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Abstract: The estimation of physicochemical crop parameters based on spectral indices depend
strongly on planting year, cultivar, and growing period. Therefore, the efficient monitoring of crop
growth and nitrogen (N) fertilizer treatment requires that we develop a generic spectral index that
allows the rapid assessment of the plant nitrogen content (PNC) of crops and that is independent of
year, cultivar, and growing period. Thus, to obtain the best indicator for estimating potato PNC, herein,
we provide an in-depth comparative analysis of the use of hyperspectral single-band reflectance
and two- and three-band spectral indices of arbitrary bands for estimating potato PNC over several
years and for different cultivars and growth periods. Potato field trials under different N treatments
were conducted over the years 2018 and 2019. An unmanned aerial vehicle hyperspectral remote
sensing platform was used to acquire canopy reflectance data at several key potato growth periods,
and six spectral transformation techniques and 12 arbitrary band combinations were constructed.
From these, optimal single-, two-, and three-dimensional spectral indices were selected. Finally, each
optimal spectral index was used to estimate potato PNC under different scenarios and the results
were systematically evaluated based on a correlation analysis and univariate linear modeling. The
results show that, although the spectral transformation technique strengthens the correlation between
spectral information and potato PNC, the PNC estimation model constructed based on single-band
reflectance is of limited accuracy and stability. In contrast, the optimal three-band spectral index TBI
5 (530,734,514) performs optimally, with coefficients of determination of 0.67 and 0.65, root mean
square errors of 0.39 and 0.39, and normalized root mean square errors of 12.64% and 12.17% for the
calibration and validation datasets, respectively. The results thus provide a reference for the rapid
and efficient monitoring of PNC in large potato fields.

Keywords: potato; plant nitrogen content; unmanned aerial vehicle; hyperspectral; spectral indices

1. Introduction

Studies have shown that yields in agricultural systems must increase 3% annually to
meet the global demand for food due to the increasing population and decreasing amount
of arable land [1,2]. However, the most widely grown crops globally (rice, wheat, and
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maize) are constrained by technology and rising costs and have limited room to continue
increasing yields. In contrast, potato is a high yield and nutritional food crop rich and
is gradually gaining popularity in more than 160 countries and regions due to its cold
tolerance, drought resistance, and environmental adaptability. As a result, it has become the
fourth largest food crop globally, and its yield and quality have become vital for ensuring
world food security [3].

Nitrogen (N) is a critical component of structural molecules, such as chlorophyll,
nucleic acids, and proteins, and is essential for potato quality and yield [4]. Plant nitrogen
content (PNC) is an important indicator for assessing the N nutritional status of crops, and
obtaining PNC information quickly and non-destructively is important for assessing crop
N surplus or deficit and growth status, which aids fertilization management and decision-
making in precision agriculture [5,6]. Traditional PNC measurement methods tend to
combine manual sampling and laboratory chemical analysis, which is accurate and reliable
but time-consuming and thus cannot meet the needs of contemporary precision agriculture
for high-throughput, real-time monitoring of crop growth conditions [7]. Therefore, it is
urgent to develop new platforms and technologies that allow for the low cost, efficient, and
robust acquisition of crop phenotype status.

Remote sensing technology can rapidly capture the radiation from crop canopies over
large distance scales and without contact. These data can then be analyzed and processed
to obtain high-throughput phenotypic information on the crop canopy, which in turn
provides technical support for the rapid and non-destructive monitoring of crop physical
and chemical parameters [8,9]. Unmanned aerial vehicle (UAV) remote sensing technology
provides high spatial and temporal resolution remote sensing images of crops over all
growth periods at a lower cost and more conveniently and efficiently than is possible with
satellite or ground remote sensing. This technique is thus more conducive to the real-time
monitoring of crop growth conditions and provides a reference for field management and
scientific decision-making in the field [10,11].

Vegetation indices (VIs) are indicators obtained by the mathematical transformation of
two or more specific crop canopy reflectance bands that are simple in form and efficient in
the calculation. VIs have thus become an essential tool for monitoring the N nutrient status
of crops [12–17]. The results of existing studies have indicated that, although it is feasible to
monitor the N nutrient status of crops based on VIs, some limitations remain, mainly in the
inconsistency of N monitoring models constructed based on VIs from different periods due
to the influence of seasons, growth periods, cultivars, and growth environment, preventing
the generalization of the models [18–20]. These factors make it difficult to use optical
remote sensing technology to monitor the PNC status of crops in multiple growth periods.

