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Abstract: The Inner Mongolia segment of the Yellow River basin (IMYRB) is a typical area for ecologi-
cal restoration in China. At the end of the 20th century, influenced by climate and human activities,
such as mining, grazing, and farmland abandonment, the ecological security of the IMYRB was under
more significant pressure. To alleviate the pressure on natural ecosystems and improve the fragile
ecological situation, China implemented the “Grain-for-Green” (GFG) project in 1999. However,
the evolutionary characteristics of the ecological security of the IMYRB in the first two decades
of the 21st century are still lacking. Quantitative and long-term ecological security information of
“Grain-for-Green” is needed. Based on this, this study used the “Pressure (P)-State (S)-Response
(R)” method and proposed an ecological security assessment and early warning system based on
multi-source remote sensing data. The evaluation results indicated a significant improvement in
ecological security in the IMYRB from 2000 to 2020. Compared to 2000, the ecological security of the
IMYRB had improved significantly in 2020, with an increase of 11.02% (ES > 0.65) and a decrease
of 8.89% (ES < 0.35). For the early warning aspect of ecological security, there was a 26.31% growth
in non-warning areas, with a 5% decrease in warning areas. Based on the analysis of ecologically
critical factors, we proposed the implications for future ecological management as follows. (1) In
ecologically fragile areas such as the IMYRB, continued implementation of the GFG was necessary.
(2) Vegetation restoration should be scientific and tailored adaptive. (3) The protection of arable
land also showed necessity. (4) The grazing management skills should be upgraded. Our study
demonstrated that the ecological benefits derived from the “GFG” project are not immediate but
cumulative and persistent. The continuous implementation of “GFG” will likely alleviate the pressure
exerted by human activities on the natural environment.

Keywords: ecological security assessment; “Grain-for-Green”; P-S-R; early warning

1. Introduction

In the late 20th century, influenced by farmland expansion, unsustainable grazing,
and mining, the Inner Mongolia segment of the Yellow River basin (IMYRB) suffered land
desertification [1], salinization [2], and biodiversity decline [3]. At the same time, global
climate change has led to frequent regional extreme climate disasters [4]. In the 1990s,
the IMYRB, as a typical ecologically fragile region, destroyed and degraded its ecological
barriers, which were further aggravated by a combination of natural and anthropogenic
disturbances [5,6], which posed a severe threat to regional ecological security [7].

In order to curb the deteriorating trend of ecological security and effectively engage
in ecological conservation, China has undertaken various ecological governance projects
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since the 21st century [8]. The “Grain-for-Green” project aims to make the steep farmland
that caused high soil erosion and low yields out of cultivation [9,10]. Some studies suggest
that the project effectively mitigated soil erosion [11,12], bolstered regional carbon seques-
tration [13–15], and significantly enhanced water retention capacity [16–18] and vegetation
coverage [19]. However, at the early stage of “GFG”, the survival rate of trees was low
due to the inadequacy of relevant regulations and forest management systems [20,21]. In
addition, due to accelerated urbanization, many rural workforces moved to cities, leaving
trees unattended [22,23]. Therefore, obtaining quantitative and precise information on the
evolution of ecological security after implementing the GFG is imperative.

The Pressure–State–Response (P-S-R) model was widely applied in ecological en-
vironment safety evaluation assessment [24,25]. The P-S-R comprehensively considers
the interaction between humans and ecosystems, which can be tailored to specific area
conditions [26]. In P-S-R, “P” indicators refer to pressures on ecosystems, both natural
and artificial. “S” reflects the state of the ecosystem, including vitality, resilience, and
function [27,28]. The “R” dimension consists of indicators related to human activities, such
as measures and policies [29,30].

Based on multi-source remote sensing data, the P-S-R model was built, which makes
ecological security conducting high-efficiency [31–33]. However, the existing P-S-R does
not reflect the “Grain-for-Green” impact on ecological security [34] due to the following
reasons: (1) In the IMYRB, the ecological security situation is complex due to the many
factors, such as the “GFG”, grazing, mineral exploitation, the growth of urbanization [35],
undulating terrain, and uneven precipitation [36]. Most existing assessment systems had
not adequately considered these factors. (2) Due to the lack of information on the spatial and
temporal distribution of “GFG”, the relationship between “GFG” and ecosystem security
cannot be effectively analyzed [37,38].

