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Abstract: In soybeans, off-target damage from the use of dicamba and 2,4-D herbicides for broadleaf
weed control can significantly impact sensitive vegetation and crops. The early detection and
assessment of such damage are critical for plant diagnostic labs and regulatory agencies to inform
regulated usage policies. However, the existing technologies that calculate the average spectrum
often struggle to detect and differentiate the damage caused by these herbicides, as they share a
similar mode-of-action. In this study, a high-precision spatial and spectral imaging solution was
tested for the early detection of dicamba and 2,4-D-induced damage in soybeans. A 2021 study was
conducted using LeafSpec, a touch-based hyperspectral leaf scanner, to detect damage on soybean
leaves. VIS-NIR (visible–near infrared) hyperspectral images were captured from 180 soybean plants
exposed to nine different herbicide treatments at different intervals after spraying. Leaf damage was
distinguished as early as 2 h after treatment (HAT) using pairwise partial least squares discriminant
analysis (PLS-DA) models based on spectral data. Leaf color distribution, texture, and morphological
features were analyzed to separate herbicide dosages. By fully exploiting the spatial and spectral
information from high-resolution hyperspectral images, classification accuracy was improved from
57.4% to over 80% for all evaluation dates. This work demonstrates the potential and advantages
of using spectral and spatial features of LeafSpec hyperspectral images for the early and accurate
detection of herbicide damage in soybean plants.

Keywords: dicamba; 2,4-D; mode of action; machine learning; phenotyping; hyperspectral image
processing; spectral and spatial features; spatial distribution analysis; pairwise partial least squares
discriminant analysis; PLS-DA

1. Introduction

Weed control is an essential practice to maximize crop yields and profits in soybean
production. Dicamba (3,6-dichloro-2-methoxybenzoic acid) is an auxin herbicide used to
control glyphosate-resistant broadleaf weeds [1–4]. 2,4-D (2,4-dichlorophenoxyacetic acid)
is another effective phenoxy herbicide for broadleaf weed control that has been widely used
since the 1940s [5–7]. However, both herbicides carry a high risk of off-target movement
and can cause damage to non-resistant plants at extremely low dosages [8–11]. Dicamba
drift in particular has become a national problem [12,13]. During the first year of dicamba
applications on dicamba-resistant soybeans, damage to non-target soybeans that were
sensitive to dicamba impacted an estimated 3.6 million acres [14]. During the 2021 growing
season, the EPA received approximately 3500 reports of dicamba damage [15], and this
was likely an underestimation of the number of off-target incidents. Herbicide damage to
soybeans can lead to lower soybean yields and further economic losses [16,17]. Dicamba

Remote Sens. 2023, 15, 5771. https://doi.org/10.3390/rs15245771 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15245771
https://doi.org/10.3390/rs15245771
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0009-0006-1777-7694
https://orcid.org/0000-0001-8668-0163
https://doi.org/10.3390/rs15245771
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15245771?type=check_update&version=1


Remote Sens. 2023, 15, 5771 2 of 18

off-target movement is causing more than USD 66 million in losses annually [18]. Thus, it
is critically important and urgent to develop tools to detect the drifts and precisely evaluate
the damage levels to help diagnostic labs and regulatory agencies determine liability and
recommend restrictions such as calendar date cut-off dates, air temperature restrictions, and
presence of atmospheric inversions for herbicide application to reduce off-target movement,
sensitive plant damage, sensitive soybean yield loss, and make timely, informed legislative
and registration decisions for herbicide formulations that contain these active ingredients.

Conventional methods for assessing herbicide damage require field sampling and
measurements of biological responses [19–21]. The cost of analysis is approximately be-
tween USD 65 and USD 150 for each plant sample [22]. Turn-around time is, on average,
4–6 weeks depending on how much backlog the lab has. Considering the time and labor
cost associated with traditional analyses, hyperspectral phenotyping may present a more
economical alternative for damage identification. Researchers used a portable spectrora-
diometer to determine the difference between dicamba-treated and untreated soybean in the
field 72 h after spraying [23]. Suarez et al. [24] found that the green and near-infrared (NIR)
hyperspectral data model could classify cotton plants treated with three different doses of
2,4-D with over 80% accuracy 14 days after spray. Matheus et al. [25] extracted Triangular
Greenness Index (TGI) scores from RGB images to evaluate soybean injury on dicamba at
the lowest dose of 0.28 g/ha. These studies demonstrated the potential of hyperspectral
plant phenotyping techniques in detecting herbicide damage in various crops.

However, previous studies have focused on high-concentration simulations of herbi-
cide damage, but in real-world scenarios, especially with herbicide drift, the concentrations
are often much lower, sometimes as little as 1/8000th (0.0695 g/ha) of typical dosages.
Recognizing the critical need for early detection of herbicide effects, particularly at lower
dosages, this study aims to address the need to simultaneously distinguish between herbi-
cides and to detect their effects at very low dosages as early as possible. Due to their shared
growth inhibitor mode of action [26], dicamba and 2,4-D cause similar visual symptoms in
soybean plants, such as leaf cupping and malformation, making it challenging to differ-
entiate between them in the field. This issue underscores the necessity for a more precise
and sensitive detection methodology. The existing studies in this realm have primarily
focused on extracting spectral information to derive indices for identifying herbicide dam-
age. Usually, the mean spectrum of each treatment group was extracted by averaging all
pixels of whole plants or leaves [27–29]. Although studies have already shown that there
are regional differences in the nutrient distribution of soybean leaves, the mean spectrum
does not contain this information [30]. Similarly, both dicamba and 2,4-D have been re-
ported to cause damage to soybean leaves, such as leaf cupping and other morphological
changes [16,20,31,32]. While the average spectrum approach has shown potential, it falls
short in capturing changes in leaf surface textures and morphological alterations caused by
herbicides like dicamba and 2,4-D. These limitations point to the necessity of incorporating
spatial analysis into the assessment of hyperspectral images, a dimension that has been
largely overlooked in previous research.