Improved computer performance and image processing technology have provided
opportunities to solve these problems. For example, some researchers have introduced
new variables, such as morphological parameters (e.g., plant height and cover) [21,22]
and texture [23], to monitor the PNC status of crops over multiple growth periods. Si-
multaneously, sophisticated machine learning methods (e.g., neural networks, random
forests, partial least squares support vector machines, etc.) [10,24,25] have also been used
to construct PNC estimation models. These measures have achieved some results, but they
also introduce problems. On the one hand, the increased technical threshold makes the
use of this technology difficult for agricultural workers who are not specialized in remote
sensing. On the other hand, the increased model complexity and production operation
cost are not conducive to the development and integration of real-time crop PNC-detection
devices, which limits the widespread use of these models.

The development of hyperspectral technology has made it possible to obtain high-
throughput spectral information on crop canopies [26,27]. Some studies now focus on
finding suitable spectral indices rather than using complex methods to improve the ac-
curacy of VIs for estimating PNC in crops with multiple growth periods. For example,
the double peak canopy nitrogen (N) index developed by Chen et al. [5] minimizes the
interference of the leaf area index to accurately estimate the PNC of winter wheat and maize.
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Schlemmer et al. [28] showed that the MERIS terrestrial chlorophyll index provides more
accurate estimates of canopy N and chlorophyll content in maize than the conventional VIs.
Feng et al. [13] improved leaf N content by developing a water-resistance N index and
widened the applicability of the model used to estimate leaf N content under different
climatic conditions. Wang et al. [29] showed that combining wavelengths at 924, 703, and
423 nm attenuates the saturation of conventional VIs and enhances the stability and ac-
curacy of the model used to estimate leaf N content. These studies suggest that high
dimensional spectral indices, such as three-band spectral indices (TBIs), have a significant
potential for estimating PNC over multiple crop growth periods [30]. However, to date,
few studies have compared different dimensional spectral indices for estimating N-nutrient
status over multiple growth periods. Moreover, unlike crops, such as wheat and maize,
potato continuously transfers N to the tuber in all growth periods. Thus, it remains un-
known whether existing remote sensing monitoring methods can be applied to potato.
Therefore, it is essential to systematically investigate the use of spectral indices of differing
dimensions for estimating PNC over multiple potato growth periods.

Thus, this study uses a UAV as a remote sensing platform to acquire hyperspectral
images of potato at the bud emergence (S1), tuber formation (S2), tuber growth (S3), and
starch accumulation (S4) periods over the years 2018 and 2019. We focus on single-, two-,
and three-dimensional spectral indices: hyperspectral single-band reflectance, two- and
three-band spectral indices with arbitrary band combinations, respectively, and systematically
assess the accuracy of PNC estimates over multiple potato growth periods to determine the
optimal indicators for monitoring the N-nutritional status of potato. The first goal of this
study is to systematically evaluate the performance of single-, two-, and three-dimensional
spectral indices for estimating potato PNC based on spectral transformation techniques and
various combinations of optical bands. A second goal is to investigate the optimal spectral
indices and models for estimating PNC of potato over different planting years, cultivars, and
growth periods. The results of the study should improve the accuracy of PNC estimates of
potato over multiple growth periods and provide a reference for developing and integrating
PNC-detection devices for the accurate management of N in agricultural fields.

2. Materials and Methods
2.1. Experiment Design

Potato trials were conducted from April to July 2018 and 2019 at the National Precise
Agriculture Research and Demonstration Base in Xiaotangshan Town, Changping District,
Beijing, China (40◦10′34′′N, 116◦26′39′′E). The site has an average altitude of 36 m, an
average annual rainfall of 644 mm, and a yearly average temperature of 11.8 ◦C. The
climate is typically warm–temperate, semi-humid, continental monsoon. In the 2018 potato
field trial, Zhongshu 5 (Z5) and Zhongshu 3 (Z3) were grown at different densities (T plots),
and Zhongshu 195 (Z195) and Z3 were grown at different nitrogen fertilizers (N plots).
The T Plots were treated with three densities: 63,000 plants/hm2 (T0), 72,000 plants/hm2

(T1), and 81,000 plants/hm2 (T2), with three replications of each treatment for a total
of 18 plots. The N plots were treated with four nitrogen levels: 0 kg/hm2 urea (N0),
163.05 kg/hm2 urea (N1), 326.10 kg/hm2 urea (N2, normal treatment, 152.29 kg pure N),
and 489.15 kg/hm2 urea (N3), with three replications of each treatment for a total of 24 plots.
In the 2019 potato field trial, Z5 and Z3 were planted at different densities and with different
nitrogen and potassium fertilizers (K plots). The T plots were treated with three density
levels: 60,000 plants/hm2 (T3), 72,000 plants/hm2 (T4), and 84,000 plants/hm2 (T5), with
three replications of each treatment for a total of 18 plots. The N plots were treated with four
nitrogen levels: 0 kg/hm2 urea (N4), 244.65 kg/hm2 urea (N5), 489.15 kg/hm2 urea (N6,
normal treatment, 228.43 kg pure N), and 733.50 kg/hm2 urea (N7), with three replications
of each treatment for a total of 24 plots. K plots were treated with three potassium fertilizer
treatments: 0 kg/hm2 potassium fertilizer (K0), 970.50 kg/hm2 potassium fertilizer (K1, the
T plots and N plots received the K1 treatment), and 1941 kg/hm2 potassium fertilizer (K2),
with three replications of each treatment for a total of six plots. In 2018 and 2019, we used
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42 and 48 plots, respectively, and the area of each plot was 32.5 m2. Potato was grown by
mulching, and field management included weeding, watering, and spraying. The location
of the trial field and the trial profile are shown in Figure 1.
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Figure 1. Location of potato field and experimental design. Note: R is an abbreviation for Replication.