This study used multi-source remote sensing data to assess the ecological security in
the IMYRB. Grazing and mining areas were included in the pressure dimension. We utilized
ecosystem elasticity, vitality, and ecosystem service functions to characterize ecological
security status. Furthermore, it is worth noting that we included “GFG” information in the
response dimension. We established an integrated ecological security remote sensing evalu-
ation and early warning system based on the Pressure–State–Response (P-S-R) framework,
coupling human society, economic development, and natural ecosystems. This system
assessed the ecological security changes in the IMYRB after “Grain-for-Green”, providing
valuable data references for ecological management.

2. Study Area and Data
2.1. Study Area

The Inner Mongolia section of the Yellow River Basin (IMYRB) is located in the upper
reaches of the Yellow River Basin in the western part of the Inner Mongolia Autonomous
Region (38◦26′~42◦50′N, 106◦59′~110◦10′E). The altitude lies between 816 and 2393 m.
The IMYRB is located in a semi-arid and arid region (Figure 1a) with an average annual
precipitation of 297.25 mm [39]. The land cover types are diverse (Figure 1b). The dust
storms during the spring are the main reason for wind erosion. And the heavy summer
rainfall can be the primary factor leading to water erosion [40]. The IMYRB comprises
a variety of functional zones, including the significant sand-producing tributary known
as Ten Kongdui (ten major tributaries of the Yellow River, located in Ordos City, with an
average annual sand loss of about 27 million tonnes) [41], the West Ordos National Nature
Reserve, and the Hetao Irrigation Area (Figure 1c). It also encompasses the Hohhot–Baotou–
Ordos urban cluster, which bolsters regional economic development. However, at the end
of the 20th century, rapid urban development, mining, and land desertification had put
pressure on ecosystems, resulting in heightened ecological vulnerability and a growing
prominence of ecological issues. Therefore, to harmonize economic development with
ecological conservation, China initiated the “Grain-for-Green (GFG)” project in 1999. After
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1999, a significant amount of sloping farmland in the IMYRB had been converted to forest
and grassland [9,10] (Figure 1d).
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Figure 1. Spatial distribution, land cover types, function areas, and farmland abandonment infor-
mation in the IMYRB. (a) is the geographical location of the IMYRB. (b) shows the land cover types.
(c) presents the crucial ecological function areas, including MuUs Sandland, Kubuqi Desert, the
mining area, the National Nature Reserve, and Ten Kongdui. (d) is the farmland abandonment area
of the IMYRB.

2.2. Data and Pre-Processing

We used diverse remote sensing data, including land cover, climate, vegetation indices,
nighttime light, and terrain (Table 1). The WGS84 UTM 48N projection was adopted to
maintain the spatial consistency of each index.

Specifically, the China Land Cover Dataset (CLCD, 30 m), released by Professors Jie
Yang and Xin Huang from Wuhan University on Zenodo [42], with a high spatial resolution
of 30 m, was often used as input data for land use dynamics detection (Figure 1c).

The terrain slope data were derived from SRTM DEM (30 m) elevation data jointly
measured by NASA (National Aeronautics and Space Administration) and NIMA (Na-
tional Imagery and Mapping Agency). The slope data were used as one of the inputs for
calculating topographic indices and ecology services [43].

The TerraClimate precipitation dataset was generated using climate-aided interpo-
lation techniques, which combined high spatial resolution climate data from WorldClim
with multiple low-resolution datasets, such as CRU and JRA55 [44]. The MOD13Q1 NDVI
(16-day, 250 m), MOD16A2 (8-day, 500 m), and MOD17A2H GPP (8-day, 500 m) were
sourced from the National Aeronautics and Space Administration (NASA) [45–47], which
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were used to analyze the vegetation recovery after farmland abandonment. MOD16A2
(8-day, 500 m) was a global terrestrial evapotranspiration product that can be used to study
regional water energy balances [48]. Based on this, NDVI, GPP, and ET datasets were
pre-processed using the MODIS Reprojection Tool (MRT), which included tasks such as
mosaicking, projection, format conversion, and resampling.

Table 1. Multi-source remote sensing data information.

No. Dataset Product Type Data Type Resolution The Date of
Collection Data Source

1 MOD13Q1 NDVI 250 m/16 d 2000–2020 https://ladsweb.modaps.
eosdis.nasa.gov/search/2 MODIS MOD17A2H GPP 500 m/8 d 2000, 2020

3 MOD16A2 Evaporation 500 m/8 d 2000, 2010, 2020
4 CLCD - Land cover 30 m/year 2000–2020 https://doi.org/10.5194/essd-

13-3907-2021
5 GlobeLand30 - Land cover 30 m/year 2000, 2010, 2020

6 SRTM SRTMGL1_003 Digital elevation
data 30 m 2019 https://doi.org/10.1029/2005

RG000183.

