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Abstract: The evolution of forest landscape patterns can reveal the landscape stability of forest
dynamics undergoing complex ecological processes. Analysis of forest landscape dynamics in regions
under ecological restoration can evaluate the impact of large-scale afforestation on habitat quality
and provide a scientific basis for achieving sustainable eco-environment development. In this study, a
method for assessing forest landscape stability by characterizing changes in forest landscape patterns
was proposed. Toeplitz inverse covariance-based clustering (TICC) was used to automatically identify
landscape pattern evolution by investigating the synergistic changes of two landscape indices—forest
cover area (CA) and patch density (PD)—and to extract the short-term processes—degradation,
restoration, and stable—that took place between 1987 and 2021. Four long-term evolution modes,
no change, increase, decrease, and wave, based on the temporal distribution of short-term change
processes, were also defined to assess landscape stability. Our results showed that (i) the forest’s
short-term change processes have various forms. The restoration subsequence was the largest
and accounted for 46% of the total subsequence and existed in 75% of the landscape units. The
time distribution of these three change processes showed that more landscape units have begun to
transition into a stable state. (ii) The long-term change modes showed an aggregation distribution
law and indicated that 57% of the landscape units were stable and 6.7% were unstable. Therefore,
our study can provide a new perspective for the dynamic analysis of landscape patterns and offer
insights for formulating better ecological restoration strategies.

Keywords: landscape stability; forest landscape pattern; forest landscape evolution; TICC algorithm

1. Introduction

Ecosystem stability plays a prominent role in ecological safety and service [1]. A
stable forest landscape incurs low management costs and shows sustainable development,
which is also the purpose of ecological restoration [2,3]. An ecological restoration project
implemented by the Chinese government on the Loess Plateau substantially changed the
forest landscape in the area [4]. The increase in forest coverage as a result of ecological
restoration projects has effectively improved ecological quality in China [5]. Nevertheless,
it was found that the Loess Plateau has afforestation areas with excessive recovery as well
as those with inefficient recovery [6], which have led to a decline in the ecological quality
of the region. The uncertain stability of the forest ecosystem can cause blind ecological
restoration. Therefore, it is necessary to evaluate the stability of the forest landscape to
maintain the achievements of the project for sustainable future management.

Landscape stability refers to the ability of a landscape to maintain its own state for
a period of time and to recover quickly after being disturbed [7]. Different ecological
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processes have multiple impacts on forest landscapes [8,9]. The assessment of landscape
stability is carried out by analyzing the active change processes in the landscape [10]. Satel-
lite remote-sensing time series has the advantage of procuring long-term and large-scale
data and is widely used for monitoring the changes in a landscape [11,12]. The normal
remote-sensing assessment of landscape stability is a pixel-based index time-series analysis.
It usually extracts the dynamic characteristics of the forest in the process of disturbance and
restoration through continuous spatiotemporal monitoring and constructs indicators such
as resilience and resistance to quantify these processes to assess stability from multiple
perspectives [13–15]. For example, von Keyserlingk et al. quantified the recovery rate after
disturbance from the NDVI time series using a change-detection algorithm and clarified the
impact of grazing and drought on ecosystem stability [16]. As forest change often affects
regions, pixel-based methods neglect spatial contextual information by considering only
the temporal features [13]. Therefore, it is necessary to consider the spatial structural char-
acteristics of forests while evaluating ecological processes to assess the ecosystem’s stability.

Landscape pattern refers to the spatial structure and configuration of the landscape.
The landscape pattern index can be used to analyze the characteristics of a forest landscape
from the perspectives of fragmentation, coverage, and diversity. Some studies analyzed
landscape stability by constructing biodiversity indices and calculating landscape indices.
Xu et al. constructed a landscape ecological risk index to assess landscape stability from two
perspectives of landscape loss and ecological sensitivity [17]. However, forest landscapes
undergoing afforestation are highly heterogeneous. The dynamics of these forest landscapes
have unpredictable effects on landscape stability. Therefore, it is necessary to assess
landscape stability by analyzing the dynamics of landscape indices.

