness.

These results are in line with those reported by [24,80], who discovered that increasing
the amount of subbasin discretization boosted simulation accuracy. The precision of the
model plateaus at the subdivision level of the subbasin correlates to the highest accuracy.
The 30 (Abelti), 3 (Wabi), and 3 (Gecha) subbasin subdivision schemes accurately reflect the
spatial variations in spatio-climatic conditions, which might provide an explanation for the
performance variance as being linked to CN2’s sensitivity to the subbasin spatial scale. The
overall flow domain simulation experiments for each level of subbasin segmentation were
good, as stated by [81], with an NSE value above 0.65.

It is crucial to bear in mind that when the NSE value is more than 0.5, the scores of
the flow simulation of the hydrological model are acceptable [81]. Figures 5–7 show that
the NSE values for the majority of sampling locations in the study watersheds were more
than 0.5. Contrary to Figure 7, which displays all sample locations in the Wabi watershed
with NSE values above 0.5, the scatter diagrams for the Abelti and Gecha watersheds also
include some sampling frequencies with NSE values less than 0.5.

Information on measured flow and precipitation data may be the main issue in the
Abelti and Gecha basins, respectively. Data on rainfall from the watershed’s insufficient
geographic coverage might possibly be a factor. Aside from the fact that the parameter
sampling in all three catchments was insufficient, the results demonstrate that larger
sampling sets would be better for locations with limited data to increase the replicability of
the sample points.

Our findings show that subbasin geographic size has little influence on the evalu-
ation of uncertainty in hydrological model parameters, with the fairly coarse subbasin
geographical size having the lowest uncertainty compared to the smaller subbasin division
levels. It thus demonstrates how combining meteorological and physical variables at a
finer geographical dimension might help to reduce uncertainty in hydrological model
parameters related to watershed data quality. The conclusions of this study agree with
those of [11]. The main challenge in the Abelti and Gecha basins may be connected to
the recorded flow and precipitation data. Precipitation data from the watershed’s limited
geographic coverage might be a concern. Aside from the fact that parameter sampling
was insufficient in all three catchments, the results demonstrate that larger sampling sets
would be better for areas with low data to increase the reliability and accuracy of the
sample points.
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The 95PPU contained more than 70% of the observations in the lower subbasin subdi-
vision levels 4 and 8 of the Abelti watershed, as well as the entire subbasin division units
in the Gecha and Wabi watersheds. However, as the quantity of drainage basins grew, so
did the relative thickness of the 95PPU. The fact that all the P- and R-factor values were
within acceptable ranges suggests that all the parameter uncertainties were maintained
within acceptable limitations. As a result, the 95PPU bracketed the lion’s share of the
observed values, confirming SWAT’s ability to model flow dynamics within the watershed
under discussion. It was discovered that the Abelti and Gecha watersheds have wider
relative 95PPUs than the Wabi watershed. This may be because the precision with which
the injected values with the watersheds of Abelti and Gecha strongly influence the quality
of hydrological model simulation, creating a high degree of uncertainty in the results. The
Abelti and Gecha watersheds have few and erratically placed weather gauging stations.

Despite being recreated with more accuracy at smaller subdivisions, the best-simulated
low flow response on the larger subbasin spatial scale deviated significantly from the real
values (Figures 8 and 10). The Gecha watershed’s data quality may be a contributing factor
in the absence of solid evidence for spatial diversity impacts (Figure 9).

Replicating very low and low flows across the Wabi watershed fared better at smaller
to intermediate subbasin sizes (subbasin divisions of 3 and 27). However, at a modest to
wider spatial scale, the SWAT output recreated the features of the very high, high, moist,
and dry observed flows quite consistently. The model effectively duplicated the bulk of the
flows on a medium spatial scale.

In certain circumstances, the mid-range and dry flow exceed the expected flow at
smaller spatial scales. However, other components present throughout the model simu-
lation process might be the source of the variance. The Gecha watershed’s very low, low,
dry, and midrange flows might be more properly approximated at a reduced geographical
scale. However, the model’s output at a broader geographical scale accurately represented
the response variables of very high, high, and moist observed flows. As a consequence, the
results show that improved replication of the low flow unique phases should be attainable
with a chance of 40–100% utilizing lower geographical scales, which increase the number
of drainage basins identified during the definition of the SWAT watershed. This conclusion
is consistent with the findings of comparable studies, including (e.g., [11]). As a result, the
findings of this study may be beneficial for distributed model water quality and quantity
modeling at an appropriate subbasin spatial scale.

Figure 11 clearly shows that the 95PPU comparative ranges for very high flows
are narrower than those for low flows. Given that the majority of hydrological models
are designed to replicate peak flows and that the NSE performance metric was used to
fine-tune the model’s parameters, which obviously favor the replication of high flows,
this conclusion is unsurprising. The 95PPU covered the observations in the high-flow
region with a coverage of more than 100% compared to the flow ranges. It is obvious
that the strategy employed in this work, which comprises looking at the correct subbasin
varied sizes to every flow stage of the FDC, appears to be well adapted to decreasing
the discrepancy between hydrological model findings and observations. More study is
suggested to increase the precision of the low-flow hydrological model parameters.