7 TerraClimate - Precipitation 4 km/month 2000, 2010, 2020 https://www.climatologylab.
org/terraclimate.html

8 Nighttime Data DMSP/OLS Nighttime Data 1 km resampled 2000, 2010, 2020 https://www.ngdc.noaa.gov/
eog/download.html9 NPP/VIIRS

10 HWSD -
Harmonized
World Soil
Database

- 2000, 2010, 2020 https://www.fao.org/

11
Miner and

protected area
data

Vectorization data - - 2000–2020

https://doi.org/10.1016/j.
jhydrol.2020.125759

https:
//doi.org/10.3390/su8090889

Nightlight data can represent the human activity intensity effectively. In this study,
DMSP/OLS and NPP/VIIRS Nighttime Data were obtained from the National Oceanic and
Atmospheric Administration (NOAA) National Centers for Environmental Information.
We conducted saturation, consistency, and continuity calibration on the nighttime light
data and resampled them to achieve a consistent spatial resolution of 1 km [49,50].

Statistical data were used to analyze the state of ecological security of the IMYRB
since 2000. The mining areas and protected zone data were obtained through literature
research [51,52]. GDP, year-end population, year-end livestock herds, afforested area, and
cultivated area are from the Statistics Bureau of Inner Mongolia (http://tj.nmg.gov.cn/)
(accessed on 10 May 2023). Owing to data availability, the number of livestock was obtained
only for 2000 and 2010. The World Soil Attributes Database (HWSD), as reliable soil data,
was also used for ecology assessment [53].

3. Methods
3.1. Remote Sensing Ecological Security Assessment Indicator System

The Pressure–State–Response (P-S-R) model was introduced by the Organization for
Economic Cooperation and Development (OECD) and the United Nations Environment
Programme (UNEP) in the 1980s. Due to the combination of natural and anthropogenic
impacts on ecosystems, the P-S-R method shows the merits of ecological and environmental
security assessment [32,54]. For assessing ecological security on the IMYRB, the Ecological
Security Index (ESI) was established [33,34,55].

3.1.1. P-S-R Ecological Security Index Selection

This P-S-R assessment framework comprises three dimensions (Pressure, State, and
Response). Given each indicator’s impact on ecological security, these indicators were
categorized into positive (+) and negative (−). The content and method of P-S-R were
developed and enriched by combining natural and human impacts in Table 2.

https://ladsweb.modaps.eosdis.nasa.gov/search/
https://ladsweb.modaps.eosdis.nasa.gov/search/
https://doi.org/10.5194/essd-13-3907-2021
https://doi.org/10.5194/essd-13-3907-2021
https://doi.org/10.1029/2005RG000183
https://doi.org/10.1029/2005RG000183
https://www.climatologylab.org/terraclimate.html
https://www.climatologylab.org/terraclimate.html
https://www.ngdc.noaa.gov/eog/download.html
https://www.ngdc.noaa.gov/eog/download.html
https://www.fao.org/
https://doi.org/10.1016/j.jhydrol.2020.125759
https://doi.org/10.1016/j.jhydrol.2020.125759
https://doi.org/10.3390/su8090889
https://doi.org/10.3390/su8090889
http://tj.nmg.gov.cn/
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Table 2. Ecological safety assessment system (3 km).

Goal Dimension
(Weight)

Indicator
(Weight) Equation Description (±)

Ecological
security
Index

Pressure
(P)

(0.249)

Precipitation Index
(PI)

(0.228)
PIi =

∑n
j=1 PIij ·S0

PIi,max ·Si

Pij is the annual precipitation of Year j in
assessment unit i, S0 and Si are the areas
of the image and assessment unit i,
respectively, and PIi.max is the maximum
annual precipitation in assessment
unit i. (+)

Terrain index
(TI)

(0.174)
TIi =

∑n
j=1 TIij ·S0

TImax.i ·Si
· fi

fi = σi/ui

TIij is the slope of year j in assessment
unit i, and TImax,i is the maximum TI in
unit i. fi , σi and ui are the coefficient of
variation, standard deviation and mean
of the slope, respectively. (-)

Disturbance
Index
(DI)

(0.598)

Mining Area
Index

(MAI) (0.284)
MIi =

∑n
j=1 MIij ·S0

MImax,i ·Si

MIij is the MI of Year j in unit i, and
MImax,i is the maximum MI in unit i (-)

Grazing
intensity Index

(GII)
(0.258)

GIIi =
∑n

j=1 GIIij ·S0

GIImax,i ·Si

GIIij is the GII of Year j in unit i, and
GIImax,i is the maximum MI in unit i (-)