The dynamics of landscape indices reflect diverse ecological processes [18]. Some
studies assess landscape stability by monitoring the dynamics of landscape indicators and
analyzing the impact of various ecological processes on forest landscapes. Hermosilla et al.
characterized the recovery of vegetation spatial patterns in Canadian forests after various
disturbances by analyzing the changes that occurred in multiple landscape indices [19].
Zhang et al. provided a method for mangrove conservation in China using landscape
indices related to fragmentation, shape, and coverage [20]. Previous studies typically
assumed a uniform landscape transformation for the entire time series [21–24]. However,
there are often high-frequency and complex ecological processes over a long-term obser-
vation. Extracting the intermediate change process can consider the impact of different
ecological processes on landscape stability [25]. An equal interval and a fixed time window
are the normal strategies that are used for describing landscape pattern changes over long
time periods [26–28]. Wang et al. quantified the impact of afforestation on forest landscape
patterns by delineating time periods into 5-year intervals to assess the effectiveness of
ecological restoration [29]. Zhang et al. extracted frequent change patterns to analyze forest
landscape stability at 1-year intervals [30]. However, the forest change process is heteroge-
nous, which means that the change process in even the same type of forest is of inconsistent
duration [31–34]. The fixed time window analysis ignores the spatiotemporal correlation
of the change process and is susceptible to random noise [35]. Therefore, it is necessary to
develop a method for dynamic landscape analysis that can automatically extract segmented
temporal indicators derived from a subset of time series to assess landscape stability.

The development of a sequenced time series analysis makes it possible to mine the
heterogeneous subset of time series. The heterogeneous subsequence often represents the
continuous behavior of the object in a certain period of time. Considering the continuous
transformation of space and time of the object is of great significance for extracting the
characteristics of the time series object [36]. Toeplitz inverse covariance-based clustering
(TICC), an algorithm that discovers repetitive patterns contained in multivariable time
series [37], has been applied to behavior recognition, transportation, and finance fields.
Each cluster in the TICC is defined by a Markov random field (MRF), characterizing the
interdependencies between the different series features. This unique iterative updated
algorithm ensures that the typical heterogeneous subset of time series can be found.
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In this study, a new method that can evaluate landscape stability by automatically
extracting high-frequency and complex landscape change processes was proposed. There
were two objectives of our study: (1) to extract the spatiotemporal dynamics of the degra-
dation and restoration processes in continuously changing landscape patterns based on
TICC, and (2) to develop an automatic and continuous landscape stability assessment by
defining long-term evolution modes based on degradation and restoration processes.

2. Materials and Methods
2.1. Study Area

The Shanxi Province is located between 34◦34′–40◦44′N latitude and 110◦14′–114◦33′E
longitude and covers a total area of 156,700 square kilometers. Mountains and hills account
for 80% of this area, which has complex and diverse landform types in the typical semi-arid
loess hilly region. On its east lies a massive mountain, formed by the Taihang Mountains
as the main vein. On the west is the Loess Plateau, with the Luliang Mountain as its main
trunk, and in the middle lies the Fenhe river basin (Figure 1). The overall terrain is low in
the middle and high on both sides. Shanxi has a typical temperate continental monsoon
climate, with annual precipitation between 358 and 621 mm and average temperatures of
4.2–14.2 ◦C. Shanxi is rich in coal resources, and the development of mining areas has had
a serious impact on the local ecosystem. It has resulted in substantial forest degradation,
making the fragile ecological situation of the Loess Plateau even more uncertain [38,39].
Due to the increasingly severe ecological problems in the area, China has implemented
large-scale vegetation construction projects, resulting in a significant increase in forest
coverage (http://zrzyt.shanxi.gov.cn/ (accessed on 14 February 2022)). During more than
30 years of development, Shanxi’s forest landscape has undergone tremendous changes.
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2.2. Methodology

The framework of the research method used in this study is shown in Figure 2.
First, the annual Landsat images for Shanxi from 1987 to 2021 were obtained through
the Google Earth Engine (GEE) platform, and a random forest classifier was used to
classify the land-use type to obtain the annual distribution map of the forest. According
to the forest distribution map, the forest cover area (CA) and patch density (PD) in each
landscape unit was calculated. Second, subsequences with information on the synergistic
changes in the landscape indices were extracted based on TICC. Ordinary least squares
(OLS) regression was used to analyze the changing trends of the two landscape indices in
subsequences to define the ecological processes in landscape change. Finally, four long-term
evolution modes were identified using the temporal distribution of subsequent. Based on
the spatiotemporal distribution characteristics of the evolution modes, landscape stability
in this study region was assessed.
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2.2.1. Data Preparation