2.2. UAV Hyperspectral Data Acquisition and Processing

This study used the DJI M600 UAV with a UHD 185 imaging spectrometer from Cubert,
Germany as the remote sensing platform to collect hyperspectral data during the periods
of the potato bud emergence (15 May 2018, 13 May 2019), tuber formation (29 May 2018, 28
May 2019), tuber growth (5 June 2018, 10 June 2019), and starch accumulation (19 June 2018,
20 June 2019). The UHD 185 is a full-frame, real-time imaging airborne high speed imaging
spectrometer with a spectral range of 450–950 nm, a sampling spectral interval of 4 nm, and
a spectral resolution of 8 nm. It measures 195 mm × 67 mm × 60 mm and weighs 470 g.
All UAV operations were conducted under windless, cloudless, and light stable conditions
from 11:30 am to 1:30 pm local time. The UAV flight altitude was 20 m and its flight speed
was about 1.5 m/s. To ensure the quality of the UAV hyperspectral images, the sampling
interval of the hyperspectral sensor was set to 1 s, and the overlap of heading and side
direction during the flight were set to 85% and 93%, respectively, which translates into a
ground resolution of the acquired images of approximately 1.3 cm. Dark-current collection
and whiteboard calibration were performed prior to collecting UAV hyperspectral data to
ensure accurate reflectance data from the potato canopy at each growth period.

The UAV hyperspectral data were processed by geometric correction, image stitching,
image fusion, and spectral data extraction. First, the surface reflectance was calibrated by
making radiometric measurements of the digital values of the hyperspectral images based
on black-and-white panel data. Second, the grayscale images were stitched together using
the motion structure algorithm as implemented in the Agisoft Photoscan software (Agisoft,
LLC, St. Petersburg, Russia). The hyperspectral cubes and grayscale images were then
fused together by using the Cubert-Pilot software to obtain the complete hyperspectral
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images. Finally, the average hyperspectral reflectance of the region of interest was extracted
from the vector data of each potato test plot using the ENVI 5.3 software.

2.3. Acquisition of Potato PNC Data

After completing the UAV flights, three potato plants representative of the overall
plot growth were destructively sampled from each plot and rapidly transported to the
laboratory in plastic bags to obtain ground truth PNC data. The samples were washed
with running water, and the stems and leaves were separated and killed at 105 ◦C for 0.5 h
and then dried at 80 ◦C to a constant weight. The dry matter mass of the stems and leaves
was measured separately by using a high precision balance (0.0001 g). Finally, the nitrogen
content of the stems and leaves was measured independently by using a Kjeldahl nitrogen
tester, and the PNC data for each potato plot were calculated as follows:

PNC =
LNC × LDM + SNC × SDM

LDM + SDM
(1)

where LNC and SNC are the leaf N content and stem N content, respectively, and LDM
and SDM are the leaf dry matter and stem dry matter, respectively.

2.4. Calculation of Spectral Index

Currently, most VIs used to monitor crop N status fall into three categories: normalized
difference vegetation index, difference vegetation index, and ratio vegetation index. In
addition, by adding a constant, soil-adjusted vegetation index is often used to estimate
crop N nutrient status. VIs in the form of optimal vegetation indices and chlorophyll
indices are also closely related to crop N status. We therefore selected six two-band spectral
indices, namely normalized difference spectral index (NDSI), difference spectral index
(DSI), ratio spectral index (RSI), soil-adjusted spectral index (SASI, L = 0.5), chlorophyll
spectral index (CSI), and optimal spectral index (OSI), and used the “lambda-by-lambda”
band-optimization algorithm to determine the optimal band combinations for estimating
PNC over multiple potato growth periods. Considering the superior performance of TBIs
for monitoring the physicochemical parameters of crops, six TBIs were constructed in this
study. The optimal band combinations were also screened using the lambda-by-lambda
band-optimization algorithm to investigate the use of TBIs for monitoring PNC in potato
over multiple growth periods. This method produced the “optimal spectral indices.” Table 1
lists the two- and three-band spectral indices constructed in this study.

