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Abstract: Global Navigation Satellite System (GNSS) vertical displacements are widely used to infer
terrestrial water storage (TWS) variations. The traditional Laplacian inversion requires dedicated
efforts to determine the optimal parameters, which has an important effect on the spatial patterns.
In this study, we develop a new GNSS inversion method with flexible spatial constraints. One
major merit is that the new method only requires loose boundary conditions rather than optimal
parameters. A closed-loop simulation shows that the inversion using spatial constraints is improved
by 7–21% compared with the Laplacian constraints. We apply this method to 18 watersheds across the
Contiguous United States (CONUS) to infer daily TWS variations from January 2018 to August 2022.
The results show that the amplitudes of monthly TWS time series from the spatial and Laplacian
constraints are comparable to the Gravity Recovery and Climate Experiment (GRACE) Follow-On
(GFO) in 16 watersheds. Furthermore, the standard deviation between the spatial constraints and
GFO is at the same level as that between the Laplacian constraints and GFO. We also extract the
daily TWS variations caused by heavy precipitation events in California. Our results demonstrate
that spatial constraint inversion supplements the existing constraint strategies of GNSS inversion in
hydrogeodesy; therefore, spatial constraint inversion can be an alternative tool for GNSS inversion.

Keywords: terrestrial water storage; GNSS vertical displacements; spatial constraints inversion; the
Contiguous United States

1. Introduction

Accurately monitoring and quantifying terrestrial water storage (TWS) changes is of
great importance for investigating the water available for humans and natural systems [1,2].
Satellite gravimetry, e.g., Gravity Recovery and Climate Experiment (GRACE) and GRACE
Follow-On (GFO), which were launched in March 2002 and May 2018, respectively, provides
a new tool used to study global mass transports, such as the terrestrial water cycle and ice
sheet and glacier mass balance, at a global scale at an approximately 300–500 km spatial
resolution and monthly temporal resolution [3]. Due to their coarse spatial resolution,
GRACE and GFO are more sensitive to large-scale mass variations, and it is challenging to
subtract high-frequency TWS changes, e.g., on a sub-monthly time scale.

The Global Navigation Satellite System (GNSS) can be used to infer regional TWS
variations independently. The solid earth deforms due to the Earth’s mass changes, in-
cluding water, snow, ice and atmosphere, and GNSS accurately measures this deformation
with millimeter-level precision [4–6]. The elastic response can be theoretically modeled
using loading theory [7,8]. With displacements from densely distributed GNSS stations
and Green’s functions, the seasonal TWS changes have been inferred for the first time
in California at a resolution of 50 km [4]. Subsequently, TWS variations are inverted at
various spatiotemporal scales in the continental United States (CONUS) [1,5,6,9–12] and
China [13–20]. For example, Brosa et al. inverted the mass loss during a severe drought
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period in the western United States, which shows consistency with the decreases in precipi-
tation and streamflow [6]. Fu et al. recovered the seasonal TWS variations in the northwest
of the CONUS; they show that the GNSS can be independently used to estimate the TWS
variations. The mass changes in dry and wet periods can be inferred using the GNSS, and
it can fill the gap between GRACE and GFO [1]. Zhang and Jin estimated the monthly
evapotranspiration variation using the GNSS-derived TWS in the Mississippi River basin;
the results indicate strong agreement between the evapotranspiration variations obtained
from the GNSS and other remote sensing datasets [9]. Liu et al. recovered the TWS in
Southwest China using an independent component analysis (ICA)-based inversion method;
the results show that the TWS variations from ICA-based inversion highly agree with the
GRACE and hydrologic models, especially in the northwest of the study region with an
extreme and complex terrain, where the TWS derived from the original GNSS data was
overestimated [19].

In areas with a sparse distribution of GNSS stations, the Slepian basis function (SBF) is
another effective tool used for TWS inversion. Han and Razeghi proposed the SBF method
for surface mass variation inversion in the Australian continent for the first time using
GNSS vertical displacements [21]. Subsequently, Jiang et al. inferred the TWS variations
in mainland China and Brazil; they developed a novel drought index and assessed the
severity of hydrological drought [22,23]. Tang et al. developed a hydrological drought
index at multiple scales based on the TWS using the SBF and found that it is more robust
in quantifying Brazil’s hydrological drought [24]. Li et al. inverted the TWS variations in
southwest China; they found that the amplitudes of the TWS using the SBF are larger than
those of GRACE/GFO, and the filter radius of the SBF inversion method can be determined
according to the average distance between the GNSS stations [25].

The TWS inferred using the Green’s function and SBF methods show good agreement
with the GRACE/GFO and hydrologic models, but there are differences in the spatial
and temporal patterns in some regions [26]. Other recent studies focused on obtaining
more reliable TWS estimates through the joint inversion of the GNSS and GRACE/GFO
in the CONUS [27–29] and China [26,30–32]. Adusumilli et al. [27] and Carlson et al. [29]
pointed out that the integration of GNSS and GRACE produces a higher spatiotemporal
resolution than does GRACE alone. The GNSS has the advantages of recovering the TWS
with a daily temporal resolution and near-real time, i.e., increasing attention is being paid
to high-frequency extreme hydrological events, such as hurricane Harvey along the Gulf
Coast [33], and heavy precipitation in Yunnan [17] induced TWS changes.