Recognizing the critical need for early detection of herbicide effects, particularly at
lower dosages, this study aimed to address this gap. Early detection is vital not only for
the effective management of crops but also for mitigating the economic and environmental
impacts of herbicide drift. By identifying herbicide damage at its initial stages, we can
significantly improve the response strategies and minimize potential losses.

On the other hand, a hyperspectral leaf imager LeafSpec device has been successfully
developed by Purdue researchers in recent years [33]. The LeafSpec device is known for
its high resolution in both spectral and spatial domains which ensures the data quality
for the experiment. Meanwhile, several studies employing spatial analysis techniques,
such as texture and morphological feature extraction, have shown promising results in
the field of plant phenotyping. For instance, M. Yogeshwari effectively utilized the Grey
Level Co-occurrence Matrix (GLCM) for the detection of plant diseases [34]. Furthermore,
research by Mahajan, S. et al. [35] demonstrated the usefulness of morphological feature
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extraction in plant recognition. These developments underscore the potential of spatial
analysis in enhancing the accuracy and efficacy of phenotyping models.

Therefore, this study was designed to detect injuries on soybean leaves caused by
different dosages of dicamba and 2,4-D using the LeafSpec hyperspectral imaging device.
Both spatial and spectral features of the hyperspectral images were used to build models
that were shown to be able to detect leaf injuries caused by different dosages and different
modes of action of herbicides in soybean plants at early stages.

2. Materials and Methods
2.1. Experiment Design

The experiment was conducted in the Lilly greenhouse facility at Purdue University.
Soybeans (Becks 296L4, Liberty Link) sensitive to 2,4-D and dicamba were grown in a 2:1
mixture of potting soil/sand and fertilized as needed to ensure optimal growth. The potting
soil is a blend of peat moss, perlite, vermiculite, dolomitic limestone, calcitic limestone,
and a non-ionic wetting agent. The insecticide Kontos (OHP, Inc., Mainland, PA, USA) was
drenched into the soil at the unifoliate stage to minimize insect damage. A randomized
block design was implemented with a total of nine treatments including the untreated
control and eight herbicide spray treatments. The experiment unit was one plant in a
plastic pot. Twenty replicates were included for each treatment group. Two herbicides
were tested in this study including dicamba (XTENDIMAX, Bayer, St. Louis, MI, USA) and
2,4-D (Enlist One, Corteva, Inc., Indianapolis, IN, USA). Four doses of each herbicide were
applied to the soybean plants at the V2 stage. The details of each herbicide treatment are
shown in Table 1.

Table 1. The dosages of dicamba and 2,4-D herbicides tested in this study.

Herbicide Treatment
Name

Rate
(g ae/ha)

XTENDIMAX Dicamba 1/1000 a 0.56
(Dicamba) Dicamba 1/2000 0.28

2.9 lb ae/gal b Dicamba 1/4000 0.14
Dicamba 1/8000 0.0695

ENLISTONE 2,4-D 1/25 42.6
(2,4-D) 2,4-D 1/50 21.3

3.8 lb ae/gal b 2,4-D 1/75 14.3
2,4-D 1/100 10.6

a The number behind the herbicide represents the ratios of the normal field use rate. b The formulation of the
product. ae = acid equivalent.

2.2. Image Acquisition and Visual Assessment of Herbicide Injury Phenotypes

LeafSpec, a leaf-scale hyperspectral imaging device developed by the Purdue Plant
Phenotyping Lab, was used for image acquisition in this experiment. The device can fully
scan a soybean leaf and acquire its hyperspectral data in a spectral range from 443 to 937 nm.
The images have a resolution of 879 pixels for distribution analysis. The instrument was
operated manually, and each scan took an average of 30 s. A fully unfolded leaflet of the
2nd trifoliate was imaged 1 to 2 HAT (hours after treatment) and 7, 14, 21, and 28 DAT
(days after treatment). A fully unfolded leaflet of the youngest trifoliate of the plant was
imaged at 8, 15, 22, and 29 DAT.

A visual assessment of damage was conducted at 7, 14, 21, and 28 DAT as validation of
the herbicide treatment control. Damage was evaluated based on symptoms on the entire
plant, including stem twisting, leaf drooping, leaf constriction, and formations of calloused
tissue on the soybean stem [36] in a range from 0 (no damage symptoms) to 100 (dead
plant) [37]. The assessment follows a standard in the field of weed science [16].

Photos of soybean plants with different damage levels are shown in Figure 1 as
a reference.
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2.3. Image Processing and Calibration

The segmentation between background and leaf samples in each hyperspectral image
cube was based on a red-edge segmentation method [38,39]. The red-edge region referred
to wavelengths between red color and the NIR region. Spectral reflectance of wavelengths
at the red-edge was considered to be characteristic vegetation areas based on previous
studies [40–42]. The wavelengths from 680 nm to 732 nm were selected as the red-edge
region in this project. The algorithm is shown below:

lin = transpose(−20 : 20) (1)

con = lin ∗ transpose(squeeze(img(:, :, I680 : I732)))/(lin ∗ lin) (2)

plt = con > threshold (3)

A 1-dimensional (D) convolution kernel referred to as lin was used to convolve the
red-edge region (Equation (1)) [43,44]. For optimal segmentation outcomes, a threshold of 7
was established according to Equation (3). Pixels that had values larger than the threshold
were considered as leaf tissues and the rest of the pixels were considered as background.