Table 1. Formulas for selected two- and three-band spectral indices used in this study.

Type Spectral Index Formula Reference

Two-band
spectral indices

NDSI (Rλ1 − Rλ2)/(Rλ1 + Rλ2) [31]
RSI Rλ1/Rλ2 [32]
DSI Rλ1 − Rλ2 [33]

SASI (1 + L)(Rλ1 − Rλ2)/(Rλ1 + Rλ2 + L) [34]
CSI (Rλ1 − Rλ2)/Rλ1 [35]
OSI (1 + 0.45)(2Rλ2 + 1)/(Rλ1 + 0.45) [36]

Three-band
spectral indices

TBI 1 (Rλ1 − Rλ2)/(Rλ2 + Rλ3) [37]
TBI 2 (Rλ1 − 1.8Rλ2)/(Rλ3 − 1.8Rλ2) [38]
TBI 3 Rλ1/(Rλ2Rλ3) [12]
TBI 4 Rλ1/(Rλ2 + Rλ3) [30]
TBI 5 (Rλ1 − Rλ2)/(Rλ1 + Rλ2 − 2Rλ3) [39]
TBI 6 (Rλ1 − Rλ2 + 2Rλ3)/(Rλ1 + Rλ2 + 2Rλ3) [29]

2.5. Model Construction and Validation

For this study, we collected a total of 360 sets of hyperspectral and PNC data over
four potato growth periods in 2018 and 2019. Data from replicates 2 and 3 (240 sets) were
used to construct a model to estimate potato PNC. Data from replicate 1 (120 sets) were used
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to verify the accuracy and stability of the model. Finally, the coefficient of determination
(R2), the root mean square error (RMSE), and the normalized root mean square error
(NRMSE) were calculated to quantitatively evaluate the accuracy and stability of the
constructed estimation model.

3. Analysis of Results
3.1. PNC of Potato for Different Growth Periods and Years

Table 2 lists the mean, standard deviation (SD), and coefficient of variation (CV) of
the PNC used for modeling and validation for different years and different potato growth
periods. The PNC data obtained for each potato growth period have a significant coefficient
of variation. In most growth periods, the standard deviation and coefficient of variation of
the modeling and validation datasets follow similar trends, indicating that the data may be
used for further analysis.

Table 2. Descriptive statistics of potato PNC for calibration and validation datasets.

Year Growth
Period

Calibration Validation

Range Mean SD CV (%) Range Mean SD CV (%)

2018

S1 2.70–4.59 3.70 0.50 13.50 3.06–4.57 3.66 0.47 14.77
S2 2.32–4.03 3.11 0.50 15.92 2.37–3.46 2.98 0.34 17.80
S3 2.12–3.98 3.20 0.51 16.01 2.02–3.63 3.00 0.45 13.43
S4 1.76–3.79 2.62 0.44 16.97 1.90–3.57 2.79 0.44 14.41

2019

S1 2.05–5.15 3.65 0.81 22.18 2.82–5.08 3.91 0.76 19.69
S2 2.09–4.50 3.15 0.61 19.39 2.47–4.16 3.33 0.59 18.73
S3 1.61–4.00 2.67 0.60 22.54 1.96–3.54 2.75 0.52 22.47
S4 1.86–3.74 2.82 0.46 16.41 2.21–3.70 3.11 0.40 16.99

3.2. Correlation Analysis between PNC and Single-, Two-, and Three-Dimensional Spectral Indices
3.2.1. Correlation between Hyperspectral Single-Band Reflectance and PNC

Five spectral transformation techniques, namely the standard normal variate transform
(SNVR) [40], the first derivative (FDR), the second derivative (SDR) [41], the logarithm
of the reciprocal of the spectra, (Log(1/R)) [42], and continuous removal (CR) [43], were
applied to the hyperspectral original reflectance (OR) to explore in depth the connection
between hyperspectral single-band reflectance and PNC. The results of the analysis of the
correlation between the six forms of single-band reflectance and potato PNC over multiple
growth periods (Figure 2) show that FDR, SDR, and CR correlate more with PNC than with
OR. In contrast, Log(1/R) and SNVR have the opposite or the same correlation as OR.

Table 3 shows the sensitive band intervals of different types of single-band reflectance
with PNC and the locations of the most closely linked wavelengths. The spectral transfor-
mation technique can further exploit spectral information to enhance the linkage with PNC,
and the wavelengths most closely correlated with PNC for different single-band reflectance
are in the red- or green-edge regions.