In many studies, the conventional and Laplacian constraints are commonly applied
to the GNSS inversion. They both help to solve ill-posed equations when the number of
pixels is larger than the number of GNSS stations. In addition, the Laplacian constraints are
effective tools used to ensure that the TWS changes vary smoothly between neighboring
pixels. The principle of Laplacian constraints is illustrated in Figure 1. There are two
kinds of Laplacian constraints. To constrain a target grid point, the simple Laplacian
constraints use its four neighboring grid points, the left one, the right one, and the ones
on the top and bottom, to force their average to be zero. The complex constraints use all
eight neighboring grid points. In essence, the Laplacian constraints require a complex
and intricate process to determine the optimal smoothing factor in order to balance the
roughness of the TWS in the spatial distribution and the misfit between the model’s
prediction and observation. Sometimes, determining the optimal smoothing factor using
the L-curves [34] or generalized cross-validation (GCV) methods is difficult [35]. Other
researchers have attempted to establish different constraint strategies. Li et al. presented
the a priori constraint based on the hydrological models, and the optimal regularization
parameter was determined through the iterative least squares estimation instead of the L-
curves or GCV method; simulations show that TWS variations from this new constraint can
produce more robust inversion results than the traditional Laplacian constraint [20]. Shen
et al. proposed a boundary-included inversion algorithm, which reduced the variance by
10%–20% in the boundary regions [12]. However, both the a priori constraint and boundary-
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included inversion methods need to determine the optimal regularization parameters. In
addition, the Laplace matrix constitutes tightly fixed constraints, which may result in overly
smoothed patterns. To address these issues, we propose a loose spatial constraints strategy.
As shown in Figure 1c, the neighboring pixels of a certain pixel are defined as all the pixels
within a given radius instead of fixed points. In addition, the TWS at the target point is
allowed to change within a threshold value. This threshold value is determined based on a
presumed difference between the target point and its surrounding area. These two factors,
the given radius and the threshold value, are the key features of the spatial constraints.
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Figure 1. Illustration of the inversion of TWS of a specific pixel under Laplacian and spatial constraints.
(a) represents the simple Laplacian constraints. (b) represents the complex Laplacian constraints.
(c) represents spatial constraints.

We aim to improve the spatial distributions of TWS variations across the CONUS in
this study. We establish more flexible constraint schemes based on the spatial constraints,
which are exempt from the precise determination of the optimal smoothing factor. We first
conduct simulations to demonstrate that the inversion with spatial constraints improves
the spatial pattern of the TWS. Then, we compare the TWS from different inversions to the
TWS provided by the models and time-variable gravity.

2. Study Area and Datasets
2.1. Study Area

The CONUS is located in the south of the North American continent, facing the Atlantic
Ocean in the east, the Pacific Ocean in the west, Mexico and the Gulf of Mexico in the
south, and Canada in the north, and is surrounded by the sea on three sides. The CONUS
is divided into 18 watersheds by the United States Geological Survey (USGS), which are
shown in Figure 2a and listed by 2-digit hydrological unit codes (HUC-2) [36] in Table 1.
The CONUS is affected by complex terrain and climate change; its TWS variations differ
significantly over regions, e.g., a severe drought from 2012 to 2015, heavy precipitation
from 2016 to 2017 in California [28], and hurricane Harvey in August 2017, which induced
heavy precipitation and water gain along the Gulf Coast [33].

Table 1. Watershed division of the CONUS and the area and number of GNSS stations in the 18
watersheds and the CONUS.

HUC-2 Watershed Area (km2) n

1 New England 171,083 17
2 Mid Atlantic 301,894 26
3 South Atlantic–Gulf 713,806 104
4 Great Lakes 466,972 138
5 Ohio 428,693 80
6 Tennessee 107,319 27
7 Upper Mississippi 491,732 139
8 Lower Mississippi 262,302 28
9 Souris–Red–Rainy 154,068 23
10 Missouri 1,346,773 101
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Table 1. Cont.

HUC-2 Watershed Area (km2) n

11 Arkansas–White–Red 646,504 42
12 Texas–Gulf 467,444 34
13 Rio Grande 354,447 2
14 Upper Colorado 307,390 5
15 Lower Colorado 390,390 3
16 Great Basin 402,552 58
17 Pacific Northwest 779,423 227
18 California 477,853 265

CONUS 8,270,645 1315
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Figure 2. Study region and basic information of GNSS stations. (a) Overview of the geographical
area across the CONUS. The inset map in the bottom left shows the global view of the CONUS.
(b) Distribution of GNSS stations; the color inside the circle indicates the continuity of each GNSS
station. (c) Total number of GNSS stations recorded each day.

2.2. Datasets
2.2.1. GNSS Vertical Displacements

We collect daily GNSS station time series and the corresponding standard deviations
(STDs) released by the Nevada Geodetic Laboratory (NGL) in the International GNSS
Service 2014 reference frame from 1 January 2018 to 31 August 2022 [37], in order to be
consistent with the GFO observation span. The GNSS time series were processed with
GipsyX software-1.0 [38]; details of the GNSS data analysis strategies are available on the
NGL website (http://geodesy.unr.edu/gps/ngl.acn.txt, accessed on 18 December 2022).
We use the GNSS stations selected by Argus et al. [39]. Following their recommendations,
we remove the GNSS sites affected by volcanic activity in California, as well as those
influenced by solid Earth’s porous responses due to groundwater withdrawal in California
and oil extraction in the Gulf Coast, which are the two most prominent aquifer systems
across the CONUS [40]. We remove the GNSS stations whose displacements are out of
phase with the nearby stations [27,41,42] and the stations with observation durations of
less than 2 years. Finally, 1437 GNSS stations are employed to study the TWS changes
across the CONUS. The distribution and continuity of GNSS stations and total number of
GNSS stations recorded each day are shown in Figure 2b, c. The area and number of GNSS
stations of the 18 watersheds and the CONUS are listed in Table 1. Figure 3 shows the flow
chart of the GNSS data processing process.