After image segmentation, the hyperspectral images (HSIs) of leaf samples were
calibrated with a white reference image taken with a flat strip of a white reference (a
polyvinyl chloride (PVC) panel) [45–47]. The purpose of the white reference calibration
was to reduce the noise from the uniformity of the light source for each wavelength [48].
The image calibration process was performed using the following equation:

Rcali =
Rraw − Rdark

Rwhite − Rdark
(4)

The spectral data were preprocessed with a Savitzky–Golay smoothing filter of order
1 with a window size of 5. The Savitzky–Golay smoothing filter is effective for noise
reduction of spectra [49]. Image processing and analysis were carried out using MATLAB®

2020a (MathWorks Inc., Natick, MA, USA).

2.4. Mean Spectrum and Normalized Difference Vegetative Index (NDVI) Calculation from HSIs

The average spectrum of soybean leaves was obtained by averaging all the pixels of
the entire leaf. This gave us an average spectrum of all experimental samples, covering
spectral information from wavelengths of 443 nm to 937 nm. The two extreme ends of the
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spectrum were removed due to noise, and spectral data from 450 nm to 900 nm were used
for further analysis. The NDVI was a useful tool for measuring leaf stress [23,40,43,50].
NDVI has also been proven to have a relationship with nitrogen status and chlorophyll [51].
Reflectance intensity at 800 nm and 630 nm were picked from the mean spectrum for
NDVI calculations.

2.5. Statistical Tests for Visual Assessment of Herbicide Injuries and NDVI

The purpose of incorporating visual evaluation into the study was to confirm the
efficacy of different dosages of our herbicide treatments. The NDVI was utilized to discern
whether it could effectively differentiate between leaves treated with dicamba and 2,4-D.
To evaluate the significance of the variations across different herbicide treatments, Tukey’s
Honest Significance Difference (HSD) test was employed, with a significance level set at
0.05. This statistical method played a crucial role in pinpointing which treatment groups
exhibited substantial differences [52], thereby offering a comprehensive insight into the
effects of each treatment while mitigating the risk of Type I errors in multiple comparisons.
Additionally, for each treatment group, the mean and standard deviation were calculated
to provide a detailed statistical representation.

All statistical analyses were conducted using JMP software (Version 16, SAS Institute
Inc., Cary, NC, USA), a robust and widely recognized statistical package. The use of this
software not only ensures the credibility and accuracy of our statistical analysis but also
enhances the reproducibility and scientific rigor of our study.

2.6. Machine Learning Classification Model Built by Leaf Average Spectrum

A pairwise partial least squares discriminant analysis (PLS-DA) algorithm and a
Mahalanobis distance-based nearest neighbor method was applied to the mean spectral data
of the fully unfolded leaflet of the 2nd trifoliate. PLS-DA is a machine learning classification
algorithm suitable for high-dimensional data [53–55]. PLS-DA can extract high-dimensional
X data into low-dimensional Y space [56]. The algorithm has been proven to be effective
in processing hyperspectral data [43,53,54] The algorithm was applied to the processed
averaged spectra through the PLS_Toolbox (Version 8.8, Eigenvector Research, Inc. Manson,
WA, USA), which is one suite of multivariate and machine learning tools within the
MATLAB® computational environment. A single PLS-DA model is a binary classification
model. For a classification task with multiple classes, pairwise binary models are created by
forming all two-by-two combinations between all classes. By voting all binary prediction
results, the model is able to provide a prediction result for the multi-class classification.
The nearest neighbor algorithm was employed, utilizing the Mahalanobis distance as the
distance metric for the development of classification models. The Mahalanobis distance
(M-distance) was selected as it accounts for the variance within the data and is adept
at identifying similarities in high-dimensional spaces [57,58]. The calculation for the M-
distance is shown in Equation (2). D indicates the M-distance, x is the spectra data by
wavelength, m is the mean of each band for a group of spectrum, and C−1 stands for the
inverse covariance matrix of the independent variables.

D2 = (x − m)T ·C−1·(x − m) (5)

We divided the data into three different datasets, each containing data for 1, 7, 14, 21,
and 28 DAT, and the specific information of the data set is shown in Table 2.

Given that visual symptoms typically manifest 14 days after treatment (DAT), the
dataset corresponding to this time frame was chosen as a preliminary set for comparing
the performance of the PLS-DA and M-distance. The method demonstrating superior
performance in this initial comparison was subsequently selected as the preferred modeling
approach for datasets encompassing all observation days. In training each model, mean-
centered and auto-scaled methods were chosen to pre-process the original spectra. The
number of latent variables for each PLS-DA model was set to 3. The leave-one-out cross-
validation method was used for the model to determine the prediction accuracy. In the
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classifier employing the M-distance, the computation involved determining the distance
between each test spectrum and all spectra within the treatment groups, excluding the one
being tested. The treatment group that displayed the shortest distance to the test spectrum
was identified and subsequently selected as the classifier’s output. Overall Accuracy (OA)
and error rate were used to examine the performance of models. They were calculated
using Equation (6):

OA =
Numbr o f Correct Predictions
Total Number o f Predictions

(6)

Table 2. Treatments and number of replicates included in the training datasets for each of the three
classification models built in this study.