Based on the GEE platform, terrain-corrected and radiation-corrected Landsat data
from 1987 to 2021 were obtained for the study area. The post-2003 Landsat-5 TM data
largely made up for the missing data resulting from the failure of Landsat-7 SLC. Therefore,
this study used the Landsat-5 TM data from 1987 to 2000 and 2003 to 2012, the Landsat-7
ETM+ data from 2001 to 2002, and the Landsat-8 OLI data from 2013 to 2021. Due to the final
forest classification mapping, to reduce the impact of forest phenology, the image-collection
time was limited from June to September each year. At the same time, poor observations
were replaced with better observations obtained in other months by referencing the QA
band of the image to complete the collection of better images for the year. The median value
is not affected by the maximum and minimum values [11] and can represent the general
level of the entire data. To further avoid the impact of poor observations, the median value
of the annual image set was used to synthesize the annual images, and the annual Landsat
time series images from 1987 to 2021 were obtained.

Forest distribution maps form the basis of forest landscape research. In this study,
GEE’s random forest classifier was used to classify the land-use types in the study area
into six categories based on the annual Landsat images: forest, water, cultivated land, con-
struction land, grassland, and unused land. Here, the forest is considered to be a land area
with a canopy density of >30%. The input features of the random forest classifier consisted
of all bands of the Landsat image, and at least 1000 sample points (including no less than
500 forest samples) were selected from each year for land cover classification. Finally, the
land cover classification for 1987–2021 was obtained. In the study area, 700 sample points
were randomly generated for each year to verify the accuracy of the classification results,
and the overall accuracy and Kappa Coefficient were generated by constructing a confusion
matrix for accuracy evaluation.

2.2.2. Calculation of the Forest Landscape Index

Under the influence of ecological restoration projects and human activities, forest
coverage and fragmentation in semi-arid areas have undergone tremendous changes [40,41].
According to the definition of ecological land degradation and restoration forwarded by
Feng et al., the synergistic changes in forest coverage and fragmentation can indicate the
degradation and restoration processes of landscape patterns [42]. Therefore, this study
calculated two landscape indices—CA and PD—to analyze the ecological process. Their
formulas and ecological significance are shown in Table 1.

Table 1. Formulas for the representative landscape indices and their ecological significance.

Index Formula Units Ecological Significance

Forest cover area (CA)
CA = F( 1

10,000 )
F:total forest area in landscape

units (m2)
ha

Forest area is the basis for maintaining forest
ecosystem activities. The loss of forest represents
the loss of biological habitat, which translates into
reduced stability. The trend in CA is also an
important basis for distinguishing different
ecological processes.

Patch density (PD)

PD = N
A

N: number of patches in
landscape units

A: area of landscape units (1 km2)

number
(1 km2)

PD can reflect forest fragmentation, which is the
most direct manifestation of forest landscape
structural changes and is an important indicator to
measure the activity of ecological processes. The
increase in fragmentation often represents a
decrease in stability.

The classic way to calculate the landscape index is to divide the study area into regular
grids. Each grid is regarded as a landscape unit, and the landscape index is calculated one
by one. By referring to the existing research, a 1× 1 km grid was used as the landscape unit
size, which could effectively capture local details of landscape dynamics and identify the
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temporal heterogeneity of the landscape in the time series analysis [43]. Since forest pattern
evolution takes time, it is important to determine at the outset which landscape units must
be observed to study the pattern of change. This study observed 119,668 landscape units,
including forests, in 1987 as the initial landscape units and calculated the landscape indices
year by year. The calculation process was performed using the Fragstats v4.2 software.

2.2.3. Segmenting Time Series Based on TICC

TICC is a model-based multivariate time series clustering method. It can find regular
structures in multidimensional time series data, discover complex synergistic changes
among multiple time series features, then segment and classify time series data with adap-
tive lengths to obtain interpretable change processes. It deals with a set of multidimensional
time series of length T (Equation (1)). However, TICC clusters subsequences of length
w instead of each time point. The subsequences are divided by the original time series,
called Xt = [xt−w+1, xt−w+2, . . . , xt]. Moreover, a new sequence, X = [X1, X2, X3, . . . , XT ],
is obtained. Each XT in the new sequence has a one-to-one correspondence with the xt of
the original sequence. TICC analyzes XT and assigns the cluster type to the corresponding
time point xt, and then obtains the repetition pattern of the original time series.