The contrast in the spatial scale of the subbasin is noticeable when compared to the
reproduction of the individual flow phases throughout the whole recorded hydrograph.
With more subbasin subdivisions, there is less variation in the produced outcomes, and the
conclusions may be more consistent. Figure 11 depicts in great detail how the spatial pre-
sentations of the model’s physical and meteorological inputs, as well as the circumstances
for watershed management, all have an effect on the disparities in the modeling output
processes. The simulation’s inaccuracy was nearly twice as high in the Abelti and Gecha
watersheds, as it was notably in low flow regimes in the Wabi watershed.

The improvement of RMSE for investigating the optimal subbasin spatial scale through-
out the calibration period was 81% when simulating mid-range flow in the Abelti watershed,
86% when modeling dry flow in the Gecha watershed, and 27% when simulating very low
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flow in the Wabi watershed. During the validation period, the Abelti watershed’s very
low flow was recreated with a 40% accuracy gain, the Gecha watershed’s dry flow with an
84% accuracy gain, and the Wabi watershed’s dry flow with an 81% accuracy gain. This is
obvious from the approach of the study, which was demonstrated to be an effective strategy
for minimizing SWAT simulation error while simulating low flows.

5. Conclusions

The primary sources of error in hydrologic simulation are closely associated with
physical data input, model parameters, and the structure of the model. In this work,
SUFI2 was applied to characterize parameter uncertainty using SWAT modeling. Moreover,
the subbasin spatial scale effects on the SWAT modeling prediction uncertainty were
investigated. To replicate various flow phases of the FDC for the Abelti, Gecha, and Wabi
watersheds in the Omo-Gibe River Basin, Ethiopia, the uncertainty of the hydrological
modeling parameter was assessed. The Wabi watershed seems to have a reasonable spatial
inclusiveness of meteorological and physical data input, in contrast to the Abelti and
Gecha watersheds, which have rather poor spatial representations of these inputs to the
hydrological model. Thus, this study also considered how the precision of the data input
and the conditions for watershed management affect the variability in the uncertainty in
the hydrological modeling parameters. The analysis revealed that the subbasin spatial scale
substantially affected the reproduction of various flow phases but only slightly affected the
overall flow simulations.

The 95PPU covered the majority of the observed hydrograph with the coarser geo-
graphic scale of the subbasin. Moreover, the coarser subbasin geographic size resulted
in a smaller 95PPU proportional width. The key findings of the study are summarized
as follows: (1) for the Abelti, Gecha, and Wabi watersheds, SWAT was able to reproduce
the observed hydrograph with more than 85%, 73%, and 82% accuracy in terms of NSE,
respectively; (2) the SWAT model performed much better in recreating moist, high, and
very-high flows than it did in replicating dry, low, and very-low flows in the watersheds.
This out-come is in line with previous studies [e.g., 11]. Moreover, with low flows com-
pared to high flows, the relative uncertainty range widens; (3) The establishment of proper
subbasin spatial scale considerably improved hydrologic modeling accuracy in mimicking
the FDC’s various flow phases. As a result, in order to better understand the severity
and frequency of these diverse phases of flow behavior, a variety of relevant subbasin
spatial scales may be required (e.g., for flood damage estimates and water quality models);
(4) in the Abelti, Gecha, and Wabi watersheds, the mean RMSE improvements in subbasin
spatial scales for high flows varied by 79%, 91%, and 98%, respectively, whereas those
for low flows varied similarly by 29%, 42%, and 32%. Consequently, a smaller subbasin
spatial scale (towards to distributed model) may better replicate low flows, while a larger
subbasin spatial scale (towards to lumped model) enhances high flow replication precision.
The subbasin spatial scales used in this study may have adequately captured the spatial
variability in the physical and climatic aspects of the watersheds. It is critical to remember
that the physical and climatic parameters of the watershed analyzed may change spatially,
which may have an impact on the conclusions made. Hence, further investigation on
similar subbasin spatial scales across other watersheds is needed.

Given the nature of the study, combining morphological and meteorological inputs at
a larger spatial scale within a subbasin can often lower the uncertainty of the hydrological
model parameters. However, compared to the larger subbasin spatial scales, the simu-
lation’s best results were produced at the smaller subbasin spatial scale and were more
consistent with the data that had actually been observed. Most of the observed high flows
were contained by the 95PPU, but a large percentage of the recorded low flows was not.
Therefore, more work must be put into lowering the parameter uncertainty in low-flow
hydrologic modeling.

Last but not least, the research significantly increased the hydrological model’s accu-
racy in simulating the different flow phases by using a reasonable subbasin spatial scale;
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for the Abelti, Gecha, and Wabi watersheds, the overall average simulation errors were
decreased by roughly 82, 79, and 77%, respectively. Therefore, the suggested method
could help us better comprehend the frequency and size of the various flow quantiles for a
reasonable assessment of high flows (for example, reducing flood risks) and low flows (for
example, modeling water quality).
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