Dataset Treatments
(Number of Replicates)

High-Dosage Only 1/1000 dicamba
(20)

1/25 2,4-D
(20)

Untreated control
(20)

Combined Dosages Combined dicamba a

(80)
Combined 2,4-D b

(80)
Untreated control

(20)

All treatments 4 dosages of dicamba
(20 each)

4 dosages 2,4-D
(20 each)

Untreated control
(20)

a Combined Dicamba dataset is a combination of all four dosages of dicamba. b Combined 2,4-D dataset is a
combination of all four dosages of 2,4-D.

The study also attempted to visualize the prediction results of the PLS-DA model and
explore the spatial information by applying the model to each pixel of the hyperspectral
image. Heatmaps were created showing the prediction results of the soft voting probability
of the control treatment at different locations of the leaf image.

2.7. Distribution Analysis of Herbicide Injury Classification on Top Matured Leaves

To better capture the damage signal of herbicides on soybean leaves using hyper-
spectral images, this project conducted a distribution analysis with spatial information,
highlighting the need for spatial analysis. As shown in Figure 2, the high-resolution hyper-
spectral images show clear differences in spectral information across different locations,
further emphasizing the limitations of the average spectrum method.
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Figure 2. Calibrated spectral data obtained from three different locations on a soybean leaf using
hyperspectral imaging before spectrum smoothing was applied. Left: A stacked hyperspectral image
of a soybean leaf with three distinct regions of interest (ROIs) marked to illustrate the sampling points
for spectral data. ‘x’ and ‘y’ denote the horizontal and vertical dimensions. λ denotes wavelength
represented in nanometers (nm). The red square marks the margin of the leaf, the green square
highlights the main vein, and the blue square identifies the middle of the leaf. Right: The spectral
profiles corresponding to the ROIs on the soybean leaf.

A spatial distribution analysis can extract leaf damage features such as leaf scars and
abnormal shape growth. Since the symptoms of damage are usually observed on newly
grown leaves [12,13], images of top matured leaves were used for the leaf-level spatial
distribution study. Morphological and texture features were calculated from HSIs as key
information of leaf spatial distribution. Combining this with the mean spectrum data
extracted from previous steps of the same plant, a new dataset containing both spatial and
spectral information was created to train the herbicide classification models. The trained
model aimed to achieve better performance in classifying different herbicide dosages. The
number of latent variables was set to 5 in this modeling process. A performance comparison
was made between classification based on spectrum only and the combination of spectrum,
morphological, and texture features. The layout of the modeling process is shown in
Figure 3.
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Figure 3. Machine learning modeling was performed using a combination of average spectral
information, morphological features, and texture features extracted from raw hyperspectral imaging
data. Y1 through YN, representing a total of N features, were utilized as inputs for the model.

2.7.1. Morphological Features

The binary masks generated from the segmented images were used to extract the
morphological features of soybean leaves. The morphological features were obtained by
applying the regionprops function in MATLAB (Version 2021a, MathWorks, Natick, MA,
USA). In this research, leaf area, convex area, eccentricity, major axis length, minor axis
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length, and solidity were included as morphological features. The detailed equations for
the above features extraction are presented in the MATLAB official documentation [52].

2.7.2. Texture Analysis

The Gray-Level Co-Occurrence Matrix (GLCM) is a statistical algorithm for extracting
texture information. The GLCM functions characterize the texture of an image by calcu-
lating how often pairs of pixels with certain values and in a specified spatial relationship
occur in an image, creating a GLCM, and then extracting statistical measures from this
matrix [59,60]. In this study, contrast, correlation, energy, and homogeneity were calculated
as texture features by using MATLAB. These GLCM measurements were found to be useful
in identifying the spatial feature of plant leaves [61,62].

In this experiment, the sample images were first cropped to ensure that they were the
same size. The cropped images were inspected with the human eye to ensure that only
plant tissue information was included. Since the algorithm could only compute single-
channel matrices, it was necessary to reduce the dimensionality of the hyperspectral data.
A total of 386 bands were divided into 50 bands by calculating the average value. Texture
features were calculated for each binned band; 200 texture features were selected for each
HSI in total.

3. Results and Discussion
3.1. Visual Damage Ground Truth and NDVI

The visual damage assessment showed that the severity of the damage to the soybean
plants increased with the concentration of the herbicide applied (Figure 4). The 2,4-D groups
exhibited the most severe damage at 14 days after herbicide spray treatment (14 DAT), with
damage symptoms decreasing after this time point. In contrast, soybean injuries caused by
dicamba increased with both the herbicide dose and time after treatment. However, the
visual injury evaluation alone could not distinguish between dicamba and 2,4-D (Table 3).
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Table 3. Comparison of average visual damage ratings of each herbicide treatment on 7, 14, 21, and
28 days after spraying.

