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Abstract: This paper investigates the challenging problem of direction-of-arrival (DOA) estimation
in impulsive noise and presents a fast iterative shrinkage-thresholding algorithm (FISTA)-based ap-
proach to tackle the difficulty. More specifically, the underlying noise is modelled as the superposition
of outliers in the white Gaussian noise. Leveraging on the spot-sparse characteristic of the outlier
matrix, the FISTA is conducted on each snapshot of the array output. With the estimated outlier
matrix and the coarse on-grid DOA estimates, an alternating optimization method is developed
to retrieve the final off-grid DOA estimates. Simulation results show that the proposed method
outperforms existing methods in terms of resolution capability and estimation accuracy especially in
severe noise environments.
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1. Introduction

In the community of array signal processing, direction-of-arrival (DOA) estimation
of multiple emitting sources has received considerable attention for its wide range of
applications in radar, sonar, and wireless communications [1,2]. The most well-known
subspace-based high-resolution DOA estimation algorithms include MUSIC [3] and ES-
PRIT [4]. They retrieve DOA estimates by exploiting the orthogonality between the noise
subspace and array manifold which are obtained by eigenvalue decomposition (EVD) of the
sample covariance matrix of the array output [3–5]. It is worth noting that these methods
were developed under the assumption of Gaussian noise. However, in some scenarios,
sudden bursts may exist in the received data and it is no longer appropriate to model the
ambient noise as Gaussian [6]. For instance, the human-made noise created by power lines,
heavy current switches, and other sources cannot be assumed to be Gaussian [7]. Instead,
this form of noise is described as impulsive noise, whose probability density function (PDF)
has heavier tails than the Gaussian distribution, and hence, it has a higher probability of
occurrence of abnormally large values [8].

One way to deal with DOA estimation in impulsive noise is modelling the noise as a
complex symmetric alpha-stable (SαS) process and making use of the fractional lower-order
moments (FLOMs). With this model and assuming that signals and additive noise are jointly
SαS, a robust covariation-based MUSIC (ROC-MUSIC) algorithm was derived in [9]. In [10],
a FLOM-MUSIC algorithm was developed by applying FLOMs to the scenarios where the
signals are circular and the additive noise is SαS with 1 < α < 2. To estimate the parameters
of deterministic signals corrupted by impulsive noise, it was proposed in [11] to preprocess
the data by passing them through a Gaussian-tailed zero-memory non-linearity, which
leads to low-variance estimates and better performance than covariation-based approaches.
In addition, robust statistics [12], such as M-estimation, have also been applied to DOA
estimation and tracking in impulsive noise [13–15]. Unlike the aforementioned methods
using either knowledge on the PDF or number of mixtures, a non-parametric statistics-
based DOA estimator was presented in [16] that estimates the signal and noise subspaces
from the spatial sign or rank covariance matrix. Note that although the above-mentioned
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algorithms adopt different strategies, in general they obtain the signal or noise subspace by
performing EVD of the covariance or covariance-like matrices. On the contrary, it is shown
in [8] that the estimate of signal subspace is obtained by directly solving the minimization of
the lp-norm of the residual fitting error matrix. The resulting lp-MUSIC algorithm achieves
performance superiority over the traditional subspace-based algorithms.

In general, the above-mentioned subspace-based DOA estimation methods have
limited performance in challenging scenarios such as high source correlation, low sample
size, and unknown model order. Alternatively, sparse signal recovery (SSR) methodology
is preferred in these scenarios and the problem of DOA estimation by employing SSR
has been extensively studied in the past decade [17–20]. Particularly, for SSR-based DOA
estimation in impulsive noise, it is proposed in [21] to model the noise as a mixed Gaussian
distribution, i.e., a Gaussian process with an extremely high variance representing outliers
superimposed on the ambient Gaussian noise, and perform DOA estimation from the
perspective of sparse Bayesian learning (SBL). In [22], Lee et al. examined the scenario
when faulty elements appear at the sensor array and develop a weighted SSR-based
DOA estimation algorithm by introducing weights describing the degree of outliers of
each element. One challenge that must be faced for SSR-based DOA estimation methods
is the well-known off-grid problem, which is caused by the finite basis obtained by a
predetermined grid sampling of a continuous spatial domain, yet the true DOA may lie off
the grid [23–25].