http://geodesy.unr.edu/gps/ngl.acn.txt
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Surface displacements induced by non-linear variations, such as non-tidal atmospheric
loading (NTAL) and non-tidal oceanic loading (NTOL), are unrelated to hydrological
loading and need to be eliminated from the GNSS time series [43,44]. To isolate hydrological
loading, we remove the vertical displacements due to NTAL and NTOL at each GNSS
station. NTAL and NTOL can be downloaded from the Earth System Modeling group at
Deutsches GeoForschungsZentrum [45]. We fit the vertical displacements caused by NTAL
and NTOL with Equation (1) using the least squares method, as shown in Figure 4; the
amplitudes of the annual terms in vertical displacements induced by NTAL and NTOL are
0~1.5 mm and 0~0.7 mm, respectively.

y(t) = A + Bt + Ccos(wt + θ1) + Dcos(2wt + θ2) + ε (1)

where t represents the epoch with a daily or monthly resolution; y represents vertical
displacement or TWS; A represents the offset; B represents the linear trend, C, D, θ1, and
θ2 represent the amplitudes and phases of annual and semi-annual components; and ε
represents a residual.

We fit the GNSS time series with the following equation:

y(t) = A + Bt + Ccos(wt + θ1) + Dcos(2wt + θ2) +
k

∑
i=1

Ei H(t − tEi) + ε (2)

where t represents the epoch with daily resolution; y represents GNSS vertical displace-
ment; A represents the offset; B represents the linear trend; C, D, θ1, and θ2 represent the
amplitudes and phases of annual and semi-annual components; E represents the step
caused by earthquakes, equipment replacement, and so on, at the tE epoch; ε represents
the residual; and H represents the Heaviside function, which is 0 and 1 when (t − tEi) is
negative and positive, respectively. The main steps in the GNSS time series can be found in
the database on the NGL website (http://geodesy.unr.edu/NGLStationPages/steps.txt,
accessed on 30 December 2022); potential jumps with a threshold of 1 cm in the GNSS time

http://geodesy.unr.edu/NGLStationPages/steps.txt


Remote Sens. 2023, 15, 5753 6 of 20

series are identified using change detection and time series analysis software, jumps upon
spectrum and trend (JUST) [46].
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The outliers in each GNSS time series are detected and omitted based on the median
and interquartile range (IQR) statistics [47]. Within a sliding window centered on the GNSS
displacement corresponding to each epoch, the median and IQR are calculated. When
the difference between the residual and the median is 3 times larger than the IQR, it is
automatically determined as an outlier.

| vi − median
(

vi− L
2 ,i+ L

2

)
|> 3·IQR

(
vi− L

2 ,i+ L
2

)
(3)

where vi represents the ith residual in the GNSS time series, L represents the length of the
sliding window, which is set to be 1 year, and the window gradually slides with each epoch
as the center of the window.

We first extract the residual term using Equation (2), and then remove the outliers
using Equation (3) for each GNSS time series; all the outliers are omitted after several
iterations. Finally, we remove the offset, linear trend, and steps in the GNSS time series. The
resulting signals mainly reflect hydrological loading deformation, including the seasonal
and residual terms in Equation (2). Figure 5 shows the GNSS vertical displacements time
series at six selected stations; after the iterations mentioned above are performed, the steps
are easily identified, and the outliers are effectively removed.

2.2.2. GFO Time-Variable Solutions

We use the GFO RL06 mascon data released by the Center for Space Research (CSR)
at the University of Texas at Austin [48] from May 2018 to August 2022. The CSR mascon
solutions are estimated on a hexagonal geodesic grid and have a spatial sampling of about
1◦ in equatorial longitude and a monthly temporal resolution, limited by the band-limited
nature; the 1◦ spatial sampling is likely not the spatial resolution of the GRACE solutions,
and the spatial resolution is about 300−500 km [49]. The CSR mascon solutions reflect
changes in the TWS, and they are expressed in terms of the equivalent water height (EWH).
During generation, the CSR mascons are corrected for glacial isostatic adjustment and
leakage effects. Note that the low-degree changes (e.g., degree-one, C20, and C30) are
resolved with independent measurements or models [50,51].
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2.2.3. Hydrological Models

The Global Land Data Assimilation System (GLDAS) [52] Noah2.1 model provides
4-layered soil moisture values of 0~2 m below the surface and snow water content data
on the Earth’s surface. We integrate soil moisture and snow water in the estimation of the
shallow-surface TWS (GLDAS-TWS). We use three sets of GLDAS hydrological models
with different spatial resolutions. The monthly models with a grid interval of 1◦ from
January 2020 to December 2020 are used to simulate the vertical deformations at each GNSS
station across the CONUS. The monthly models with a grid interval of 0.25◦ from January
2018 to August 2022 are used to evaluate the consistency of the TWS estimated using the
GNSS (GNSS-TWS) and TWS derived with GFO (GFO-TWS). The models with a temporal
resolution of 3 h and grid interval of 0.25◦ from 1 January 2019 to 31 January 2019 are used
to extract daily shallow-surface TWS variations caused by a heavy precipitation event in
January 2019 in the California watershed.