Xorig = [x1, x2, x3, . . . , xT ] (1)

TICC uses an inverse covariance matrix θ to describe the subsequences and clusters.
The elements in different positions of the matrix represent the correlation between two time
series features at different times, which can provide an interpretable representation for the
clustering results. TICC updates the cluster parameters based on the alternating direction
method of multipliers (ADMM). TICC assigns a cluster through a dynamic programming
algorithm. The details of the algorithms refer to the work by Hallac et al. [37].

Determining the optimal number of clusters for the TICC algorithm requires several
evaluation metrics. In this study, the Bayesian information criterion (BIC) and the Davies
Bouldin index (DBI) were used to select the number of clusters [37]. According to the
minimum value of BIC and DBI, a set of timing segmentation results can be obtained.

2.2.4. Extracting Short-Term Change Process

It was necessary to further analyze the results of TICC to determine forest restora-
tion and degradation. The results of TICC showed the change processes with temporal
heterogeneity, which implied that the length of each type of change process varied. This
study averaged the subsequences of the same length for each cluster, and the OLS method
was employed to obtain the trend of two indices to represent the trend of the cluster. A
positive slope (K) indicated a positive trend; otherwise, the trend was negative [44]. Fur-
thermore, the F-test was used to determine the significance of the linear trends (F > Fa,
p > a , a = 0.05). A significance level of 0.05 was used to reject the null hypothesis,
which stated that there was no significant trend in the series. As shown in Table 2, each
cluster could be defined as a degradation-restoring stable one by analyzing the trends of
the two indices. According to the description of ecological land and ecological restoration
in the Opinions on the Delineation and Strict Observance of the Red Line of Ecological
Protection (http://www.gov.cn/zhengce/2017-02/07/content_5166291.htm (accessed on
23 August 2022)) and the report of Feng et al. [42] and Li et al. [45], this study defined the
ecological process that reflects the increase in integrity, stability and connectivity of the
ecosystem as restoration, and the opposite process as degradation. The results of TICC
showed that each landscape unit contained at least one subsequence change process. The
cumulative times of different change processes in each landscape unit were counted to de-
termine the spatial distribution of the restoration, degradation, and stable change processes.
Moreover, the duration and start time of the change processes were obtained to determine
the temporal distribution.

http://www.gov.cn/zhengce/2017-02/07/content_5166291.htm
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Table 2. Definitions of the change processes based on CA and PD trends.

Change Process
Trend

Ecological Significance
CA PD

Degradation Negative No trend

The decrease in the area of forest patches does not change the
overall fragmentation, and the patches disappear from locations on
the edges or inside of existing patches. Patch changes correspond
to the change process of shrinkage and perforation.

Degradation Negative Negative
Decreased area of forest patches leads to decreased overall
fragmentation. Patch changes correspond to the change process of
attrition.

Degradation Negative Positive
Decrease in patch area fragments forest patches, leading to an
increase in overall fragmentation. Patch changes correspond to the
change process of division.

Degradation No trend Positive
Although the patch area is stable, the degree of fragmentation
increases and the integrity of the forest landscape decreases, which
is considered degradation.

Restoration Positive No trend

Increase in patch area does not affect overall fragmentation; the
increase in patch area is located at the edge or inside of the patches.
Patch changes correspond to the change processes of expansion
and infilling.

Restoration Positive Positive
An increase in the number of patches leads to an increase in forest
area and fragmentation. Patch changes correspond to the change
process of outlying.

Restoration Positive Negative Increase in the patch area reduces overall fragmentation. This is the
process of landscape connectivity.

Restoration No trend Negative
Patch area is stable, and the decrease in fragmentation implies that
the integrity of the forest landscape has increased, which is
considered restoration.

Stable No trend No trend Both the area and the fragmentation remain stable.

2.2.5. Assessing Landscape Stability

According to the subsequence change processes, four forest landscape evolution
modes were defined (as shown in Table 3). Based on the characteristics of these evolution
modes, the landscape stability was evaluated from two aspects: its ability to maintain its
own state and its ability to recover after being disturbed.

Table 3. Definition of long-term evolution based on degradation, restoration, and stable processes.