3.2.2. Association between Two-Band Spectral Indices and PNC

Based on the hyperspectral OR data, the lambda-by-lambda band-optimization algo-
rithm was used to construct the six forms of the two-band spectral indices listed in Table 1.
The contour maps of their coefficients of correlation with potato PNC are plotted in Figure 3.
The results show that the correlation of OSI with PNC differs from that of other spectral
indices. The spectral combinations of the various spectral indices that correlate optimally
with PNC are NDSI (618,490), RSI (618,490), DSI (578,494), SASI (586,494), CSI (618,494),
and OSI (586,490), corresponding to correlation coefficients of 0.62, 0.61, 0.74, 0.73, 0.62, and
−0.72, respectively. The correlation of the six different forms of two-band spectral indices
screened by PNC over multiple potato-growth periods is significantly greater than that of
the hyperspectral single-band reflectance.
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Figure 2. Relationship between PNC and single-band reflectance: (a) original reflectance,
(b) the first derivative, (c) the logarithm of the reciprocal of the spectra, (d) the standard normal
variate transform, (e) the second derivative, and (f) continuous removal. The dashed lines indicate
the critical correlation coefficient at α = 0.01.

Table 3. Statistics of bands sensitive to potato PNC and with single-band reflectance.

Reflectance
Type

Sensitive Band
Range (nm)

Optimal
Wavelength (nm)

Optimal
Correlation Coefficient

OR 534–646, 718–950 734 0.30

FDR 486–562, 638–670,
706–800,842–942 542 −0.57

Log(1/R) 534–646, 718–950 738 −0.31
SNVR 534–646, 718–950 738 0.30

SDR 630–646, 658–682,
694–742, 766–778 706 0.56

CR 506–826, 838–866 554 −0.53

3.2.3. Correlation between Three-Band Spectral Indices and PNC

Based on the hyperspectral OR data, the six TBIs listed in Table 1 were constructed
using the lambda-by-lambda band-optimization algorithm, and the contour maps of their
correlation coefficients with potato PNC are plotted in Figure 4. These results show that
the six different TBIs most closely correlated with potato PNC over the multiple growth
periods are TBI1 (562,494,750), TBI2 (586,666,550), TBI3 (462,574,562), TBI4 (734,514,534),
TBI5 (530,734,514), and TBI6 (510,590,514), corresponding to correlation coefficients of−0.76,
−0.74, 0.70, −0.81, −0.82, and −0.62, respectively. The TBIs correlate more closely with the
PNC of multiple potato-growth periods than the hyperspectral single-band reflectance and
two-band spectral indices.

3.3. Estimation of Potato PNC Based on Single-, Two-, and Three-Dimensional Spectral Indices

Table 4 shows the band composition and correlation coefficients of the two- and
three-band spectral indices that correlate most strongly with PNC over the multiple potato-
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growth periods. Tables 3 and 4 show that FDR542, DSI (578,494), and TBI5 (530,734,514)
correlate the most strongly with potato PNC.
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Figure 3. Correlation coefficient between PNC and two-band spectral indices. (a) normalized
difference spectral index, (b) ratio spectral index, (c) difference spectral index, (d) soil-adjusted
spectral index, (e) chlorophyll spectral index, and (f) optimal spectral index.

Table 4. Sensitive wavelength of the three spectral indices.

Types Spectral
Index Rλ1 (nm) Rλ2 (nm) Rλ3 (nm) Correlation

Coefficient

Two-band
spectral
indices

NDSI 618 490 0.62
RSI 618 490 0.61
DSI 578 494 0.74

SASI 586 494 0.73
CSI 618 494 0.62
OSI 586 490 −0.72

Three-band
spectral
indices

TBI1 562 494 750 −0.76
TBI2 586 666 550 −0.74
TBI3 462 574 562 0.70
TBI4 734 514 534 −0.81
TBI5 530 734 514 −0.82
TBI6 510 590 514 −0.62
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Figure 4. Correlation coefficient between PNC and three-band spectral indices. (a–f) three-band
spectral index 1- three-band spectral index 6.

Potato PNC estimation models were constructed using FDR542, DSI (578,494), and
TBI5 (530,734, 514) as the optimal spectral indices to evaluate their suitability for estimating
potato PNC over multiple growth periods. As shown in Figure 5, the PNC estimation model
based on hyperspectral optimal single-band reflectance overestimates PNC at low-N levels
and underestimates PNC at high-N levels when considering potato PNC data from different
years, cultivars, and growth periods. Thus, the estimations are not sufficiently accurate. In
contrast, the optimal two- and three-band hyperspectral indices correlate significantly more
strongly with potato PNC than the hyperspectral single-band reflectance. In particular,
the optimal three-band spectral index TBI5 (530,734,514) is the most strongly correlated
with the PNC over multiple potato growth periods (r = −0.82). This PNC estimation model
offers optimal accuracy and stability, with modeling and validation R2 values of 0.67 and
0.65, RMSE values of 0.39 and 0.39, and NRMSE values of 12.64% and 12.17%, respectively,
and the underestimation and overestimation of potato PNC were significantly improved.