Treatment 7 DAT b 14 DAT 21 DAT 28 DAT

Dicamba1/8000 2.10 ± 2.85 e a 4.95 ± 4.21 e 3.85 ± 4.12 f 3.75 ± 3.84 e
Dicamba1/4000 1.95 ± 2.74 e 9.45 ± 4.50 c 9.55 ± 5.50 d,e 7.90 ± 4.60 d
Dicamba1/2000 3.85 ± 3.36 d,e 20.10 ± 4.68 b 20.40 ± 5.05 b 19.25 ± 3.35 b
Dicamba1/1000 8.55 ± 5.85 c 27.80 ± 7.22 a 32.40 ± 6.03 a 31.80 ± 4.26 a

2,4-D 1/100 4.20 ± 3.46 d,e 6.00 ± 4.68 d,e 7.53 ± 6.00 e 7.50 ± 5.66 d
2,4-D 1/75 5.45 ± 2.37 d 9.40 ± 4.47 c,d 11.25 ± 3.64 d 14.95 ± 4.24 c
2,4-D 1/50 12.20 ± 4.84 b 21.45 ± 6.13 b 15.20 ± 3.62 c 15.35 ± 3.80 c
2,4-D 1/25 15.30 ± 6.52 a 26.20 ± 6.86 a 19.75 ± 5.86 b 21.00 ± 5.28 b

a The visual injury was assessed on a scale of 0 to 100% with 0 representing no visible injury and 100% representing
complete plant death. b Mean ± standard deviation with a column followed by the same letter indicating that it is
not significantly different according to Tukey’s honest significant difference (HSD) test results (α level of 0.05).

Table 3 presents the comparison of average visual damage ratings for each herbicide
treatment at 7, 14, 21, and 28 days after spraying. The data are organized by treatment,
with mean visual injury scores and standard deviations provided for each time point. The
visual injury was assessed on a scale of 0 to 100%, with 0 representing no visible injury
and 100% representing complete plant death. Means followed by the same letter within a
column are not significantly different according to Tukey’s honest significant difference
(HSD) test results (α level of 0.05).

The NDVI values increased over time, demonstrating a growth trend of the plants
over the 28 days after treatment (DAT) (Figure 5). Significant differences were observed
between the NDVI values of the untreated control and herbicide-treated plants across all
evaluation time points (Table 4). However, except for 1 DAT, the differences in NDVI values
between the various herbicide treatments were not significant. The mean ± error and the
results of Tukey’s honest significant difference (HSD) test are presented in Table 3.
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Figure 5. The box plot of NDVI values of each treatment on 1, 7, 14, 21, and 28 days after treatment
(20 replicates were included for each herbicide treatment; UTC = untreated control).
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Table 4. Comparison of average NDVI values of each herbicide treatment on 1, 7, 14, 21, and 28 days
after treatment (DAT).

Treatment 1 DAT a 7 DAT 14 DAT 21 DAT 28 DAT

Dicamba1/8000 0.634 ± 0.017 b 0.697 ± 0.025 a,b 0.715 ± 0.017 d 0.738 ± 0.015 b,c 0.749 ± 0.014 b
Dicamba1/4000 0.632 ± 0.028 b 0.699 ± 0.021 a,b 0.720 ± 0.018 c,d 0.738 ± 0.017 b,c 0.750 ± 0.013 b
Dicamba1/2000 0.630 ± 0.038 b 0.709 ± 0.022 a 0.727 ± 0.018 a,b,c 0.743 ± 0.010 a,b,c 0.749 ± 0.010 b
Dicamba1/1000 0.626 ± 0.024 a 0.694 ± 0.017 b,c 0.723 ± 0.016 a,b,c,d 0.740 ± 0.012 a,b,c 0.750 ± 0.019 b

2,4-D 1/100 0.589 ± 0.047 c 0.698 ± 0.020 a,b 0.732 ± 0.012 a 0.746 ± 0.009 a,b 0.755 ± 0.013 a,b
2,4-D 1/75 0.619 ± 0.021 b 0.694 ± 0.018 b,c 0.729 ± 0.011 a,b,c 0.748 ± 0.016 a 0.749 ± 0.011 b
2,4-D 1/50 0.634 ± 0.030 b 0.695 ± 0.019 b 0.731 ± 0.011 a,b 0.746 ± 0.015 a,b 0.747 ± 0.016 b
2,4-D 1/25 0.629 ± 0.023 b 0.682 ± 0.018 c 0.721 ± 0.015 b,c,d 0.736 ± 0.015 c 0.737 ± 0.015 c
Untreated

control 0.680 ± 0.032 a 0.698 ± 0.023 a,b 0.721 ± 0.020 b,c,d 0.744 ± 0.013 a,b,c 0.760 ± 0.014 a

a Mean ± standard deviation with a column followed by the same letter indicating that it is not significantly
different according to Tukey’s honest significant difference (HSD) test results (α level of 0.05).

3.2. Machine Learning Classification Modeling Result of Mean Spectrum of the Whole Leaf
3.2.1. Machine Learning Method Comparison Preliminary Result

In the evaluation of machine learning models using the 14 DAT dataset, the results
in Table 5 revealed distinct differences in performance between the M-distance and PLS-
DA models. For the high-dosage-only dataset, the M-distance model achieved an OA of
86.67%, while the PLS-DA model demonstrated a superior performance with an OA of
93.3%. In the combined-dosages dataset, the M-distance model’s accuracy decreased to
63.33%, whereas the PLS-DA model maintained a higher accuracy level of 86.1%. The most
comprehensive dataset, encompassing all treatments, saw a further decline in the accuracy
of the M-distance model to 31.11%, while the PLS-DA model achieved an OA of 57.4%.
These results indicate the enhanced capability of the PLS-DA model in handling varied
herbicide dosages and complex treatment scenarios compared to the M-distance model.

Table 5. Overall accuracy (OA) of machine learning models evaluated using the 14 DAT dataset.