To address this off-grid problem, in [23], an alternating minimization method is pro-
posed to obtain sparse signal and mismatch simultaneously. In [24], a greedy method based
on matching pursuit is developed. In [25], after conducting first-order Taylor expansion
on the steering matrix, an interior point method is utilized to gain the corrected DOAs.
Besides off-grid issues, computational efficiency is another critical problem that needs to
be considered in SSR-based approaches. The heavy computational load often lies in the
process of solving the convex optimization problem involved in the algorithm, e.g., us-
ing the CVX MATLAB toolbox or employing SBL techniques. To deal with this problem,
the fast iterative shrinkage-thresholding algorithm (FISTA) [26] is employed in [27] to
solve the l1-norm minimization problem involved, and a FISTA-based DOA estimation
method is proposed. Benefiting from the advantages of FISTA in terms of computational
efficiency, the computational load of this method is significantly reduced in comparison to
the traditional SSR-based DOA estimation approaches.

It is worth noting that in impulsive noise environments, the outliers are sparsely dis-
tributed in the data. This implies that we may exploit the signal sparsity of the data in the
spatial domain and the outlier sparsity in the data matrix. With this concept, a new method
to address the problem of DOA estimation in impulsive noise by the methodology of SSR
is proposed in this paper. More specifically, we first model the impulsive noise as Gaussian
noise superimposed by scattered points with high amplitudes, which represent outliers.
Due to the random occurrence of outliers, FISTA cannot be directly conducted on the re-
ceived array output data. However, from another point of view, these scattered outliers can
be considered as having spot-sparse characteristics in the spatial domain. After expansion
of the coefficient matrix into a combination of the array manifold matrix and a unit matrix,
each snapshot of the array output can be constructed as a sparse signal recovery problem.
Performing FISTA on the array output snapshot by snapshot, a rough DOA (i.e., the on-grid
part) and an estimate of the complete outlier matrix can be obtained. Finally, with the
estimated rough DOA and outlier matrix, an iterative optimization algorithm is developed
in this paper to obtain the final off-grid DOA estimates. Compared with the existing DOA
estimation methods, the proposed method achieves better DOA estimation performance,
especially in highly impulsive noise environments. Moreover, our method does not require
a priori knowledge of the number of sources which should be properly determined in
advance to implement lp-MUSIC. The computational burden is also significantly reduced
in comparison to the method in [21]. Another advantage of our method compared to the
method in [27] is that the restriction of uncorrelated sources can be relaxed.
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The following notations are utilized throughout this paper. The superscripts (·)T , (·)H ,
and (·)∗ denote the transpose, the conjugate transpose, and the conjugate, respectively. ⊗
denotes the Kronecker product of two matrices, and � represents the point-wise multiplica-
tion of two vectors with the same dimension. ‖ · ‖1, ‖ · ‖2, and ‖ · ‖F stand for the l1-norm,
l2-norm, and Frobenius norm, respectively. (·)† represents the pseudo-inverse operator.
tr(·) is the trace operator. IM is the M×M identity matrix.

2. Signal Model

Consider Q narrow-band far-field source signals impinging on an M-element uniform
linear array (ULA), of which the distance between adjacent sensors is d. The Q signals
arrive at the array from distinct directions {θ1, ..., θQ}. The array output of the t-th snapshot
can be expressed as

x(t) = A(θ)s(t) + n(t), t = 1, 2, · · · T (1)

where A(θ) = [a(θ1), · · · , a(θQ)] is an M × Q matrix of the array steering vectors,
a(θq) = [1, e−j2πd sin(θq)/λ, · · · , e−j2π(M−1)d sin(θq)/λ]T , where j =