3.4. Using Spectral Indices to Estimate PNC: Effect of Year, Cultivar, and Growth Period

Numerous studies show that planting year, cultivar, and growth period significantly
affect the suitability of spectral indices for estimating crop N nutrient status. Therefore,
to more comprehensively evaluate the suitability of the three optimal spectral indices for
estimating potato PNC, we compare and analyze the use of FDR542, DSI (578,494), and TBI5
(530,734,514) for estimating potato PNC over different planting years, cultivars, and growth
periods. Figure 6 shows the results of using the three optimal spectral indices to estimate
potato PNC over different years. The modeling and validation results show that the model
constructed from FDR542 significantly overestimates or underestimates in the validation
data. Compared with FDR542, the model constructed from DSI (578,494) provides better
results for the different years, but the accuracy and stability of the model need to be further
enhanced. The PNC estimation model constructed from TBI5 (530,734,514) produces stable
and accurate results compared with the FDR542 and DSI (578,494) models, with R2 = 0.40
and 0.82, RMSE = 0.46 and 0.31, and NRMSE = 14.95% and 9.40% for the 2018 and 2019
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validation data, respectively. The measured and predicted values for each sample point are
more evenly distributed around the 1:1 line, indicating that the model may be applied to
different years. In addition, all three optimal spectral indices constructed for estimating
potato PNC produce more accurate estimates in 2019 than in 2018, indicating that the
constructed models are more applicable in 2019.
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Figure 5. (a,c,e) Correlation of three optimal spectral indices of different dimensions with PNC over
multiple potato-growth periods. (b,d,f) Optimal spectral indices for estimating PNC over multiple
potato-growth periods.

Figure 7 shows the accuracy of the three optimal spectral indices for estimating PNC
in different potato cultivars. The modeling and validation results show that FDR542 does
not accurately estimate PNC for any of the three potato cultivars, and the stability of the
constructed model needs further improvement. More specifically, the PNC of cultivar
Z3 is overestimated, and that of Z5 is underestimated. Compared with FDR542, the PNC
estimation model constructed from DSI (578,494) produces more accurate PNC estimates
for the different potato cultivars, and the stability of the model is improved. Finally, the
potato PNC estimation model based on TBI5 (530,734,514) produces the most accurate PNC
estimates for all three different cultivars, and the model is more stable than those based on
FDR542 and DSI (578,494). For the TBI5 (530,734,514) model, the modeling and validation R2

values for the Z3 potato cultivar are 0.70 and 0.70, the RMSE values are 0.32 and 0.31, and
the NRMSE values are 11.27% and 11.66%, respectively. For the Z5 cultivar, the values are
R2 = 0.62 and 0.62, RMSE = 0.42 and 0.36, and NRMSE = 11.91% and 11.24%, respectively,
and for the Z195 cultivar, the values are R2 = 0.39 and 0.50, RMSE = 0.48 and 0.61, and
NRMSE = 16.30% and 18.79%, respectively. The combined modeling and validation results
show that the potato PNC estimation models constructed by the three optimal spectral
indices are more applicable for both the Z3 and Z5 cultivars than for the Z195 cultivar.
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Figure 6. Predicted versus measured PNC. Predicted PNC was estimated by models constructed
from the three optimal spectral indices to estimate the effect of potato PNC in different planting years
(2018 and 2019). (a,c,e) modeling dataset; (b,d,f) validation dataset.

Figure 8 shows the accuracy of the three optimal spectral indices for estimating PNC
in different potato growth periods. Figure 8a,b show that the PNC estimation model
constructed from FDR542 for the multiple potato growth periods produces accurate PNC
estimates only in S3 but inaccurate PNC estimates in the other three growth periods.
Figure 8c,d indicate that, compared with FDR542, the PNC estimation model constructed
from DSI (578,494) produces more accurate PNC estimates for all four growth periods. The
most accurate PNC estimate is for growth period S3, which has modeling and validation
R2 values of 0.62 and 0.52, RMSE values of 0.40 and 0.36, and NRMSE values of 13.56%
and 12.74%, respectively. Figure 8e,f show that the PNC estimation model built from TBI5
(530,734,514) produces the most accurate PNC estimates of the three spectral indices for all
potato growth periods. The best estimates are for growth period S3, which has modeling
and validation R2 values of 0.71 and 0.54, RMSE values of 0.35 and 0.45, and NRMSE values
of 12.12% and 15.54%, respectively. The poorest estimates are for growth period S1, which
has modeling and validation R2 values of 0.52 and 0.61, RMSE values of 0.51 and 0.45, and
NRMSE values of 13.88% and 11.75%, respectively. The combined modeling and validation
results show that the PNC estimation models constructed from the three optimal spectral
indices all work best in S3 and poorly in S1.
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Figure 7. Predicted versus measured PNC. Predicted PNC was estimated by models constructed
from the three optimal spectral indices to estimate the effect of potato PNC in different cultivars.
(a,c,e) modeling dataset; (b,d,f) validation dataset.
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Figure 8. Predicted versus measured PNC. Predicted PNC was estimated by models constructed from
the three optimal spectral indices to estimate the effect of potato PNC in different growth periods.
(a,c,e) modeling dataset; (b,d,f) validation dataset.
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4. Discussion
4.1. Selecting Optimal Spectral Indices in Different Dimensions