Population
Density Index

(PII)
(0.458)

PIIi = hi ·
∑n

j=1 UIij ·S0

UImax,i ·Si

hi = (Li − Lmin)−
(Lmax − Lmin)

UI is the urbanization index which refers
to the urban areas. UIij is the UI of Year j
in unit i, and UImax,i is the maximum MI
in unit i. Li is the light data index. Lmin
and Lmax are the minimum and
maximum values of light luminance in
the study area, respectively (-)

Statement
(S)

(0.594)

Ecosystem Resilience Index
(ERI) (0.156) ERIi =

∑n
j=1 ERIij ·S0

ERImax,i ·Si

ERIij is the elasticity coefficient for land
cover type j in assessment unit i. ERImax,i
is the maximum ERI in unit i (+)

Ecosystem Vitality Index
(EVI) (0.222) EVIi =

∑n
j=1 NDVIij ·S0

NDVIi.max ·Si

NDVIij is the elasticity coefficient of year
j in assessment unit i. NDVIi.max is the
maximum NDVI in unit i (+)

Landscape Fragmentation Index (LFI)
(0.173)

LFIi =
∑n

j=1 PDij ·S0

PDmax,i ·Si

PDi = N/TA

PDij is the patch density for land cover
type j in assessment unit i. PDmax,i is the
maximum PD in unit i. N is the of
patches in landscape i, and TA is the total
area of landscape i. (-)

Ecosystem
Services Index

(ESI) (0.449)

Carbon storage
and

sequestration
(0.2)

Ci =
∑n

j=1 Cij ·S0

Cmax,i ·Si
C(total) = C(above) + C(below)+
C(soil) + C(dead)

Cij is the carbon for land cover type j in
assessment unit i. Cmax,i is the maximum
C in unit i.Cabove, Cbelow, Csoil and Cdead
are the above-ground fraction carbon
stock, below-ground fraction carbon
stock, soil carbon stock and dead organic
carbon stock, respectively. (+)

Water Yield
Model (0.2)

WRi =
∑n

j=1 WRij ·S0

WRmax,i ·Si

Y = (1 − AET
P ) ∗ P

WR = Y − Runo f f
Runo f f = P ∗ C

WRij is the water retention for land cover
type j in assessment unit i. WRmax,i is the
maximum water retention in unit i.Yx is
the water yield (mm); AET is the actual
annual average evapotranspiration of
grid cell (mm); P is the annual average
precipitation of grid cell (mm). WR is the
water retention (mm); Runo f f is the
amount of surface runoff (mm); and C is
the surface runoff coefficient, which
expresses the ability of precipitation to be
converted into runoff. (+)

Sediment
Delivery Ratio

(0.6)

SDRi =
∑n

j=1 SDRij ·S0

SDRmax,i ·SI

SDR = RKLS − USLE
+SEDR

SDRij is the sediment delivery ratio for
land cover type j in assessment unit i.
SDRmax,i is the maximum sediment
delivery ratio in unit i. SDR, RKLS,
USLE and SEDR denote the amount of
soil retention, potential erosion, actual
erosion, and retention, respectively. (+)
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Table 2. Ecological safety assessment system (3 km).

Goal Dimension
(Weight)

Indicator
(Weight) Equation Description (±)

Ecological
security
Index

Response
(R)

(0.157)

Protected Area Index (PAI) (0.5) PAIi =
∑n

j=1 PAI
ij
·S0

PAImax,i ·Si

PAIij is the protected district area for
land cover type j in assessment unit i.
PAImax,i is the maximum protected
district area in unit i. (+)

Farmland Abandonment and
Recultivation Index

(FARI) (0.5)
FARIi = (k1 ·

∑n
j=1 FAij

Si

−k2 ·
∑n

j=1 FRij
Si

) · S0

FAij and FRij Are the areas of farmland
abandonment and recultivation for land
cover type j in assessment unit i. k1 and
k2 are 0.65 and 0.35, respectively. (+)

1. Ecological system pressure (P) index selection

Ecological system pressure (P) describes the extent to which an ecosystem faces
disturbances. Specifically, terrain is variable at spatial scales [54], although the spatial
extent of the IMYRB is small. The IMYRB is located in an arid and semi-arid region, where
spatial heterogeneity of precipitation can have an impact on ecological status [56]. The
IMYRB is a major coal-producing region in China. Mining can put more pressure on
the ecological environment [57]. The IMYRB is also a typical agricultural and pastoral
zone in northern China, and agriculture and animal husbandry are the main modes of
production [58]. In addition, the rapid development of urbanization in the IMYRB since
the 21st century has led to the over-occupation of land resources and ecological damage,
which has put greater pressure on the ecological environment [59]. To conduct quantitative
studies of urbanization, the night light data were used [60]. In this study, three indices were
chosen to reflect the pressure on ecosystems under the influence of both natural and human
disturbances: Precipitation Indices (PI), Topographic Indices (TI), and the Disturbance
Index (DI). Grazing intensity (GI), Mining area index (MI), and the Population Density
Index (PDI) were selected to show the disturbance of human activities on the ecosystem of
the IMYRB, namely the Disturbance Index (DI).