2.2.4. Meteorological Precipitation Products

We adapt reconstructed monthly precipitation datasets from January 2018 to August
2022 provided by National Oceanic and Atmospheric Administration (NOAA) for the
estimation of precipitation over the CONUS. The datasets are provided in the format of
0.5◦ × 0.5◦ grids at a global scale and are derived from a network of global gauge stations
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by employing advanced interpolation techniques to fill in the missing data [53]. The
daily datasets are available in the format of 0.25◦ × 0.25◦ grids over the CONUS and are
constructed using an interpolation algorithm based on gauge observations collected from
multiple sources [54,55].

3. Methodology
3.1. GNSS Inversion Method

According to the elastic deformation theory [5,28,56,57], the relationship between
vertical displacements and TWS in the EWH reads:

L + v = Gx (4)

where L represents the vertical displacements measured by GNSS, v represents the observa-
tion residual, G represents Green’s function calculated based on the disc model [7,8], and x
represents TWS to be estimated for each grid cell; the study area is divided into a 1◦ × 1◦

grid cell. In order to mitigate the edge effects, we extend the study area by 2.5◦ and 0.5◦

beyond the land and ocean, respectively. The number of grid cells is less than the number
of GNSS sites in this study; therefore, the inversion solutions are overdetermined problems.
Equation (4) is subject to this condition:

∥Pv∥2 → min (5)

where P represents the diagonal weight matrix, which is constructed using the inverse of
the variance in GNSS vertical displacements. Equation (5) is ill-posed when the number of
grid cells is larger than the number of GNSS stations; the Tikhonov regularization method
is commonly used for solving ill-posed equations [58]. In addition, to ensure smooth spatial
variations in the TWS between adjacent grid cells, a regularization term like Tikhonov is
added to Equation (4). The constraint based on the Laplacian operator is as follows [59]:

λDx = 0 (6)

where λ represents the smoothing factor that adjusts the relative weight between the
model misfit and roughness. D represents the Laplacian operator with the following

kernels:

 0 1 0
1 −4 1
0 1 0

. Thus, Equation (5) is written as follows after adding the Laplacian

constraints:
∥Pv∥2 + λ2∥Dx∥2 → min (7)

where the first term ∥Pv∥2 represents the model misfit, and the second term ∥Dx∥2 repre-
sents the roughness of the solution. The TWS is estimated as follows:

x = (G T PG + λDT D
)−1

GT PL (8)

In addition to the Laplacian constraint strategy mentioned above, the conventional
constraint strategy is also applied in this study, which is similar to the Laplacian constraints
in Equation (6), but the Laplacian operator is replaced with the identity matrix. The
conventional constraint strategy addresses the issue of ill-posed equations but does not
consider the smoothness of the TWS changes between adjacent grid cells. The formula is
as follows:

λIx = 0 (9)

where I represents the identity matrix. The TWS is inverted as follows:

x = (G T PG + λI
)−1

GT PL (10)
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The optimal smoothing factors need to be determined before inversion for the con-
ventional constraints and Laplacian constraints. We use the GCV approach to estimate
the optimal parameters. We utilize the GNSS vertical displacements from 1 January 2018
to 31 August 2022 at 1437 GNSS stations across the CONUS and run the inversion with
various values of λ. Subsequently, we obtain the curves between the smoothing factors
and the sum of squared residuals obtained through cross-validation (CVSS). As shown in
Figure 6, the optimal parameters are 3.2 for conventional constraints and 1.3 for Laplacian
constraints, as in these cases, the CVSS values are minimized.
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As mentioned above, the principle of spatial constraints is as follows: the absolute
difference between the EWH of the kth grid cell and the average EWH of all the grid points
in the circle with a radius of r centered on the kth grid cell is within a certain range. This is
illustrated by the following inequality:

|xk −
1
n
(xk1 + xk2 + · · ·+ xkn)| ≤ e (11)

where xk represents the EWH of the kth grid cell; xk1 , xk2 , · · · , xkn represent the EWH of
all the grid points within a circle of radius r centered on the kth grid cell; and e represents
the set threshold value. Equation (11) is the same as the following inequality:

|Ax|≤ e (12)

where A represents the constraint matrix.
The above inequality is transformed into an equality below, and then a non-linear

programming approach is utilized to solve it by introducing the vector y (0 ≤ y ≤ 2e).

Ax + y = e (13)

By combining Equations (5) and (13), the following equation for TWS inversion under
spatial constraints is established:

∥Pv∥2 → min s.t. Ax + y = e (14)

where x and y are the parameters that need to be estimated. Equation (14) can be written
as follows: ∥∥∥∥P

([
G 0

]
·
[

x
y

]
− L

)∥∥∥∥2

→ min s.t.
[
A I

]
·
[

x
y

]
= e (15)
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We use MATLAB’s lsqlin routine to solve Equation (15) following Khorrami et al. [60],
which represents a constrained least squares adjustment. We choose the ‘interior-point’
algorithm in the lsqlin routine, where the lower and upper bounds of x are set to be −0.5 m
and 0.5 m, respectively, the lower and upper bounds of y are set to be 0 and 2·e, respectively,
and the initial points of x and y are set to be 0. Then, the two unknown parameters x and y
are solved.