The abundance of hyperspectral sensor bands provides a large amount of information
on crop canopy conditions, and combining various bands greatly expands their usefulness
for monitoring the physical and chemical parameters of crops. Furthermore, the accuracy
of estimates of crop physical and chemical parameters can be improved by using multiple
linear regression or complex machine learning algorithms based on multiple spectral in-
dices. However, increasing the number of variables and the modeling complexity increases
the computational cost and application threshold of the model [13]. Agricultural workers
who lack professional mathematical and statistical knowledge and remote sensing skills
prefer to use a single spectral index to estimate the N status of crops over multiple growth
periods, an approach that is also more conducive to the integration and development of
N-monitoring devices [12,32]. Therefore, this study investigates the use of single-, two-, and
three-dimensional spectral indices for estimating, via a linear regression method, potato
PNC over multiple growth periods.

For hyperspectral single-band reflectance, five spectral transformation techniques,
i.e., FDR, Log(1/R), SNVR, SDR, and CR, are used to process the OR data. The reasons
for this are as follows: (1) FDR and SDR not only eliminate the effect of background, but
also resolve overlapping signals and enhance dark peaks, which improves the sensitivity
of spectral features to crop physicochemical parameters [44]. (2) Log(1/R) highlights the
spectral differences in the visible and makes spectral reflectance less sensitive to variations
in light intensity [42]. (3) SNVR eliminates the dependence of hyperspectral reflectance
on solid particles and surface scattering and improves the extraction accuracy of spectral
information. (4) CR highlights the location of the feature band, which facilitates its selection.

The results in Figure 2 show that using the spectral transformation technique for
OR facilitates the deep mining of practical spectral information, which provides a more
comprehensive reference for monitoring potato PNC based on hyperspectral single-band
reflectance. Twelve two- and three-band spectral indices, based on spectral indices that
have been reported to indicate the crop N status, are constructed by using the lambda-
by-lambda band-optimization algorithm. The lambda-by-lambda algorithm considers all
possible combinations of bands from 450 to 950 nm, which improves the robustness and
accuracy of estimates of vegetation properties [45,46]. To investigate the best indicator of
potato PNC, this study investigates the accuracy of estimation models constructed from
spectral indices based on hyperspectral reflectance or two- or three-band combinations for
estimating potato PNC over different years, cultivars, and growth periods.

4.2. Comparison of Sensitive Wavelengths

Tables 3 and 4 show that the spectral index wavelengths sensitive to potato PNC are all
in the visible, which is because N is primarily present in the crop in the form of chlorophyll
and proteins [47,48], and chlorophyll reflects mainly in the visible region (400–700 nm).
Therefore, the visible region correlates more strongly with crop PNC [4]. More specifically, the
wavelengths at which single-band reflectance is sensitive to PNC over multiple potato growth
periods are all located in the red-edge (670–740 nm) or green-edge (502–554 nm) and most of
the sensitive wavelengths of the three-band spectral indices also include these spectral regions.
In contrast, the sensitive wavelengths of the six two-band spectral indices all contain the
490–494 nm band, which is consistent with the results of Hansen and Schjoerring, Pettersson
and Eckersten, and Sun et al. [12,49,50] This is because different treatments (density and N and
K fertilization) lead to different potato PNC, which is more evident in the green-and red-edge
due to the strong absorption and reflection of chlorophyll. Thus, these spectral regions provide
a good indication of the PNC. In addition, the 490–494 nm band is in the absorption band of
chlorophyll and carotenoids [51] and N is an essential component of chlorophyll and protein,
so this band correlates strongly with PNC.