√
−1 is the imaginary

unit and λ is the wavelength of the carrier signal. x(t) = [x1(t), · · · , xM(t)]T is the M× 1
vector of data received by the array sensors, s(t) = [s1(t), · · · , sQ(t)]T is the Q× 1 vector
of the incoming signals, and n(t) = [n1(t), · · · , nM(t)]T is the M× 1 vector of the noise.
The T snapshots can be expressed in a compact form as

X = A(θ)S + N ∈ CM×T (2)

where X = [x(1), · · · , x(T)], S = [s(1), · · · , s(T)] and N = [n(1), · · · , n(T)].
Usually, the noise n(t) is assumed to be Gaussian distributed for simplicity. However,

in the presence of impulsive noise, sudden bursts can be involved in the array outputs, and
these can be considered as outliers [21,22]. In such cases, the following data model can be
employed

X = A(θ)S + W + N ∈ CM×T (3)

where N is still the Gaussian noise component as in data model (2), and W = [w(1), · · · ,
w(T)] represents the outlier matrix. Because the outliers are sudden bursts randomly
received by the elements of the array, the outlier matrix W possesses spot-sparse charac-
teristics. That is, only few of the elements in W have high magnitudes whereas others
are zero.

3. FISTA-Based DOA Estimation Method for Impulsive Noise
3.1. SSR Model and FISTA Algorithm

If the on-grid case is considered, the sparse representation of the data model (2) can be
easily constructed as

X = A(θ̃)S̃ + N ∈ CM×T (4)

where A(θ̃) = [a(θ̃1), · · · , a(θ̃N)] ∈ CM×N is an overcomplete basis which is constructed by
discretizing the spatial frequency range [−π/2, π/2] at the N grid points θ̃ = [θ̃1, · · · , θ̃N ].
Typically, N = MK, where K is the oversampling factor satisfying K > M > Q. Generally,
a uniform sampling with ϕn = (n− 1)∆n, n = 1, 2, · · ·N is considered, where ∆n = π/N
is the grid spacing. Under the on-grid assumption, the true spatial frequencies lie exactly
on the sampling grid, i.e., {θq}Q

q=1 ∈ {θ̃n}N
n=1. The row-sparse signal S̃ = [s̃T

1 , · · · , s̃T
N ]

T can
be formulated as

s̃T
n =

{
sT

q if θ̃n = θq

0 otherwise
(5)

where sT
q denotes the q-th row in the source symbol matrix S in (2). The row-sparse structure

of S̃ indicates that if the row index n corresponds to the location of the DOAs on the spatial
grid, the s̃T

n is non-zero or otherwise zero.
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Under the framework of SSR, the sparse signal S̃ can be recovered from the well-known
l1-norm optimization problem

S̃ = arg min
S̃
‖S̃‖2,1 s.t.‖X−A(θ̃)S̃‖2

F ≤ β (6)

where ‖S̃‖2,1 denotes a mixed norm, i.e., the l1-norm of the column vector formed by
performing l2-norm calculation on each of its rows, and β is a given threshold. The above
optimization problem can be solved by standard convex solvers which often suffer from
computational inefficiency.

In [26], a fast iterative shrinkage-thresholding algorithm (FISTA) is developed to
recover the sparse signal s from the following compressed sensing data model:

y = Ds + w (7)

where y ∈ RM is the measurement vector, D ∈ RM×N is the given dictionary matrix,
s ∈ RN is the signal of interest, and w ∈ RM is the noise vector. The implementation of
FISTA is shown in Algorithm 1, where proxh(·)is Moreau’s proximal operator and it is
given by

proxh(x) = arg min
u∈RN

{h(u) + 1
2
‖u− x‖2

2} (8)

and L∇ f is a Lipschitz continuous gradient. More details of FISTA can be found in [26].

Algorithm 1 Fast Iterative Shrinkage-Thresholding Algorithm

(1) Input: an upper bound L ≥ L∇ f .
(2) Initialize: z1 = s0, t1 = 1, l = 1.
(3) For step l:

(a) Compute sl = prox 1
L g(zl − 1

L∇ f (zl)).