3.2. Closed-Loop Simulation

We conduct a closed-loop simulation to assess the performance of spatial constraints
for recovering the TWS variations. The procedure is described as follows: Firstly, we
extract soil moisture and snow water data from the monthly GLDAS 1◦ × 1◦ dataset in
2020 across the CONUS, which is used as the input signal. Next, we forward calculate
the monthly vertical displacements at each GNSS station. The noise signals at each GNSS
station are obtained by averaging the STD of vertical displacements from 1 January 2020 to
31 December 2020 in each month. Then, we apply different constraint strategies to invert
the monthly spatial distributions of the TWS and obtain the TWS time series. Finally, we
calculate the amplitudes and STDs of monthly TWS from the conventional (CC-TWS),
Laplacian (LC-TWS), and spatial constraints (SC-TWS).

For the spatial constraint inversion algorithm, two empirical parameters, the radius r
and the threshold e, jointly control the spatial smoothness of the TWS variations, which, in
turn, affects the oscillation amplitude of the TWS time series. We illustrate the performance
of the spatial constraints in TWS inversion using different combinations of r and e (see
Table 2). The amplitudes and average STDs are shown in Table 2, the average STDs of
the SC-TWS are lower than those of the CC-TWS and LC-TWS, indicating that the spatial
constraint inversion results are closer to the input TWS. The conventional constraints
exhibit the minimum oscillation amplitude, and the spatial constraints show the maximum
oscillation amplitude.

Table 2. Annual amplitudes of input GLDAS and recovered TWS and average STDs between input
GLDAS and recovered TWS across the CONUS in 2020. CC and LC represent conventional and
Laplacian constraints, respectively. The first three digits and the last two digits after the letter SC
represent the values of the parameters r and e of the spatial constraint inversion method, respectively.
For example, SC15045 represents the parameters r = 150 km, e = 45 mm, and so on.

Constraint Strategy Amplitude (mm) Average STDs (mm)

input 52.59
CC 50.06 14
LC 50.21 14

SC15045 51.03 11
SC20045 50.76 12
SC25055 50.74 11
SC30060 50.82 11
SC35065 50.76 11
SC40060 50.68 13
SC45075 51.00 12
SC50075 50.89 12

We use the following equation to quantify the improvement of TWS using the spatial
constraint method:

∆STD =
STDCC/LC − STDSC

STDCC/LC
× 100% (16)

where STDCC/LC represents the average STDs of the conventional or Laplacian constraints,
STDSC represents the average STDs of the spatial constraints, and ∆STD represents the
improvement of the spatial constraint method. From Table 2, we can see that the spa-
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tial constraint inversion is improved by 7–21% compared with the inversion using the
conventional and Laplacian constraints.

4. Results and Analysis
4.1. Spatial Distributions of TWS

We recover the daily TWS variations across the CONUS with a 1◦ grid using three
inversion strategies and evaluate their spatial patterns by comparing them to the patterns
from the GFO-TWS, GLDAS, and precipitation dataset. We fit the daily TWS time series
with Equation (1) using the least squares method at each grid cell and obtain the annual
amplitudes. We select the following set of parameters to illustrate the spatial constraint
inversion performance: r = 300 and e = 60 (SC30060), as they are one of the parameter
sets that exhibit good performance in the closed-loop simulation (Table 2). As shown in
Figure 7, the spatial distributions of the annual amplitude from various data sources are
consistent over many regions. In general, the CC-TWS exhibits the largest amplitude, the
SC-TWS displays the smallest amplitude, and the LC-TWS approximately falls between
the two in terms of amplitude. The amplitudes of the annual terms in the CC-TWS and
LC-TWS exhibit a rougher texture in the spatial domain, resulting in larger amplitudes.
Conversely, the SC-TWS shows a smoother spatial distribution of annual amplitudes. The
strong signals are mainly distributed in the watersheds of lower Mississippi, the Pacific
Northwest, and California. We investigate the spatial distributions of the TWS for r and e
listed in Table 2 for spatial constraint inversion. As shown in Figure 8, the TWS exhibits
consistent spatial distributions across various parameter settings. This result implies that
the spatial constraint inversion is less sensitive to the changes in the parameters of r and e,
it can provide us a robust inversion with a more flexible range of parameter combinations.
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from spatial constraints with the parameters r = 300 km and e = 60 mm. Panels (d–f) represent the
GFO-TWS, GLDAS-TWS, and average annual precipitation, respectively.
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Figure 8. Spatial distributions of TWS when r and e take different values for the spatial constraints, the
values of r and e are listed at the bottom left of each panel. (a) represents parameters r = 150 km and
e = 45 mm, (b) represents parameters r = 200 km and e = 45 mm, (c) represents parameters r = 250 km
and e = 55 mm, (d) represents parameters r = 300 km and e = 60 mm, (e) represents parameters
r = 350 km and e = 65 mm, (f) represents parameters r = 400 km and e = 60 mm, (g) represents
parameters r = 450 km and e = 75 mm, (h) represents parameters r = 500 km and e = 75 mm.

The spatial distribution of the annual amplitudes from the LC-TWS and SC-TWS
presents some discrepancies in several regions compared with the GFO, GLDAS, and
precipitation (Figure 7), e.g., in the Rio Grande watershed region, we observe apparent
TWS signals in the inversion using spatial constraints, but those signals are not seen in
the LC-TWS and CC-TWS, and neither GFO nor GLDAS show similar signal patterns. We
speculate that this discrepancy could be due to the sparse GNSS stations in this region, and
therefore the spatial constraints might introduce some unrealistic signals. In addition, we
find evident discrepancies in the watersheds of New England and South Atlantic–Gulf,
which may be attributed to the local climate characteristics; another reason could be that
GNSS is more sensitive to local mass loading, while the GFO is sensitive to large-scale
mass changes.