Long-Term Evolution Mode Description Stability
Measurement

No Change mode There are no restoration or degradation processes in long-term
evolution. Forest landscape pattern does not change. Stable

Decrease mode There are at least one or more degradation processes but no
restoration process in long-term evolution. Unstable

Increase mode There are at least one or more restoration processes but no
degradation processes in long-term evolution. Stable

Wave mode
There are both degradation and restoration processes in
long-term evolution. For example, forest landscape patterns
may first degrade, then recover to stable.

Cumulative time
switching frequency

restoration time
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No change mode implies that a forest can remain stable all the time, which indicates
strong resistance. Furthermore, persistent forest patches have higher ecological value
and resilience [46–48]. The increase mode shows forest gain and defragmentation. Lower
fragmentation and higher coverage indicate a higher ecosystem resilience [49]. There are
no degradation processes in increase mode, which indicates strong resistance. Landscape
units with these two evolution modes have strong stability.

Decrease mode shows forest loss and fragmentation, which indicates declining ecosys-
tem resilience. Landscape units with decreased mode are unstable as they cannot resist
disturbance and cannot recover to a stable state.

The stability of the wave mode cannot be directly determined because of the diversity
and uncertainty of the duration of the change processes. In order to assess the landscape
stability of the units with wave mode, four metrics were calculated. The process of degra-
dation and restoration can reflect changes in landscape stability. Therefore, the cumulative
time of forest degradation and restoration was calculated to evaluate its stability. The
shorter the cumulative time of degradation, the longer the cumulative time of restoration,
and the more stable the landscape is. The switching frequency of degradation and restora-
tion can indicate the forest’s vulnerability and resistance [15]. The lower the frequency,
the more stable the landscape is. This study also analyzed whether the forest could be
recovered to a stable state after degradation to judge the resilience of the forest landscape.
The less time it takes to restore the landscape to stability, the more stable it is.

3. Results
3.1. Characteristics of Subsequence in Landscape Dynamic

DBI and BIC were used to test the effects of TICC, and the number of clusters ranged
from 6 to 12. Based on the minimum values of DBI and BIC for different cluster numbers,
the optimal cluster number was determined to be 9 (Table 4).

Table 4. Performance of various validity indices in different cluster numbers.

Index
Number of Clusters

6 7 8 9 10 11 12

BIC (108) 5.791 5.966 6.131 5.804 7.163 7.474 8.017
DBI 1.72 1.92 1.94 1.60 2.03 2.00 2.28

With the performance of CA and PD in each cluster, this study found four restoration,
two degradation, and three stable processes (Figure 3 and Table 5). The distribution of the
landscape indices has been counted for each cluster of TICC to analyze the subsequence
change process.

Table 5. Statistics of forest change processes.

Cluster
CA (ha) PD (Patch Number/1 Km2)

Change Process
Mean Change

Rate St.dv Trend Mean Change
Rate St.dv Trend

1 14.1 0.59 6.7 Positive 18.2 −0.40 5.9 Negative Restoration
2 14.2 0.64 6.0 Positive 31.8 1.66 10.5 Positive Restoration
3 27.2 0.44 7.0 Positive 27.7 0.37 7.2 Positive Restoration
4 42.9 0.38 8.0 Positive 19.4 −0.02 5.4 No trend Restoration
5 11.1 −0.54 5.1 Negative 7.9 −0.23 5.1 Negative Degradation
6 15.7 −0.75 2.9 Negative 16.7 0.57 7.1 Positive Degradation
7 63.2 0.06 9.2 No trend 9.5 −0.05 3.8 No trend Stable
8 42.7 0.12 15.3 No trend 13.4 0.08 5.1 No trend Stable
9 85.7 0.04 7.7 No trend 3.6 −0.07 2.0 No trend Stable
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A forest landscape in the restoration process will have a high degree of fragmentation
and varying degrees of forest cover area. There were three types of restoration processes:
Cluster 4 represented forest patch expansion, Clusters 2 and 3 represented forest restoration
based on the increase in forest patches, and Cluster 1 showed defragmentation.

This study found two degradation processes, Cluster 5 represented shrinking forest
degradation, and Cluster 6 represented forest patch split. Low coverage, fragmentation,
and variance show that the degradation process is mainly distributed in the landscape
units with low coverage.