(b) tl+1 =
1+
√

1+4t2
l

2 .

(c) zl+1 = sl +
tl−1
tl+1 (sl − sl−1).

In order to apply FISTA to data model (4), it is assumed in [27] that all the sources
are uncorrelated and the noise is white Gaussian noise with a noise power of σ2

w. Then,
the covariance matrix of X is given as

R = E[XXH ] =
N

∑
n=1

σ2
na(θ̃n)a(θ̃n)

H + σ2
wIM (9)

where σ2
n represents the signal power of the source at grid point n. By vectorizing R, we

have
y = Ās + σ2

w1n (10)

where Ā = [a(θ̃1)
H ⊗ a(θ̃1), ..., a(θ̃N)

H ⊗ a(θ̃N)], and s equals [σ2
1 , · · · , σ2

N ]
T which is row-

sparse. 1n = [eT
1 , · · · , eT

M]T with ei being a unit vector where the i-th element is one and
the remaining are all zeros. Via these means, it is easy to conduct FISTA on (10) to obtain
the sparse signal s.

As a matter of fact, the actual spatial frequencies usually do not fall exactly on the
discretized grid θ̃. In this case, the reconstruction accuracy for the signal by data model (4)
is deteriorated due to the modelling error for the manifold matrix A(θ̃). Performing a
first-order Taylor expansion on the steering matrix, a more accurate data model can be
described as
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X = (A(θ̃) + B(θ̃)∆̃)S̃ + N ∈ CM×T (11)

where A(θ̃) = [a(θ̃1), · · · , a(θ̃N)] ∈ CM×N denotes the on-grid part and the symbol

B(θ̃) = [ ∂a(θ̃1)
∂θ̃1

, ..., ∂a(θ̃N)
∂θ̃N

] is the derivative of A(θ̃), ∆̃ = diag(δ̃), and δ̃ = θ− θ̃ is the

quantization error due to grid mismatch. Let P = ∆S̃, (11) can be rewritten as

Y = ΦC + N (12)

where Φ = [A(θ̃), B(θ̃)] and C = [S̃T , PT ]T . By performing FISTA on the vector form of
the covariance of Y, the sparse signal is retrieved and the corrected off-grid DOAs are
obtained correspondingly.

3.2. DOA Estimation in Impulsive Noise

In the case of impulsive noise, the data model (3) is employed. First, we consider the
simple on-grid scenario. Using the same overcomplete basis A(θ̃) ∈ CM×N in (4), we can
formulate the sparse representation of (3) as

X = A(θ̃)S̃ + W + N ∈ CM×T . (13)

Various robust compressive sensing approaches have been proposed to deal with the
outliers in the data. For instance, the Lorentzian-norm is used in [28], and the `1-norm loss
which is able to achieve better performance is reported in [29]. In addition, the `p-norm
loss which generates the `1-norm loss is considered in [30]. Specifically, for each snapshot
of X, i.e., x(t), the following problem can be formulated to recover the sparse vector s̃(t):

min
s̃(t)
‖x(t)−A(θ̃)s̃(t)‖p

p + µ‖s̃(t)‖1 (14)

where µ is a regularization parameter. Particularly, if p = 1, the problem reduces to the
`1-norm minimization problem in [29]. Note that if p < 1, the problem is non-convex and
difficult to solve, and it is also usually not easy to choose the value of p.