2. Ecological System Status (S) Index Selection

Ecosystem status (S) refers to the health and ecological environmental quality of
an ecosystem. Four indicators were selected to reflect the state of the ecosystem in the
IMYRB. Land use conditions reflect the interaction between human activities and natural
conditions [61], while NDVI can capture vegetation information, representing richness and
activity [59]. The Landscape Fragmentation Index (LFI), an indicator of human interference,
characterizes the degree of fragmentation where the landscape is divided. Mining, grazing,
and urban expansion had increased land use fragmentation in the IMYRB [62].

Additionally, the shortage of water resources is a major constraint on the coordinated
economic and ecological development of the IMYRB [63]. Wind and water erosion are
the main causes of soil erosion [64]. Changes in ecosystem services had a direct impact
on ecosystem security [65]. In the IMYRB, ecosystem service is an effective indicator of
ecological security [66]. Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST),
as an open-source software model, was often used to map ecological services, including
carbon, seasonal water yield sediment retention modules, and so on [54,67]. Integrated
valuation for ecosystem services and tradeoffs (InVEST) is being applied to decision-
making involving more sustainable choices to assess ecosystem services [68,69]. In this
study, carbon sequestration, soil erosion, and water resource conservation were calculated
using InVEST as indicators of the Ecological Service Index (ESI). Therefore, the Ecological
system status (S) index includes the Ecological Resilience Index (ERI), Ecological Vitality
Index (EVI), Landscape Fragmentation Index (LFI), and Ecosystem Service Index (ESI),
respectively.

3. Ecological System Response (R) Index Selection

Ecosystem response (R) refers to the ability of an ecosystem to mitigate the effects
of a disturbance through its anti-disturbance mechanisms or anthropogenic measures. It
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is worth mentioning that China’s “GFG” project aims to convert farmland into forest or
grassland, resulting in high ecological significance against ecological vulnerability [70].
Implementing “GFG” has proven effective and beneficial in reducing soil erosion, land
desertification, and other related issues, thereby enhancing the quality of ecological secu-
rity [20]. At the same time, in order to protect the redline for arable land, there have been
efforts to recultivation [71]. Moreover, the proportion of protected ecological functional
areas represents the extent of ecological protection and the potential for enhancing ecolog-
ical security [72]. In conclusion, we have incorporated the Farmland Abandonment and
Recultivation Index (FARI) and the Protected Area Index (PAI) into the ecological security
response indicators for the IMYRB.

3.1.2. Establishment of Ecological Security Index System Based on P-S-R

The creation of a grid of reasonable dimensions is necessary. Currently, in order
to effectively reflect the spatial heterogeneity of each indicator, most ecological security
studies tend to use a grid ranging from 1 km to 5 km [73–77]. As the data we used were of
large spatial extent, ranging from 30 m to 4 km, the 3 km × 3 km grid is suitable to make
the indicators spatially consistent.

To assess ecosystem services, we employed the InVEST assessment model. The InVEST
Carbon Storage and Sequestration model uses maps of land use along with stocks in carbon
pools to estimate the amount of carbon currently stored in a landscape or the amount of
carbon sequestered over time [78]. In this study, we used the CLCD landcover data and
the carbon pools data, which were acquired by https://naturalcapitalproject.stanford.edu/
(accessed on 15 December 2022). The sediment retention service provided by vegetation is of
great interest to water managers and land managers [79]. DEM elevation data, TerraClimate
annual precipitation, and soil erodibility data were used to acquire the sediment delivery
ratio. We combined this with precipitation data, CLCD land use products, plant-available
soil moisture data (from the Chinese Academy of Sciences Nanjing Institute of Soil Science’s
1:100,000 soil dataset), and HWSD to evaluate regional water yield.

Apart from this, We used CLCD land use data from 2000 to 2020 to extract the active
farmland area per year by reclassification. On this basis, we carried out change detection. In
our view, for a pixel, if the previous year was arable land and the next year was non-arable
land, it was considered to be abandoned farmland. If the farmland was abandoned in the
previous year but active in the current year, it was considered recultivated farmland.