The characteristics of the stable process showed that forest landscapes with high
coverage and low fragmentation remain stable. The CA’s variance in Cluster 8 was higher
than that in any other clusters, which suggests that some low-coverage landscape units can
also remain stable.
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3.2. Spatiotemporal Distribution of the Forest Change Processes

This study found a total of 275181 subsequences, of which 26% were stable, 46%
were restoration, and 28% were degradation. Landscape units with restoration, stable,
and degradation processes accounted for 75%, 42%, and 47%, respectively. Landscape
units with restoration processes were widely distributed in the study region, as shown in
Figure 4a, and 26.5% of landscape units had a cumulative restoration time of more than
30 years (Figure 4c). The duration of all restoration subsequences was counted, as shown in
Figure 4b. The percentages of restoration subsequences for the two time periods (5–10 years
and 10–15 years) were large, accounting for 26.7% and 21.3%, respectively. Restoration
subsequences of more than 30 years accounted for 16.7%. There were fewer areas where the
cumulative restoration time was less than 10 years, but more subsequences with a duration
of fewer than 10 years, which shows that the restoration is mainly short-term and occurs
several times in the landscape units.

As shown in Figure 5a, landscape units with a cumulative degradation time of more
than 30 years were mainly distributed in the central Fenhe river basin, Taiyuan Basin, and
west of the Luliang Mountains and accounted for 17.6% of the total area (Figure 5c). The
distribution of the degradation subsequences in each time period was relatively uniform,
as shown in Figure 5b. Most of the degradation lasted less than 10 years, accounting for
53.1%. The cumulative time and duration of degradation showed that the degradation
process was mainly short-term, most landscape units contained multiple degradations, and
the long-term degradation distribution was relatively concentrated.
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As shown in Figure 6a, the distribution of the landscape units with stable processes
was concentrated in the mountain area, and the areas that had cumulative stable times of
more than 30 years accounted for 38.2% (Figure 6c). The duration of stable subsequences
was mainly distributed in <10 years and >30 years, accounting for 50.3% and 30.1%,
respectively (Figure 6b).
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This study counted all start times for the three change processes (Figure 7). The initial
time period (1987–1995) showed an exceptionally high percentage of experiencing the
beginning of degradation (21.9%) and a low percentage of the beginning of stability (13.4%).
Over time, the beginning of degradation appears less and less; only 0.4% of the degradation
processes began in the last time period (2015–2021). During the 2000–2005 time period,
the beginning of restoration started to increase and reached a peak (10%) in the period
2005–2010. From the 2005 to 2010 time period, the beginning of the stable process kept
increasing until the last time period (2.4%).
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3.3. Characteristics of Landscape Stability

Four forest landscape evolution modes were summarized through the spatiotemporal
distribution of degradation, restoration, and stable processes. This study evaluated the
landscape stability based on the characteristics of these four evolution modes. Notably, all
landscape units with decreased mode were degraded over 30 years. These forest landscapes
with decreasing mode were severely degraded and unstable. Fortunately, they had the



Remote Sens. 2023, 15, 545 12 of 18

smallest share at 6.7% and were mainly distributed in the Taiyuan Basin and in the middle
of the Fenhe river basin (Figure 8e).
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The no change mode and increasing mode showed that the ecological habitat could
maintain the continuous growth and defragmentation of the area or a stable state and had
strong stability and anti-interference ability. As shown in Figure 8e, landscape units in no
change mode accounted for 17.7%, and those in increasing mode accounted for the highest
proportion at 39.4%. In general, more than half of the region was stable (57.1%).

Several evaluation metrics are calculated to determine the stability of landscape units
with wave mode (Figure 8a–d). Figure 8e shows the change frequency of different processes,
and the area with a change frequency of fewer than three times accounts for 76.3%. In most
regions, the cumulative time of restoration and degradation were trade-offs (Figure 8a,c),
which implies that the duration of maintaining stable processes was short in most regions.
Only a small part of forest landscape units could be restored to a stable state, and 70.7%
of them were restored within 10 years (Figure 8b). Severely degraded areas are located in
Datong Basin, the northwest of Shanxi, the hilly loess area in the west, and the southern
Taiyue Mountains. Those areas with long cumulative times of degradation and high
frequencies of change indicate that the forest landscape would deteriorate after a short
period of restoration. Furthermore, Figure 8d shows the resilience of the forest landscape.
Those areas were difficult to restore to a stable state and were unable to maintain a recovery
state. The high-frequency change areas were located in the north, south, and west of Luliang
Mountain. Furthermore, some areas could be restored to a stable state and displayed strong
resilience, but they were easily disturbed.
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3.4. Landscape Stability Assessment of Representative Regions