Unlike the above-mentioned robust approaches, in this work we exploit the spot-
sparse characteristics of the outlier matrix. By combining A(θ̃)S̃ and W, we can rewrite
(13) as

X =
[
A(θ̃) IM

][ S̃
W

]
+ N ∈ CM×T (15)

As described in data model (3), W does not have row-sparse characteristics, which is
the feature of S̃. This means that, even if we obtain the vector form of the covariance matrix
of X in (14), we cannot apply FISTA directly to it to obtain an estimate of the sparse signal.
However, if we investigate each snapshot of the array output X, we have

x(t) =
[
A(θ̃) IM

][ s̃(t)
w(t)

]
+ n(t) t = 1, ..., T (16)

Obviously, for the received t-th snapshot x(t), the joint vector of s̃(t) and w(t) is
row-sparse. For the signal vector s̃(t), none-zero elements appear at the row indices n
which correspond to the location of the DOAs on the spatial grid, though for the outlier
vector w(t), non-zero elements appear randomly. Therefore, let us define E = [A(θ̃) IM]
and v(t) = [s̃T(t) wT(t)]T ; then, the following problem can be formulated to determine
v(t):

min
v(t)
‖x(t)− Ev(t)‖2

2 + λ‖v(t)‖1 (17)

where λ is a regularization parameter. It is known that the above convex problem can be
solved via interior point methods. Nevertheless, to be more computationally efficient, we
can employ FISTA on x(t) to retrieve the estimate of v(t), and hence, the estimates of s̃(t)



Remote Sens. 2023, 15, 565 6 of 11

and w(t). Following this idea, all the signal vectors in S̃ and all the outlier vectors in W
could be obtained. Then, by assembling them, the complete signal matrix S̃ and the outlier
matrix W could be derived. Finally, by retrieving the non-zero row indices of S̃, we can
easily obtain the on-grid DOA estimates.

However, there are certain concerns that need to be discussed throughout the whole
process. First, different from the method in [27] which utilizes the covariance matrix of X,
we apply FISTA on one snapshot of X once a time. The complete signal matrix estimate Ŝ
and the outlier matrix estimate Ŵ are derived by the combination of the estimated vectors
of {s̃(t)}T

t=1 and {w(t)}T
t=1. Obviously, it is difficult to ensure estimation accuracy. Second,

for the t-th snapshot x(t), there is a large difference in magnitude between the non-zero
elements in the signal vector s̃(t) and the non-zero elements in the outlier vector w(t) when
the noise is highly impulsive. In this case, it is hard to obtain an accurate estimate of them
simultaneously. In fact, the obtained estimate of w(t) is far more accurate than that of
s̃(t) due to its relatively high magnitude. Finally, only the on-grid case is considered, and
the off-grid case needs to be further addressed.

Our scheme can be described as follows. First, we conduct FISTA on all the snapshots
of X and obtain all the estimates of {w(t)}T

t=1. By assembling {ŵ(t)}T
t=1, the estimate of

the complete outlier matrix Ŵ could be obtained. In addition, we examine the l2-norm
value for all the rows in Ŝ, which is obtained by assembling all the estimates of {s̃(t)}T

t=1.
Then, the row indices with the Q largest l2-norm values are marked as the rough on-grid
DOA estimates {θ̄q}Q

q=1. In the next step, we develop an alternate optimization method to

obtain the final off-grid DOA estimates based on Ŵ and {θ̄q}Q
q=1.

Using the first-order Taylor expansion on the steering matrix in (3), we have

X = (A(θ̄) + B(θ̄)∆)S + W + N ∈ CM×T (18)

where A(θ̄) = [a(θ̄1), · · · , a(θ̄Q)] is the on-grid part of the steering matrix,

B(θ̄) = [ ∂a(θ̄1)
∂θ̄1

, ..., ∂a(θ̄Q)

∂θ̄Q
] is the derivative of A(θ̄), ∆ = diag(δ), and δ = θ− θ̄ is the

quantization error due to grid mismatch. With the estimated Ŵ after the FISTA procedure,
we can formulate the following optimization problem to obtain the quantization error ∆,

∆ = arg min
∆
‖X− Ŵ−A(θ̄)S− B(θ̄)∆S‖2

F (19)