3.1.3. Determination of Indicator Weights

Indicator weights refer to the relative importance of a specific indicator in relation
to the evaluation object or evaluation target within an evaluation system. The Analytic
Hierarchy Process (AHP) is a method used to decompose elements related to evaluation
objectives into different levels and perform qualitative or quantitative analysis to determine
the weights of each indicator [80,81]. In this study, the four-level indicator system was
developed by analyzing relevant studies and consulting the Inner Mongolia Autonomous
Region Ecological Environment Related Committee experts. Among them, the first level
of indicators is ecological safety, and P, S, and R are the second level indicators. The third
level indicators were the specific factors of P, S, and R. The last level indicators were the
indexes for calculating disturbance index and ecosystem services. Four questionnaires were
administered to each of the five academic experts and four governmental experts (Table 2).

3.1.4. Standardization and Calculation of Ecological Security Indicators

Data standardization was used due to the different indicators [82]. We categorized the
indicators into two groups: positive and negative. For positive indicators, a larger value
indicated better ecological security. In contrast, for negative indicators, the smaller the
value, the better the ecological security. The formulas are as follows:

Positive:

Zmn =
Xmn − min(Xm)

max(Xm)− min(Xm)
(1)

https://naturalcapitalproject.stanford.edu/
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Negative:

Zmn = 1 − Xmn − min(Xm)

max(Xm)− min(Xm)
(2)

In the formula, Zmn is the standardized value of the indicator m in the year n; Xmn is
the original value of the indicator m in the year n; max(Xm) and min(Xm) are the maximum
and minimum values of the indicator m in the year n, respectively. m represents the number
of indicators.

In this study, we utilized the AHP to assign weights to various levels of indicators (refer
to Section 3.1.1). Based on this, we calculated the Ecological Security Index by combining
the standardized values of indicators with their respective weights. The calculation formula
is as follows:

ESIn = ∑m
i=1 Zmn × Wmn (3)

In the formula, Zmn represents the standardized value of the indicator m in the year n,
Wmn is the weight of the indicator m in the year n. m represents the number of indicators.

3.2. Ecological Security Assessment System and Early Warning System Establishment

At present, there is no unified classification standard for ecological security. Related
studies [58,73,83] have categorized ESI into different levels. This study used spatial analysis
by Arcgis 10.6 and divided ecological security into five intervals (Table 3). Early warning
systems for ecosystems are commonly used to determine the trend and rate of ecosystem
change [84] and provide a basis for determining the sequence of ecological restoration [85].
In this study, the critical values for different stages of the warning system were determined
by calculating ∆ESI (changes of ESI) between adjacent time intervals and grading ESI
(Table 4).

Table 3. Ecological safety index (ESI) classification in the IMYRB.

ESI Level Low Mid-Low Medium Mid-High High

Ecology Security Index ESI ≤ 0.35 0.35 < ESI < 0.45 0.45 < ESI < 0.55 0.55 < ESI < 0.65 ESI ≥ 0.65
Statement Unsafe Less safe Critical Safe Relatively Safe Safe

Ecosystem Structure Lack Serious damage Destruction More structured Integrity

Ecosystem Function Serious damage High difficulty Appearance of
destruction Robust Sound

Table 4. Ecological security warning (ESW) system in the IMYRB.

ESL Level ESI Statement ∆ESI Analysis Level of ESW

Ecological
Security
Warning

(ESW)

ESI ≥ 0.55 Safe
∆ESI > 0 Non-warning I
∆ESI < 0 Non-warning, Degradation trend II

0.35 < ESI < 0.55 Critical Safe
∆ESI > 0 Early warning, Improvement trend III

0 < ∆ESI < 0.1 Early warning, Slow degradation trend IV
∆ESI < 0 Early warning, Rapid degradation trend V

ESI ≤ 0.35 Unsafe
∆ESI > 0 Warning, Improvement trend VI
∆ESI < 0 Warning, Degradation trend VII