The spatial distribution of landscape stability is an important reference for ecological
restoration on the Loess Plateau. This study analyzed the spatial distribution of landscape
stability in several typical regions (Figure 9). This is important to formulate ecological
restoration strategies in line with regional development.
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Figure 9. Typical regional forest landscape stability: (a) spatial distribution of evolution mode;
(b) spatial distribution of evolution modes and landscape stability evaluation index for wave mode
in Northwest Shanxi; (c) spatial distribution of evolution modes and landscape stability evaluation
index for wave mode in Northwest Shanxi; (d) spatial distribution of evolution modes and landscape
stability evaluation index for wave mode in the west of the Luliang Mountains.

Figure 9b shows the spatial distribution of forest landscape stability in Northwest
Shanxi. The forest landscape evolution mode in this area is dominated by wave mode.
Figure 9b-4,b-5 show that the most severely degraded area is located in the northwest. The
degree of degradation in the central and southern is low, and some areas can be restored to
a stable state (Figure 9b-2), which shows that ecological restoration has achieved certain
results. However, these areas change frequently (Figure 9b-1), and most of the changes are
more than five times, suggesting the ecological environment in this area is fragile and land
desertification is serious. This shows that the ecological environment in Northwest Shanxi
needs continuous attention.
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Figure 9c shows the spatial distribution of forest landscape stability in the Jincheng
Basin. The distribution of forest landscape evolution patterns in this area presents a ring
shape, which indicates that the stability of the forest landscape gradually increases from
the center to the edge. Figure 9c-4,c-5 show that the most severely degraded areas are
located in the middle of the basin, and these areas have a high frequency of change and
cannot return to a stable state (Figure 9c-1,c-2), with poor landscape stability. Although the
western of the basin also experiences long-term degradation, the frequency of change is
low, and some areas could return to a stable state. The degree of degradation is low in the
north of the basin.

Figure 9d shows the spatial distribution of forest landscape stability in the west of
the Luliang Mountains. This area is a typical loess hilly area with a fragile ecological
environment. The forest landscape evolution mode in this area is dominated by wave
mode. Figure 9d-4,d-5 show that the degree of degradation in this area gradually increases
from east to west. Most areas have a high frequency of change, and it is difficult to return
them to a stable state (Figure 9d-1,d-2). Notably, although there are also areas with severe
degradation and a high frequency of change in the east of the Luliang Mountains, these
areas were able to return to a stable state. The difference between the east and west sides of
Luliang Mountain further illustrates the ecological fragility of the Loess Plateau.

4. Discussion

In this study, a method for assessing landscape stability by characterizing forest land-
scape change processes based on TICC was proposed. TICC can consider the temporal
correlation of landscape changes, which allows us to automatically segment the time series
of multiple landscape indices and extract the intermediate change process of the landscape.
Detailed information such as start time, features, and durations of different change pro-
cesses could be automatically derived without the requirement of setting parameters. Four
long-term evolution modes were defined—decrease, increase, no change, and wave—based
on the distribution of change processes. These four evolution modes can evaluate landscape
stability and provide a reference for the formulation of ecological restoration strategies.

Under different ecological processes, forest landscape indices show various distribu-
tions and trends [19]. Statistical characteristics and trends of the change process allowed
us to analyze the spatiotemporal characteristics of the degradation, restoration, and stable
processes of the Shanxi forest landscape. The three forms of the stable process indicated
that the stable process mainly occurred in relatively complete forest landscapes that could
maintain long-term stability, which was consistent with the research of Li et al. [50]. Various
forms of degradation and restoration processes may be related to different driving factors;
for example, as shown in Table 5, the fragmentation of cluster 2 increased rapidly, as did
the forest area, which may have been caused by the restoration of afforestation projects.
Our descriptions of changes in landscape patterns were based on multiple landscape in-
dices and helped to improve our understanding of forest degradation, restoration, and
stable processes.

The cumulative time of the three change processes in a landscape unit can clarify the
degree of forest degradation and restoration in different regions. It has been shown that
altitude is an important factor that affects forest evolution [51]. High altitude hinders forest
fragmentation, and forests tend to maintain their own stability. It was found that the areas
that can maintain long-term stability are distributed in the interior of the mountainous area.
The areas that were seriously degraded were distributed in the main basins of Shanxi. It is
worth noting that the hilly loess area to the west of Luliang Mountain was also severely
degraded. This area is relatively high in altitude, but it is a typical coal-producing, hilly
loess area and underwent more serious degradation.