Estimating S by Ŝ = A†(θ̂)(X− Ŵ), where θ̂ is the estimate of θ, the quantization
error ∆ can be derived as follows

min
∆
‖X− Ŵ−A(θ̄)Ŝ− B(θ̄)∆Ŝ‖2

F

= min
∆

tr{ŜH∆BH(θ̄)B(θ̄)∆Ŝ− 2R[(X− Ŵ−A(θ̄)Ŝ)HB(θ̄)∆Ŝ]}

= min
∆
{tr{ŜH∆BH(θ̄)B(θ̄)∆Ŝ} − 2R{tr[Ŝ(X− Ŵ−A(θ̄)Ŝ)HB(θ̄)∆]}}

= min
δ
{δT(BH(θ̄)B(θ̄)� (ŜŜH)∗)δ− 2R{diag[Ŝ(X− Ŵ−A(θ̄)Ŝ)HB(θ̄)δ]}}

(20)

Letting the derivative of δ be equal to zero, we have

δ̂ = R{F−1h} (21)

where F = BH(θ̄)B(θ̄)� (ŜŜH)∗, and h = diag[Ŝ(X− Ŵ−A(θ̄)Ŝ)HB(θ̄)].
The main steps of the proposed FISTA-based DOA estimation method for impulsive

noise are summarized in Algorithm 2.
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Algorithm 2 Proposed FISTA-based method for DOA estimation in impulsive noise

(1) Input: X and A(θ̃).
(2) Initialize: δ(0) = 0, l = 1.
(3) Estimate {ŵ(t)}T

t=1 by conducting FISTA on (15), Ŵ = [ŵ(1), · · · , ŵ(T)]. Obtain

on-grid DOA estimates {θ̄q}Q
q=1. Let θ̂(1)

= θ̄.
(4) For step l:

(a) Calculate Ŝ(l) = A†(θ̂)(X− Ŵ).

(b) Update δ̂
(l) by (19).

(c) Update θ̂
(l) by θ̂

(l)
= θ̂

(l−1)
+ δ̂

(l).

(d) Let l = l + 1 and continue (go to Step-4a) until ‖δ̂(l) − δ̂
(l−1)‖2/‖δ̂(l−1)‖2 < ε,

where ε is a prescribed small threshold (e.g., ε = 0.001).

Our proposed method does not involve presetting the coefficient p in the lp-norm, as
in the lp-MUSIC algorithm, which plays an important role in the estimation accuracy. That
is, our method is more robust when the intensity or probability of occurrence of outliers
varies. Although the proposed method cannot directly conduct FISTA on the covariance
matrix of the array output as in [27] due to impulsive noise, the estimation accuracy of
the method can be compensated by the optimization procedure in (17). Moreover, in our
method, the uncorrelation restriction for the signals is relaxed. Finally, benefiting from the
FISTA technique, the computational load of the proposed method is significantly reduced
compared with the method in [21].

4. Simulation Results

In this section, we present simulations to assess the DOA estimation performance
of the proposed method for impulsive noise. In the simulations, we assume two QPSK
(quadrature phase shift keying) signals of the same power impinging on a ULA of sensors.
The DOAs of the two incoming signals are θ1 = −10.2◦ and θ2 = 10.3◦, respectively.
The number of sensors is M = 12. In each simulation, 100 Monte Carlo trials are run
for each algorithm. The probability of resolution and the RMSE (root mean square error)
are evaluated for each algorithm for comparison. Among them, a successful resolution is
considered when the DOA estimation error for each source is less than 5◦. The RMSE of
the DOA estimates is calculated by

RMSE =

√√√√ 1
KQ

K

∑
k=1

Q

∑
q=1

(θ̂q,k − θq)2 (22)

where K represents the number of the Monte Carlo runs, θq represents the real DOA of
the q-th signal, and θ̂q,k represents the estimate to θq in the k-th Monte Carlo run. The lp-
MUSIC, the FISTA-based method in [27], and the SBL-based method in [21] are performed
for comparison. For lp-MUSIC, as recommended in [8], p = 1.1 is employed.