We compare the TWS variations with precipitation (Figure 7). Precipitation mainly
concentrates in the southeast and northwest of the CONUS; the average annual precipitation
total is 1000–2500 mm. The large oscillations of the GLDAS, GFO, and GNSS-TWS in the
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Pacific Northwest watershed region are caused by abundant precipitation. In addition,
abundant precipitation causes an obvious increase in the GLDAS, GFO, and GNSS-TWS
values around the Appalachian Mountains due to the good water and soil conservation
effects. While the oscillation of TWS is weak far from the Appalachian Mountains, this is
attributed to the precipitation in flat areas flowing into the Atlantic Ocean through rivers.

4.2. Temporal Variation Features of TWS

We assess the temporary variations in the TWS for all the watersheds (Figure 9). The
watershed mean TWS variations are computed using a cosine latitude weighting scheme.
We focus on the monthly mean changes; therefore, we average the daily time series into
a monthly time series. The TWS variations in the CONUS vary significantly over time in
different regions. Figure 9 shows the monthly TWS time series from January 2018 to August
2022 in the 18 watersheds and the CONUS. As shown in Figure 9, the time series variations
in the CC-TWS, LC-TWS, and SC-TWS are generally consistent, indicating that the impact
of different constraints strategies on the TWS time series is minor over regional scales.
The temporal variations in the GNSS-TWS, GFO-TWS, and GLDAS-TWS are consistent,
particularly in the regions with large oscillation amplitudes, such as the watersheds of
lower Mississippi, the Pacific Northwest, and California. However, it is inconsistent in the
Rio Grande watershed due to the fact that the GNSS stations are sparsely distributed.
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We compare the annual amplitudes of the GNSS-TWS with the GFO-TWS and GLDAS-
TWS to quantitatively evaluate the performance of the GNSS inversion strategies. The TWS
time series mainly show seasonal variations; therefore, we fit the TWS time series using
Equation (1) and obtain the amplitudes of the annual terms in the TWS time series for each
watershed. As shown in Table 3, the CC-TWS, LC-TWS, and SC-TWS exhibit amplitudes
that are comparable to those of the GFO-TWS and GLDAS-TWS in most of the watersheds.
However, we find that the amplitudes of the annual term in the SC-TWS is nearly four
times larger than the GFO-TWS in the Rio Grande watershed, probably due to the sparse
distribution of GNSS stations. The amplitudes of the annual terms in the CC-TWS, LC-
TWS, and SC-TWS are about 0.3 times larger than those in the GFO-TWS in the Great Basin
watershed; this large discrepancy may be due to tectonic activity and climate types, and
the GNSS vertical displacements may be contaminated by non-hydrological factors. We
calculate the STDs of the time series between the GNSS-TWS and GFO-TWS in order to
quantify the consistency of the TWS inverted from various constraints strategies and the
GFO. As shown in Table 4, the STDs of the SC-TWS across 13 watersheds are smaller than
those of the LC-TWS. The STDs of the SC-TWS and LC-TWS are at the same level, and the
deviations are within 5 mm in the remaining five watersheds and the CONUS.

Table 3. The amplitudes of the annual terms in GNSS-TWS, GFO-TWS, and GLDAS-TWS time series.
CC and LC represent conventional and Laplacian constraints, respectively. SC30060 represents the
parameters r = 300 km and e = 60 mm for spatial constraints.

HUC-2
Amplitude (mm)

CC LC SC30060 GFO GLDAS

1 28.76 ± 8.79 30.41 ± 9.21 41.74 ± 8.79 97.23 ± 9.02 111.64 ± 6.08
2 45.15 ± 7.75 45.78 ± 8.21 39.64 ± 7.93 43.44 ± 8.81 66.71 ± 5.58
3 20.48 ± 7.39 25.64 ± 7.83 27.00 ± 8.44 55.28 ± 7.58 39.98 ± 5.47
4 14.14 ± 10.62 13.09 ± 10.90 10.73 ± 11.07 24.39 ± 11.65 87.47 ± 5.09
5 37.62 ± 6.02 38.29 ± 5.81 35.42 ± 5.61 80.32 ± 4.35 79.47 ± 4.60
6 79.22 ± 14.62 75.02 ± 13.72 63.71 ± 10.42 107.65 ± 6.91 86.12 ± 5.93
7 28.14 ± 8.57 26.43 ± 7.74 26.56 ± 7.87 62.72 ± 7.64 53.78 ± 7.87
8 94.58 ± 10.85 106.70 ± 11.71 96.79 ± 11.40 133.45 ± 10.23 86.09 ± 7.11
9 51.49 ± 9.93 72.96 ± 10.38 71.22 ± 11.01 40.26 ± 9.78 39.88 ± 9.19