Wang et al. pointed out the impact of ecological restoration projects on forest landscape
patterns [29]. These restoration processes found in this study were related to the Natural
Forest Conservation Project and the Grain for Green Project. The start times of the three
change processes allowed us to further explore the impact of ecological restoration projects
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on forest landscapes. The Natural Forest Conservation Project was implemented in 1998,
and the Grain for Green Project in 2000. A considerable part of the restoration process
started in 2000–2005, and more and more stable landscapes appeared after 2005, which
indicates that ecological restoration achieved certain benefits.

Restoration and stable processes have a positive impact on landscape stability, while
the degradation process represents a decline in landscape stability. The long-term evolution
mode defined by these three ecological processes represents the composite ecological pro-
cesses and the impact of different ecological processes on landscape stability. This ensures
that landscape stability can be analyzed from the perspective of details and holistically,
which enables a better understanding of landscape stability. In Shanxi, 57.1% of the forest
landscape units were stable, 6.7% were severely unstable, and the proportion of severely
degraded landscape units (accumulated degradation time of more than 30 years) in the
wave mode was relatively low, which indicated that Shanxi’s forest landscape was gener-
ally stable but with areas of potential degradation. The restoration process in the wave
mode differed from that in the increase mode. The structure and composition of the initial
community formed during the post-degradation restoration process are unstable [3], which
is why most landscape units in wave mode fail to return to a stable state. There were
high-frequency change areas in the wave mode, most of which were distributed in the
northern part of Luliang Mountain. These are the intersections of the ecologically fragile
area and the sandstorm hazard area in northwest Shanxi [52]. The natural environment is
harsh, and vegetation restoration is difficult.

This study proposed a method to evaluate landscape stability by automatically ex-
tracting and analyzing the dynamics of forest landscape patterns with high-frequency and
complex ecological processes. However, there were limitations in our landscape stability
assessment that should be addressed in future studies:

(1) Classification accuracy affected the landscape index calculation in landscape patterns.
The results of landscape evolution modes based on this classification could be recog-
nized as long as the annual classification accuracy was accepted since the recognition
of landscape stability assessment is based on the change processes that have occurred
in the landscape indices from the land cover maps.

(2) A variety of driving factors and their interactions will affect ecological land degradation-
restoration [53], and it is necessary to combine driving factors to understand the
mechanism of forest landscape evolution. In the future, multiple time series can
be constructed that consider different driving factors (such as drought, fire, and de-
forestation) to determine the relationship between forest landscape dynamics and
driving factors.

(3) The landscape change process defined in this study was not universal but based
on prior knowledge and actual conditions in the study area. Such criteria may not
apply to other land-use types [54–59]. Hence, future research must use deep-learning
algorithms to detect change processes more intelligently to extract landscape evolution
modes of various land-use types.

5. Conclusions

In this study, a method was proposed to evaluate landscape stability by analyzing
the coordinated changes of multiple landscape indices to automatically extract the change
processes occurring in the forest landscape. It takes into account the continuity of landscape
changes through the TICC algorithm and automatically extracts the intermediate change
processes, including degradation, restoration, and stability. Long-term evolution modes
defined by these change processes can be used to quantify landscape stability.

The degradation and restoration of forest landscapes in Shanxi had various forms.
The restoration process occurred in landscape units with high fragmentation and multiple
coverages, and the duration was mainly short-term <10 years), accounting for 40.3%. The
degradation process occurred in low-cover landscape units, and the duration was mainly
short-term (<10 years), accounting for 50.3%. The stable process occurred in landscape
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units with high coverage and low fragmentation, and the duration was mainly short-term
(<10 years) and long-term (>30 years), accounting for 30.1% and 50.3%, respectively. The
time distribution showed that there were fewer degradations and more stable processes
over time, which indicated that the forest landscape in Shanxi was tending toward a
stable state.

More than half of the stable landscape units (57.6%) were distributed in the interior of
the mountains. Severely degraded areas accounted for 6.7% and were mainly distributed
in basins. Landscape units with wave modes accounted for 36.2%, most of which can-
not return to stability. There also exist frequently changing landscape units, which still
require attention.
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