Dataset M-Distance PLS-DA

High-Dosage Only 0.8667 0.933
Combined Dosages 0.6333 0.861

All treatments 0.3111 0.574

3.2.2. High-Dosage Herbicide Treatment Classification

To test the feasibility of the mean spectrum, the two herbicide treatment groups with
the highest concentrations and the untreated control group were selected to build pairwise
PLS-DA models. The overall accuracy of the model exceeded 90% from the 1 DAT data.
The untreated control group achieved a 95% classification accuracy with the 1 DAT data
(Table 6). As the herbicide damage signal gradually intensified, the accuracy of the model
also increased. The overall accuracy of the PLS-DA model rose from 91.8% to 98.33% after
28 days (Table 6).

Table 6. The classification results of PLS-DA models built for high-dosage-only treatments using
average spectrum data on 1, 7, 14, 21, and 28 DAT.

Data Single Day Classification Overall Accuracy a

Treatment Samples 1 DAT 7 DAT 14 DAT 21 DAT 28 DAT

2,4-D 1/25 20 0.900 0.900 0.900 0.900 1.000
Dicamba 1/1000 20 0.864 0.950 0.950 0.950 0.950

UTC b 20 0.950 0.950 0.950 1.000 1.000
All c 60 0.918 0.933 0.933 0.950 0.983

a The overall accuracy (OA) was calculated by leave-one-out cross validation method in the PLS_Toolbox using
MATLAB. b UTC means unsprayed group. c All means the entire dataset used in this model. All is the summary
of the all the above classes.
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3.2.3. Combined Dosages Dataset Classification

The overall accuracy of models built on hyperspectral data collection on each evalua-
tion time point was close to or higher than 80% (Table 7). Models built from 7 and 28 DAT
data had the highest accuracy across all evaluation days. The untreated control group was
classified with 95% accuracy on the very first day after treatment (1 DAT). The classification
rate of combined dosages of dicamba increased over time and achieved an accuracy of
93.8% on 28 DAT. However, the accuracy of combined dosages of 2,4-D dropped from 14 to
28 DAT.

Table 7. The classification results of PLS-DA models built for combined dosages for each herbicide
group using average spectrum data on 1, 7, 14, 21, and 28 days after treatment (DAT).

Treatment Number of
Replicates

Single Day Classification Overall Accuracy a

1 DAT 7 DAT 14 DAT 21 DAT 28 DAT

2,4-D 80 0.838 0.888 0.888 0.875 0.775
Dicamba 80 0.700 0.825 0.825 0.838 0.938

UTC b 20 0.950 1.000 0.900 0.900 1.000
All c 180 0.789 0.872 0.861 0.856 0.872

a The overall accuracy (OA) was calculated by leave-one-out cross validation method in the PLS_Toolbox using
MATLAB. b UTC means unsprayed group. c All means the entire dataset used in this model. All is the summary
of the all the above classes.

3.2.4. All Treatments Dataset Classification

Table 8 displays the classification results of the PLS-DA models built for all herbicide
treatments and the untreated control using average spectrum data on 1, 7, 14, 21, and
28 DAT. The control group was classified with over 80% accuracy for each evaluation day.
For each herbicide treatment, the classification accuracy was over 65% on at least one of the
five evaluation time points. For the 2,4-D treatments, the highest and lowest dosages had
an overall accuracy of more than 75%. For the dicamba treatments, lower dosages (1/4000
and 1/8000) had better classification results than higher dosages.

Table 8. The classification results of PLS-DA models built for all herbicide treatments and untreated
control using average spectrum data on 1, 7, 14, 21, and 28 DAT.

Overall Accuracy of Single-Day Classification

Treatment Dosage 1 DAT 7 DAT 14 DAT 21 DAT 28 DAT

2,4-D 1/25 0.800 0.824 0.600 0.550 0.700
1/50 0.550 0.500 0.650 0.250 0.550
1/75 0.450 0.700 0.500 0.750 0.350

1/100 0.600 0.750 0.529 0.350 0.650
Dicamba 1/1000 0.400 0.330 0.391 0.550 0.550

1/2000 0.300 0.450 0.450 0.650 0.450
1/4000 0.100 0.650 0.300 0.900 0.750
1/8000 0.765 0.769 0.850 0.850 0.450

UTC a 0.864 1.000 0.900 0.950 0.800
OA b 0.537 0.664 0.574 0.644 0.583

a UTC means unsprayed group. b The overall accuracy (OA) was calculated by leave-one-out cross valida-
tion method.

3.2.5. PLS-DA Prediction Result Heatmap

The heatmap in Figure 6 shows that the values of the pixel points at different positions
of the leaf did not completely coincide. Some spatial distribution patterns of the different
herbicide treatments were observed, such as the texture information of the leaves (e.g.,
veins) and differences in pixel values between dicamba, 2,4-D, and the untreated control on
the veins and the dots around the veins. Figure 7 reveals coherence in the dicamba group
heatmap, with clearly visible red regions.
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3.3. Distribution Analysis Result of Dicamba and 2,4-D Damage

The classification accuracy increased significantly after texture and morphological
features were added to the training dataset (Table 9). This suggests that the spatial analysis
contributes important features that reflect the varying magnitude of responses to different
herbicide doses. The 14 DAT dataset had the highest overall classification accuracy, which
is consistent with the results of the visual evaluation.
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Table 9. A comparison of classification model performance between models built using average
spectrum and combined features.