4. Results
4.1. Ecological Safety Assessment in the IMYRB

We established a 3 km × 3 km grid network as the assessment unit. Using the
Analytic Hierarchy Process (AHP), we assigned weights to different indicators in the P-S-R
evaluation system (Table 2). Based on this, we created an ecological security map of the
IMYRB and conducted statistics on the proportions of ecological security at different levels
(Figure 2).
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Ecological security zones (medium-high and high) in the IMYRB are primarily located
in the western part of Etuoke Banner, the Western Ordos National Nature Reserve within
the territory of Wuhai City, Hohhot City, and Zhuozi County in Ulanqab City (Figure 1c).
The ecological security (ES) in the reserve had consistently been high (greater than 0.55),
and over the past two decades, the high-value ES zone has radiated outward from this
reserve, increasing the total area by 51,849 km2. Compared to 2000, the ecological security
of the IMYRB had improved significantly in 2020, with an increase of 11.02% (ES> 0.65)
(Figure 2). Ecological critical zones (mid-value and mid-low value) are mainly distributed
in the eastern hilly and gully areas of Ordos City, the central Mu Us Sandland, and the
Hetao Plain (Figure 1c). Among these, from 2000 to 2020, the mid-value zone showed
an overall trend of increase followed by a decrease in 2010 (from 49.3% to 52.65% and
then to 41.06%). The area proportion of mid-low value zones notably decreased (from
26.41% to 8.58%) (Figure 2d). Ecological low-value proportion experienced a decrease
of 8.89%, from 14,166 km2 to 963 km2. Overall, from 2000 to 2020, with the continuous
commencement of “GFG” and afforestation initiatives, the ecological security situation in
the IMYRB steadily improved.
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4.2. Dynamic Analysis of Ecological Security Early Warning

According to the ecological security warning (ESW) system, we categorized the ESW
into seven levels (Table 4). We mapped the ESW in 2000–2020 in the IMYRB by using a
3 km × 3 km grid (Figure 3). From 2000 to 2020, the unsafe regions in the IMYRB notably
decreased, with the warning-degradation areas and warning-improvement areas reduced
by 3.47% and 1.53%, respectively. The critical safety zones decreased by over 20%, while
the safe areas significantly increased (>25%) (Figure 3).
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Based on the above analysis, the ecological warning status in the IMYRB showed an
overall positive trend. The warning conditions gradually improved from the surrounding
areas towards the center. In the western part of Ordos City, the ecological security zone
radiates outward from the ecological protection area (Figure 1c). In the northwest desert ar-
eas (Figure 1c), there had been a significant transition from ecological warning to ecological
critical safety. The ecological security of Baynnur had improved. Ulaan Chab and Baotou
can also see improvements in their ecological security conditions and were essentially in a
non-warning state. These results suggested a positive ecological trend in the IMYRB, with
areas gradually transitioning to more secure ecological states, especially in the central and
northern regions.

5. Discussion
5.1. Ecological Security Assessment System Rationality and Data Reliability

In this study, we selected ecological security assessment indicators and created a
3 km × 3 km grid to quantitatively assess the ecological security spatiotemporal changes.
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The impact of climate and human disturbance on ecological security cannot be ignored. This
study considered the impact of natural and anthropogenic factors on ecological security.
Grazing intensity, “Grain-for-Green” areas, protected areas, and mining areas were included
in the evaluation system using spatial analyses. In addition, we used InVEST to capture
ecosystem services scientifically. Night light data were used to quantify urban development.
To acquire the farmland abandonment dataset, we used CLCD land use data from 2000
to 2020 to extract the cultivated land area per year by reclassification. Based on reliable
datasets, we established an ecological security indicator system tailored for the IMYRB in
conjunction with the “GFG” policy.

5.2. Possible Mechanism of ES Improvement and Policy Implications

The results of the integrated policy measures and ecological vulnerability assessment
indicate that the ecological security of the IMYRB is affected by a variety of factors. The
main reasons for the improvement in ecological security include water use and management
policies, environmental protection of these changes, and restoration projects [86].

5.2.1. The Implementation of the GFG Can Be Effective in Enhancing Ecological Security

Socio-economic, e.g., GDP, population, and grazing development, had put greater
anthropogenic pressure on the ecological security of the IMYRB (Figure 4a–c). In the face
of increasing pressure on ecosystems, sustained implementation of ecological conservation
policies was necessary. On the other hand, in the first two decades of the 21st century,
ecological security has increased significantly (0–20%). This was attributed to China’s
emphasis on ecological protection in the process of economic development. It can be seen
that from 2000 to 2020, there was a huge increase in NDVI and GPP. NDVI and GPP in
typical areas of “GFG”, such as the Zhungeer banner, showed high growth rates of 61.51%
and 31.55%, respectively, which implied an increase in ecosystem vitality (Figure 4e,f).
Therefore, the effectiveness of the “GFG” implementation can be recognized.

Furthermore, we combined the CLCD (30 m) land use data with SRTM DEM (30 m)
data to extract the farmland whose slopes were over 25◦. The extraction results showed
that there are still 3.234 km2 of sloping farmland with slopes greater than 25◦ in the
IMYRB. Thus, for the areas where farmland was still cultivated in an unjustified way, it
was necessary to conduct “GFG” further in the future.