In the simulations, the variance of the Gaussian noise is assumed to be σ2
n , and

{w(t)}T
t=1 = {b(t)� nw(t)}T

t=1 is utilized to model the impulsive noise, where {bi(t)}M
i=1

are Bernoulli distributed with P(bi(t) = 1) = pw, that is, pw represents the probability of oc-
currence of the outliers, and nw(t) is Gaussian distributed with zero-mean and variance σ2

w.
Accordingly, let σ2

s be the variance of signal, and the signal-to-noise ratio (SNR) is defined
as SNR = σ2

s /σ2
n , whereas the signal-to-outlier ratio (SOR) is defined as SOR = σ2

s /σ2
w.

In the first experiment, the SNR is set at 20 dB, and pw is set at 0.2. The number of the
data samples is T = 30. Figure 1 shows the performance of the algorithms as a function
of the SOR level. Obviously, as the SOR decreases, for each algorithm, the resolution
probability deteriorates and the RMSE increases as expected. However, the RMSE of the
proposed method demonstrates an improvement over the other three algorithms especially
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when the SOR is at extremely low levels. Another observation is that the resolution
probability of the proposed method remains 1 for all the SOR values, whereas the other
three algorithms present a distinct decrease, especially for low SOR values, indicating that
our method obtains a more robust DOA estimation performance. Furthermore, this also
explains why the RMSEs of the other three algorithms degrade so dramatically at extremely
low SOR levels, as these methods yield DOA estimates with large deviations from the true
DOAs in some of the trials.
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Figure 1. Performance comparison of the algorithms as a function of the SOR. (a) Probability of
resolution. (b) RMSE.

In the following two experiments, the SNR and SOR of each algorithm are fixed at
20 dB and −20 dB, whereas pw is set at 0.15 for the former experiment and the number
of snapshots for the latter experiment is T = 30. Figures 2 and 3 show the performance
of the algorithms as a function of the number of the data samples and pw, respectively.
As Figures 2 and 3 indicate, the proposed method presents a more robust performance over
the other three methods when few snapshots are available or when pw increases, which
indicates a higher occurrence probability of outliers.
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Figure 2. Performance comparison of the algorithms as a function of the number of snapshots.
(a) Probability of resolution. (b) RMSE.
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Figure 3. Performance comparison of the algorithms as a function of pw. (a) Probability of resolution.
(b) RMSE.

In the last experiment, we assume that there are two coherent signals impinging
on the array. The SNR and SOR are set at 20 dB and −20 dB, respectively. pw is set at
0.2. The number of snapshots is T = 30. Figure 4 shows 100 realizations of the DOA
estimates of these four algorithms. As shown in Figure 4, the DOA estimation results of the
lp-MUSIC [8], the FISTA-based method [27] and the SBL-based method [21] present a fairly
large deviation with the real DOAs in the realizations, and the proposed method gains a
much more accurate DOA estimation. This also proves that our proposed method is not
only robust for uncorrelated signals but also for coherent signals.
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Figure 4. Performance comparison of the algorithms for coherent signals. (a) FISTA. (b) lp-MUSIC.
(c) SBL. (d) Proposed method. The vertical lines denote the true DOAs, and the plus signs denote the
DOA estimates in the experiments.

5. Conclusions

In this paper, we present a new FISTA-based algorithm for DOA estimation in impul-
sive noise. By modelling the impulsive noise as the superposition of outliers in Gaussian
noise, it is convenient to investigate the spot-sparse characteristic of the outlier matrix.
For the array output, we implement FISTA via snapshot to obtain the estimates of the
outlier matrix and the on-grid DOAs. Based on the estimated outlier matrix and the coarse
on-grid DOA estimates, an alternate optimization method is developed to gain the final
off-grid DOA estimates. Simulation results demonstrate that the proposed method presents
more robust DOA estimation performance in extremely impulsive noise environments.
In addition, the proposed method relaxed the uncorrelation assumption for the signals
which is needed in the existing FISTA-based DOA estimation method, and its robust DOA
estimation performance for coherent signals is demonstrated by simulations.
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