Treatment Dosage
7 DAT 14 DAT 21 DAT 28 DAT

M1 a M2 b M1 M2 M1 M2 M1 M2

2,4-D 1/25 0.824 0.750 0.600 0.824 0.550 0.684 0.700 0.722
1/50 0.500 0.650 0.650 0.824 0.250 0.778 0.550 0.733
1/75 0.700 0.467 0.500 0.867 0.750 0.600 0.350 0.824

1/100 0.750 0.611 0.529 0.714 0.350 0.800 0.650 0.714
Dicamba 1/1000 0.333 0.684 0.391 0.812 0.550 0.882 0.550 0.800

1/2000 0.450 0.789 0.450 0.667 0.650 0.750 0.450 0.900
1/4000 0.650 0.833 0.300 0.778 0.900 0.632 0.750 0.533
1/8000 0.769 0.833 0.850 0.875 0.850 0.684 0.450 0.667

UTC c 1.000 0.800 0.900 0.850 0.950 0.650 0.800 0.833
OA d 0.664 0.720 0.574 0.801 0.644 0.711 0.583 0.755

a M1 represents the model trained by the spectrum only. b M2 represents the model trained by all input features.
Training data have an average spectrum of 368 wavelengths, 200 texture features, and 6 morphological features.
All features were normalized before training. c UTC means unsprayed group. d OA means overall accuracy; all
the accuracy values in this table were cross-validated using the leave-one-out validation method.

4. Discussion
4.1. Visual Damage Ground Truth and NDVI

These results demonstrate the similarities in damage caused by dicamba and 2,4-D
for each dosage level, indicating that the experiment was well-controlled and prepared
and the protocol can be applied for future classification methods. The decrease in damage
symptoms for the 2,4-D groups after 14 DAT is consistent with previous research [33].
Soybean injury from dicamba, on the other hand, increased with both the increasing
herbicide dose and time after treatment, as reported by Robinson et al. (2013) [16,33]. Given
the visual similarities between the damage caused by dicamba and 2,4-D, it is essential to
develop more advanced methods to differentiate between the two.

The NDVI values were found to increase over time, illustrating the growth trend
of the plants over 28 DAT. This is because NDVI values tend to increase as plants grow
and develop more leaves and chlorophyll. Soybean plants, which absorb red light for
photosynthesis and reflect near-infrared light, have higher NDVI values [23,63]. Another
finding is that significant differences were found between herbicides with different dosages
at the earliest time point (2 HAT), and the differences in NDVI decreased over time. This
observation aligns with the results of Huang et al. (2016), which also highlighted that the
accuracy of detection decreases at later stages (2 weeks after treatment or WAT), particularly
at higher doses [23].

The results of the NDVI analysis indicated that the mean NDVI method was insuffi-
cient to distinguish between different dosages of dicamba and 2,4-D herbicides. Although
there was a significant difference between the NDVI values of untreated control and
herbicide-treated plants, the differences between herbicide treatments were not significant.
The limitation of NDVI may be attributed to its averaging effect across the entire leaf,
potentially leading to a dilution effect. Furthermore, dicamba and 2,4-D use the same herbi-
cide mode of action as plant growth regulators [26], suggesting a high degree of similarity
in their spectral effects. This similarity posits that a single Vegetation Index (VI) may be
inadequate for discerning their differences [43]. Consequently, the employment of more
sophisticated machine learning algorithms, such as PLS-DA, which can leverage spectral
information across all wavelengths, becomes imperative. Additionally, a spatial analysis
capable of extracting signals related to leaf malformation is essential for the advancement of
this research. This approach could provide a more nuanced understanding of the herbicidal
impacts, thereby enhancing the efficacy of plant phenotyping studies. The study aimed
to address this need by combining spectral and spatial information to better detect and
distinguish the herbicide-induced damage on soybean plants.
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4.2. Machine Learning Classification Result of Mean Spectrum of the Whole Leaf
4.2.1. High-Dosage Herbicide Treatment Classification

This study found that the model developed using hyperspectral data was able to
detect differences in herbicide treatments earlier than the human eye could. This is because
soybean injury from even low doses of dicamba may not be visible until 14 DAT [34]. In this
particular study, no visual damage was observed at 2 HAT, and only a low level of damage
was observed at 7 DAT. Furthermore, the accuracy of classification in the untreated control
group suggests that the herbicide signal can be detected by the model built on LeafSpec
hyperspectral data.

One possible explanation for this is that soybeans experience a stress response to the
newly exposed herbicide, resulting in subtle changes in the leaves that are imperceptible to
the human eye but can be captured by hyperspectral information. It was hypothesized that
in the early stages of exposure, there are strong signals in the near-infrared region. This
explains why using NDVI can detect damage that is imperceptible to the human eye [23].

The increase in the model’s accuracy over time, as the herbicide damage signal grad-
ually intensified, indicates that the herbicides continuously affected soybean plants and
that the damage caused by the herbicides did not diminish over time. This finding is
consistent with the information from the visual assessment of the herbicide-induced dam-
age [16,64]. The high classification accuracy achieved by the models highlights the potential
of hyperspectral data for detecting and differentiating herbicide damage in soybean plants.

4.2.2. Combined Dosages Dataset Classification

The trend of herbicide treatment accuracy could be explained by the visual assessment
of herbicide damage. The results of the combined dosage model proved that the PLS-DA
models based on mean spectra were able to capture the signal of different dosages of
dicamba and 2,4-D applied on soybean leaves. The high classification rate for the dicamba
and 2,4-D treatments suggests that soybean plants respond differently to the two herbicides,
and also demonstrated that PLS-DA models built upon high-dimensional spectral data
were able to capture this difference.