Remote Sens. 2023, 15, 602 14 of 17

4.3. Comparison of Single-, Two-, and three-Dimensional Spectral Indices for Estimating Potato PNC

To investigate the use of single-, two-, and three-dimensional spectral indices for
estimating potato PNC, this study presents an in-depth comparison of hyperspectral single-
band reflectance and two- and three-band spectral indices for estimating PNC over different
years, cultivars, and growth periods. Consistent with the results of Li and Yu et al. [52,53],
this study reveals the significant effects of planting year, cultivar, and growth period on the
ability of spectral indices to estimate PNC. In addition, cultivar and growth period more
strongly affect PNC estimates than the planting year. This result confirms the importance
of exploring generic spectral indices across years, cultivars, and growth periods to ensure
accurate estimates of the PNC to monitor the N status of crops. The discussion in Section 3.4
shows that, for potato PNC data from different years, cultivars, and growth periods, the
PNC estimation model constructed from single-band reflectance is less accurate and stable.
In contrast, the model constructed from the three-band spectral index produces the most
accurate and stable PNC estimates over different years, cultivars, and growth periods.
Several reasons may be invoked to explain this result: (1) Although spectral transformation
techniques such as FDR can improve the correlation between spectra and potato PNC,
the information available from single-band reflectance is limited and cannot effectively
reflect the dynamic variations in PNC. (2) Compared with the two-band spectral indices,
the red-edge and green-edge regions included in the three-band spectral indices carry more
information related to PNC [54,55], effectively enhancing the correlation between spectral
indices and PNC and improving the accuracy of PNC estimation.

The estimation results for different years (Figure 6) show that the estimation models
constructed from the three optimal spectral indices are more accurate in 2019 than in 2018,
which may be due to (1) the larger number of samples in 2019 than in 2018, and (2) the
greater number of potato cultivars planted in 2018, which requires higher demands on the
generality of the models. The PNC estimation results of different cultivars (Figure 7) show
that the models constructed by the three optimal spectral indices produce more accurate
PNC estimates for Z3 and Z5, whereas the estimates for Z195 are mediocre. This is because
Z195 was planted only for a single year, so it has a small sample size and thus contributes
less to the modeling. The estimation results of different growth periods (Figure 8) show
that the models constructed from the three optimal spectral indices produce the most (least)
accurate estimates for growth period S3 (S1). The PNC is underestimated in S1 because
the potato plants were still small and the vegetation cover was low, so the difference in
the extracted spectral information was slight and perturbed by soil factors. Therefore,
the estimation accuracy was poor during this period. In contrast, the potato plants were
thriving and the leaves were extended in S3 when the potato were in the closed monopoly
state, so the spectral reflectance was less perturbed by soil and other factors and thus better
reflected the potato PNC.

4.4. Implications for Future Study

This study investigates the performance of single-, two-, and three-dimensional spec-
tral indices for estimating PNC by using the spectral transformation technique and the
lambda-by-lambda band-optimization algorithm based on UAV hyperspectral data of
potato over different years and multiple growth periods. The results show that TBI 5
(530,734,514) may be used for different types of potato PNC data and can serve as a ref-
erence for the development and integration of rapid N-monitoring devices. In addition,
the constituent bands of TBI 5(530,734,514) are also available from existing hyperspectral
satellites, such as ZY-1 02D, 02E, and GF5. With the development and maturation of hy-
perspectral satellite technology, the spatiotemporal resolution is continuously improving,
and large area crop N-nutrient monitoring is gradually becoming possible. Therefore,
the spectral index TBI 5 (530,734,514) has a strong potential for use in large area PNC
monitoring based on hyperspectral satellite platforms.

Although this study used data from two years, three cultivars, and four growth periods
to construct the potato PNC estimation models, the effects of different cultivation environ-
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ments on the spectral indices for estimating PNC should also be considered. Therefore,
the reliability and adaptability of the optimal spectral indices should be studied in more
regions with differing ecology. In addition, although six forms of hyperspectral single-band
reflectance were used in this study and 12 forms of band combinations that are widely used
and proven to be effective were screened separately, more spectral transformation methods
and band combinations should be investigated to determine their response to potato PNC.

5. Conclusions

This study uses six hyperspectral single-band reflectance and 12 band-combination
indices to develop optimal spectral indices of single-, two-, and three-dimensions. Quantita-
tive models to estimate potato PNC over multiple growth periods are then established based
on these optimal spectral indices. The results show that (1) the red-edge and green-edge
spectral correlate strongly with the N status of potato, which provide relevant information
for the rapid and accurate estimation of potato PNC. (2) Although the spectral transforma-
tion technique can enhance the correlation between spectral information and PNC, the PNC
estimation model based on the optimal single-band reflectance produces less accurate and
stable results over different years, cultivars, and growth periods. (3) Compared with the
optimal two-band spectral index, the PNC estimation model constructed from the optimal
three-band spectral index TBI5 (530,734,514) is more accurate and stable. This index may
thus be used to estimate potato PNC over different years, cultivars, and growth periods.
The results of this study can thus be used to design fast and efficient N diagnostic systems
and enhance the linkage between UAV and satellite sensors to provide technical support
for the large area nitrogen monitoring of potato crops.
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