10 33.52 ± 7.94 36.08 ± 9.44 37.14 ± 8.86 47.08 ± 8.32 25.94 ± 4.52
11 26.39 ± 9.45 13.89 ± 12.10 23.72 ± 11.33 58.11 ± 7.49 36.97 ± 6.96
12 38.58 ± 11.52 37.23 ± 11.68 30.87 ± 11.80 41.84 ± 8.72 30.56 ± 8.37
13 18.90 ± 4.97 39.68 ± 12.52 88.14 ± 10.78 17.38 ± 7.24 4.41 ± 2.84
14 34.14 ± 7.32 48.91 ± 10.89 62.10 ± 9.78 59.90 ± 5.83 26.94 ± 3.09
15 27.27 ± 6.99 72.49 ± 12.95 47.36 ± 10.53 28.36 ± 5.90 12.19 ± 3.38
16 15.72 ± 9.64 26.19 ± 10.39 11.81 ± 9.89 58.31 ± 7.41 42.84 ± 3.16
17 94.74 ± 9.06 96.90 ± 9.12 89.12 ± 8.86 113.62 ± 3.59 119.56 ± 3.70
18 54.43 ± 11.38 58.79 ± 11.64 56.38 ± 12.05 81.63 ± 8.81 86.97 ± 5.07

CONUS 22.28 ± 5.78 21.55 ± 6.09 21.13 ± 6.10 60.65 ± 4.55 51.61 ± 3.03

Table 4. The STD between time series of GNSS-TWS and GFO-TWS. CC and LC represent con-
ventional and Laplacian constraints, respectively. SC30060 represents the parameters r = 300 km
and e = 60 mm for spatial constraints.

HUC-2
STD (mm)

CC LC SC30060

1 69 70 65
2 55 57 55
3 51 53 55
4 46 48 47
5 40 38 39
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Table 4. Cont.

HUC-2
STD (mm)

CC LC SC30060

6 86 78 57
7 57 56 54
8 51 47 51
9 45 54 54
10 41 42 42
11 48 53 47
12 61 63 56
13 47 83 87
14 46 64 53
15 43 82 64
16 64 72 64
17 54 55 54
18 64 63 65

CONUS 37 37 38

4.3. Identifying Extreme Precipitation Events in the California Watershed

The GNSS has great advantages in capturing instantaneous high-frequency signals due
to its high temporal resolution, e.g., Milliner et al. successfully tracked the daily transient
TWS caused by hurricane Harvey based on the vertical and horizontal GNSS displacements
in Gulf Coast of the CONUS [33]. Jiang et al. confirmed that the GNSS could be used to
track a stormwater event in Yunnan, China, which was weaker than the catastrophic storm
surges [17].

We investigate the TWS change caused by extreme precipitation in January 2019 in
the California watershed. We obtain the spatial distribution of the monthly precipitation
total, daily time series of precipitation, GNSS-TWS, and GLDAS-TWS in the California
watershed in January 2019. As shown in Figure 10, precipitation is mainly concentrated
around California’s Central Valley and the western Pacific coastal area, the total of which is
lower in the northeast and southeast inland areas of California. The maximum precipitation
total is 460 mm in the northwest of California’s Central Valley in January 2019. We calculate
the daily precipitation time series of the grid points with a total precipitation greater
than 100 mm, which shows that California experienced two extreme precipitation events
in January 2019; the first extreme precipitation event lasted five days from 6 January to
10 January, with the maximum average precipitation reaching 30 mm on 7 January, and the
second extreme precipitation event lasted six days from 16 January to 21 January, with the
maximum average precipitation reaching 51 mm on January 17. In order to reduce the noise,
we fit the daily GNSS-TWS time series with a 7 day median and a 3 day moving average
filter, and the GNSS-TWS increased rapidly after the first extreme precipitation event.
The GNSS-TWS reached the maximum immediately due to the continuous accumulation
of precipitation after the second extreme precipitation event. The GNSS-TWS remained
stable change for about 3 days after the two extreme precipitation events. The evolution
of the daily GLDAS-TWS is consistent with that of the GNSS-TWS, while the amplitude
of the GLDAS-TWS is smaller than the GNSS-TWS. The correlation coefficients of the
CC-TWS, LC-TWS, SC-TWS, and GLDAS-TWS are 0.82, 0.78, and 0.82, respectively. This
demonstrates that spatial constraint inversion can be an independent constraint strategy
used to extract the TWS caused by extreme precipitation events.



Remote Sens. 2023, 15, 5753 16 of 20
Remote Sens. 2023, 15, x FOR PEER REVIEW 17 of 21 
 

 

 
Figure 10. Spatiotemporal distribution of precipitation and daily time series of GNSS-TWS and 
GLDAS-TWS in the California watershed in January 2019. (a) Spatial distribution of total precipita-
tion. (b) Daily time series of precipitation. (c) Daily time series of GNSS-TWS and GLDAS-TWS. 

5. Discussion and Conclusions 
The spatial constraints provide a valuable complement to the existing conventional 

and Laplacian constraint methods. The inversion results with spatial constraints are sub-
ject to two important parameters (i.e., the radius r and the threshold e). The parameter e 
determines to what extent the spatial pattern will be smoothed, and the parameter r affects 
the spatial scale that will be constrained. Our work suggests that there is no need to pre-
cisely estimate the optimal parameters for spatial constraints; instead, a rough range for 
the empirical parameters is sufficient. As shown in Figure 8, changes in these two factors 
do not necessarily cause dramatically different inversion results; for instance, the evident 
signal in the northwest region is similar for different combinations of r and e. The spatial 
constraints allow us to employ a more flexible range of parameter selection, but still pro-
vide robust inversion results. 