5.2.2. Scientific Vegetation Restoration Is an Effective Way to Improve Ecological Security

To quantify the impact of the “GFG” on regional ecological security further, we
took Ordos City as an example. We collected and analyzed data related to farmland
abandonment, reforestation, and human activity pressures.

The improvement in ecological security due to “GFG” was a cumulative process and
had a lag in ecological security enhancement. We believe that this may be related to the
maturity of afforested trees and their adaptation to the local environment. Young trees
planted initially can quickly increase vegetation coverage in the region in the short term.
However, their primary productivity was limited, which means their capacity to improve
the regional ecological environment is also limited [87]. In some cases, the short-term
sharp increase in water consumption by regional vegetation can temporarily increase
the water resource pressure on the ecosystem [88], leading to a temporary decline in
ecosystem security. It is only when these young trees gradually mature and adapt to the
local natural and geographical environment that their contribution to ecosystem security
becomes evident.
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5.2.3. The “Red Line” of Arable Land Should Be Kept in “Grain-for-Green”

Excessive farmland abandonment posed a challenge to agricultural security and food
security. In Erdos, compared to 2000, the amount of abandoned farmland was significantly
reduced by 10% (Figure 5). Protection of farmland, which was suitable for cultivation, has



Remote Sens. 2023, 15, 5732 13 of 17

shown more importance in recent years. Therefore, protecting the red line of arable land
showed a high degree of necessity.
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5.2.4. Upgrading Grazing Management Skills Is Essential for Grassland Ecological Security

Livestock populations had generally experienced a trend of increase in 2000–2010
(Figure 4c) followed by a decrease of about 10% (Figure 5).

From the results described above, it is apparent that ecological restoration policies can
effectively change the ecological vulnerability pattern. Ecological restoration has achieved
remarkable results in the IMYRB. The land use type of the IMYRB was dominated by
grasslands. It was undeniable that appropriate grazing can maintain or even increase
carbon stocks and protect grasslands by reducing plant diseases. However, when the
grazing intensity exceeds the threshold, the ecosystem can be degraded [89]. In recent
years, China has introduced several grazing management policies in Inner Mongolia,
but grassland management still lacks scientific and technical guidance. Therefore, it is
necessary to improve grassland management skills to meet the needs of grazing and protect
the ecological stability of grasslands.

5.3. Limitations and Perspectives

In future work, we need to improve the following aspects further: (1) Spatial appli-
cability of the assessment indicator system: This study effectively screened the indicator
system applicable to arid and semi-arid fallow forest areas in northern China. However,
due to the heterogeneity between northern and southern China, the applicability of this
indicator system should be carried out. The ecological security assessment of the “GFG”
program in southern China or in a large region needs to be considered. In addition, this
study does not include indicators for characterizing vegetation water stress, which is nec-
essary for arid and semi-arid areas to be included in future studies. (2) Applicability of
the grid: A 3 km × 3 km grid was selected as the evaluation unit in this study, which can
better show the ecological security status of the IMYRB. If the whole Yellow River Basin or
a larger scale is evaluated, the evaluation unit needs to be re-established according to the
basin condition.
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6. Conclusions

The IMYRB is a typical area in northern China that is experiencing the implementation
of the “GFG” program. In this study, we used the P-S-R ecological evaluation method, cou-
pled with multi-source remote sensing data, to construct an ecological security assessment
system and early warning system applicable to the area of returning farmland to forest.

The research indicated that from 2000 to 2020, there had been a continuous improve-
ment in the ecological security of the IMYRB. The ecological warning areas had decreased
significantly, going from over 20% to below 10%. This marked a significant improvement
in the quality of the ecological environment. However, from 2000 to 2010, there was not a
widespread and substantial improvement in ecological security, with the ecological security
zone increasing by only 8% and the unsafe zone decreasing by 12%. By 2020, there had
been a noticeable improvement in ecological security both in terms of regional scale and the
extent of change. The ecological security zone had increased by 35%, with over 50% of the
region covered by ecological security zones. This suggested that the impact of the “GFG”
program on ecological security was not immediate. The impact of the “GFG” program on
ecological security was characterized by its persistence and cumulative nature.

This research highlighted the significant impact of the “GFG” program on ecological
security in the IMYRB. To maintain and enhance the current ecological security status in
this region, it is necessary to continue the implementation of the program. It is important
to consider the local climatic and hydrological conditions during the process of “GFG”,
adopting an approach that combines natural recovery with artificial restoration. Apart
from this, regular assessments should also be conducted to ensure the orderly and effective
operation of the program.
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