The decrease in accuracy of the combined-dosage 2,4-D model from day 14 to 28 DAT
can be attributed to the decline in visual damage observed in our research. As the symp-
toms of 2,4-D injury diminished over time, it became more challenging for the PLS-DA
model to accurately classify the herbicide-treated plants. This highlights the importance
of considering the temporal dynamics of herbicide-induced damages when developing
classification models based on hyperspectral data.

4.2.3. All Treatments Dataset Classification

These results suggest that the spectral information of leaves can reflect how soybean
responds differently to different doses of herbicide. However, the signals captured by the
model were not able to distinguish these differences very accurately. This implies that the
average spectral modeling approach is not sufficient to solve this problem. To improve the
performance of the model, future studies should consider introducing a leaf distribution
analysis. By incorporating spatial information and potentially more sophisticated classifica-
tion algorithms, the ability to accurately distinguish between different herbicide treatments
may be enhanced.

4.3. Distribution Analysis Result of Dicamba and 2,4-D Damage

The integration of texture and morphological features into the PLS-DA model not only
enriches the dataset but also introduces a multi-dimensional approach to plant phenotyping,
particularly in the context of herbicide damage assessment. This approach transcends the
limitations of traditional spectral analyses, which, while effective, often overlook the spatial
and textural nuances that are crucial in understanding the full impact of herbicides like
dicamba and 2,4-D. Texture features, which describe the surface characteristics of leaves,
provide valuable insights into the subtle changes caused by herbicides that might not be
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discernible through a spectral analysis alone. These features can capture variations in
leaf surface smoothness, roughness, or pattern changes, which are indicative of herbicidal
effects. By incorporating these texture characteristics, the model gains a deeper layer of
data, enhancing its ability to detect and classify the nuanced effects of different herbicides
on plant leaves. Similarly, morphological features, which involve the shape and structural
attributes of leaves, play a crucial role in assessing herbicide impact. Herbicides, especially
growth regulators like dicamba and 2,4-D, often cause deformities in leaf shape, such as
curling, twisting, or abnormal growth patterns. By quantifying these changes, the model
becomes more adept at identifying the specific herbicide responsible for the damage. This
is particularly significant in distinguishing between herbicides that might have similar
spectral signatures but different morphological impacts on plants.

The inclusion of these features represents a significant advancement in plant pheno-
typing, particularly in the realm of precision agriculture. By employing a more holistic
view of plant responses to herbicides, it becomes possible to achieve more accurate and
comprehensive assessments. This is crucial not only for understanding the effects of specific
herbicides but also for developing more effective and sustainable agricultural practices.

In future work, it is crucial to recognize that the current approach combining GLCM
with image processing for feature extraction and PLS-DA modeling is an initial effort to use
both spatial and spectral data. Although promising, this method is still being developed.
Advancements in machine learning, especially neural networks, offer potential enhance-
ments. Neural networks, particularly deep learning models, are adept at handling complex
spatial and spectral data, which is crucial for plant phenotyping. Looking forward, the ap-
plication of such an enhanced model in remote sensing, especially through high-resolution
imaging from drones, opens up new frontiers in large-scale agricultural monitoring. The
ability to detect herbicide damage at the canopy level using drones equipped with ad-
vanced imaging technology would revolutionize the way we monitor and manage crop
health on a large scale. It would enable the early detection of herbicide stress, allowing for
timely interventions to mitigate damage. Furthermore, this technology could be pivotal in
precision agriculture, where site-specific management practices are employed to optimize
crop health and yield.

5. Conclusions

This study demonstrated the potential of a high-precision spatial and spectral imaging
solution for the early detection and classification of soybean damage caused by dicamba
and 2,4-D herbicides. By combining spectral and spatial features, the classification accuracy
of herbicide treatments and dosages was significantly improved compared to using spectral
data alone or traditional human inspection. The novel touch-based leaf imager, LeafSpec,
provided high-resolution imaging with a high signal-to-noise ratio, enabling a more accu-
rate herbicide damage diagnosis. This study achieved two significant breakthroughs in
using hyperspectral plant phenotyping to study herbicide-induced damage to soybeans,
specifically for extremely low concentrations of dicamba and 2,4-D. In our experiments, the
model was capable of detecting damage from dicamba at a dilution as low as 1:8000 and
from 2,4-D at a dilution of 1:75.

Advanced machine learning models, such as pairwise PLS-DA models, were employed
to enhance the accuracy of the detection results by incorporating spectral information, leaf
color distribution, texture, and morphological features. These methods have the potential
to advance imaging technologies for plant diagnostic labs and state regulatory agencies,
helping to determine the source and liability responsibilities of herbicide off-target damage.

Future research is expected to concentrate on advancing methods that combine spatial
and spectral analyses for practical applications in herbicide drift detection models. Fur-
thermore, attention will be directed towards evaluating the transferability of models from
greenhouse settings to real-world agricultural environments. In the pursuit of this goal,
efforts are being made to integrate the model into an unmanned aerial vehicle (UAV) field
scouting robot, a move that resonates with the overarching theme of remote sensing. This
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integration is envisioned to facilitate large-scale, real-time monitoring and assessment of
herbicide damage in agricultural landscapes. To verify the effectiveness of these methods,
field trials are being planned for execution.
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