The densely distributed continuous GNSS stations across the CONUS enable us to 
study land–water cycle processes with a high spatiotemporal resolution. The constraints 
are effective in most regions, and the spatiotemporal distribution of the TWS from the 
GNSS is consistent with those of the GFO and GLDAS. We illustrate the performance of 
spatial constraints using the six sets of parameters listed in Table 2 and compare the results 
with conventional and Laplacian constraints. As the spatial distribution of the TWS is not 
sensitive to changes in the two empirical parameters, the range of parameters for the spa-
tial constraints is not limited to these six sets. The parameters r and e fluctuate within a 
certain range, and the TWS inversion results remain stable, allowing a broader range of r 
and e values. We can apply the spatial constraint inversion method with flexible parameter 
selection to other regions with a dense distribution of GNSS stations, such as Europe and 
Japan. 

The TWS variations inferred from the GNSS vertical displacements using the spatial 
constraint inversion method still face some challenges and limitations. The GNSS vertical 
displacement time series contains all the land motion signals, and the unmodelled vertical 
deformation caused by thermal expansion of the monument [61] also affects the isolation 
of the hydrological loading, which is difficult to accurately separate. Our proposed 
method only applies flexible spatial constraints, but it cannot reduce the noise in the GNSS 

Figure 10. Spatiotemporal distribution of precipitation and daily time series of GNSS-TWS and
GLDAS-TWS in the California watershed in January 2019. (a) Spatial distribution of total precipitation.
(b) Daily time series of precipitation. (c) Daily time series of GNSS-TWS and GLDAS-TWS.

5. Discussion and Conclusions

The spatial constraints provide a valuable complement to the existing conventional
and Laplacian constraint methods. The inversion results with spatial constraints are subject
to two important parameters (i.e., the radius r and the threshold e). The parameter e
determines to what extent the spatial pattern will be smoothed, and the parameter r affects
the spatial scale that will be constrained. Our work suggests that there is no need to
precisely estimate the optimal parameters for spatial constraints; instead, a rough range
for the empirical parameters is sufficient. As shown in Figure 8, changes in these two
factors do not necessarily cause dramatically different inversion results; for instance, the
evident signal in the northwest region is similar for different combinations of r and e. The
spatial constraints allow us to employ a more flexible range of parameter selection, but still
provide robust inversion results.

The densely distributed continuous GNSS stations across the CONUS enable us to
study land–water cycle processes with a high spatiotemporal resolution. The constraints
are effective in most regions, and the spatiotemporal distribution of the TWS from the
GNSS is consistent with those of the GFO and GLDAS. We illustrate the performance
of spatial constraints using the six sets of parameters listed in Table 2 and compare the
results with conventional and Laplacian constraints. As the spatial distribution of the TWS
is not sensitive to changes in the two empirical parameters, the range of parameters for
the spatial constraints is not limited to these six sets. The parameters r and e fluctuate
within a certain range, and the TWS inversion results remain stable, allowing a broader
range of r and e values. We can apply the spatial constraint inversion method with flexible
parameter selection to other regions with a dense distribution of GNSS stations, such as
Europe and Japan.

The TWS variations inferred from the GNSS vertical displacements using the spatial
constraint inversion method still face some challenges and limitations. The GNSS ver-
tical displacement time series contains all the land motion signals, and the unmodelled
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vertical deformation caused by thermal expansion of the monument [61] also affects the
isolation of the hydrological loading, which is difficult to accurately separate. Our pro-
posed method only applies flexible spatial constraints, but it cannot reduce the noise in
the GNSS measurements. Without doubt, using a preprocessing strategy to denoise the
GNSS measurements would improve the inversion not only using the spatial constraints
but also using other methods. In addition, using the STDs to evaluate the inversion also has
limitations, especially in the inversion with real GNSS data, because the true TWS signal is
unknown. In our evaluation, we assume that the signals observed with GRACE/GFO are
true; therefore, a small difference in GRACE/GFO would indicate a better result. However,
we must recognize that, on the one hand, the TWS variations observed with GRACE/GFO
suffer from a low resolution, and on the other hand, they reflect total variations, including
the changes in groundwater, which may not be well observed by GNSS measurements.

With the increase in global temperatures, droughts and floods are more frequent,
severe, and longer lasting [62]. The use of GNSS observations for studying the loading
deformation caused by extreme hydrological events, such as storms, hurricanes, and
heavy precipitation, will become increasingly important. It is of great significance to
conduct research on the inversion of the TWS. The improvement in GNSS data processing
and the enrichment of the GNSS inversion methods will better serve meteorological and
hydrological management departments in the future.

We propose a new inversion method with flexible spatial constraints for daily TWS in-
version using the GNSS vertical displacements from January 2018 to August 2022 across the
CONUS in this study. Our closed-loop simulation demonstrates that the spatial constraint
inversion has an advantage in recovering the annual oscillation amplitude of the TWS.
Additionally, the TWS time series from spatial constraints are closer to the input signals.
We use conventional, Laplacian, and spatial constraints to investigate the spatiotemporal
distributions of the TWS across the CONUS and compare them with the GFO-TWS and
GLDAS-TWS. The results show that the spatial distributions of the annual amplitude from
different constraint strategies are consistent with those of the GFO and GLDAS over many
regions, but still present some discrepancies in the regions with sparse GNSS stations.
The temporal variations in GNSS-TWS from different constraint strategies show good
consistency with GFO and GLDAS, and the STDs between SC-TWS, LC-TWS and GFO
are at the same level. The spatial constraint inversion proposed in this study can be an
alternative tool for TWS inversion.
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