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Abstract: This study addresses the escalating challenges posed by forest drought and wildfires,
emphasizing the critical need to monitor forest conditions to mitigate associated risks. While tradi-
tional optical sensors have proven valuable for vegetation surface water (VSW) assessment, their
limitations in regions with persistent cloud cover prompt an exploration of the alternatives. The study
advocates the efficacy of Synthetic Aperture Radar (SAR) systems, known for their cloud-penetrating
capabilities and sensitivity to changes in dielectric properties. Leveraging Sentinel-1 C-band dual
polarization SAR data, the research investigates the impact of Vegetation Surface Water (VSW) on
backscatter coefficients in a temperate coniferous forest through the application of generalized linear
models. Despite the challenges posed by precipitation and canopy characteristics, the study unveils
detectable modulation in backscatter, particularly in VH polarization, indicating the potential of
SAR-based methods in forest monitoring. The occurrence of rain on the day of Sentinel-1 image
acquisition, and therefore the presence of VSW, triggers an increase of 0.35 dB in VV backscatter, and
an increase of 0.45 dB in VH backscatter. The findings underscore the importance of considering
surface water content in radar backscatter analyses for accurate biomass estimations and change
detection, suggesting avenues for future research and potential correction mechanisms.

Keywords: SAR; forestry; water content

1. Introduction

It is widely recognized that forest drought and wildfires are increasing occurrences
due to global climate change. In this scenario, monitoring forest conditions in relation
to precipitation and drought stress becomes a crucial tool. In fact, monitoring and early
detection can inform management schedules and activities to lessen the risks associated
with rising temperatures. Widening the range and scope of forest monitoring systems
is important because of the crucial role that forests play as a form of carbon storage, as
an economic resource, and as a habitat to ensure the world’s biodiversity. Because of the
increasing threats posed by climate change and the key role that the carbon cycle plays
in this, it is of growing importance to monitor the Earth’s forests and understand the
relationships and correlations among factors in this complex ecosystem. Forests cover
approximately 31% of the planet’s surface—4.06 billion hectares (FAO, 2020). They account
for approximately 72% of the Earth’s terrestrial carbon storage, meaning that vegetation
biomass is a larger global store of carbon than the atmosphere.

Vegetation surface water content (VSW) is a parameter that can anticipate the spread
and severity of forest loss due to drought stress or the spread of wildfires. The value of
satellite and airborne remote sensing stands out because it produces datasets over large
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spatial extents at relatively low costs. Therefore, the detection of VSW with remote sensing
instruments can provide forest managers with timely and spatially relevant information
about the risk status of their areas of authority in a cost-effective manner.

Optical sensors have historically been the chosen remote-sensing tool in forestry, and
there are many examples of the successful retrieval of vegetation surface water (VSW) being
achieved with optical remote sensing [1]. Numerous established and validated method-
ologies have been employed, garnering widespread acceptance due to their robustness
and reliability, such as the retrieval of VSW using spectral reflectance [2,3], vegetation
water indices [4,5], and radiative transfer models [6,7]. Despite this, in certain areas of the
world (e.g., tropics, polar regions), optical sensors prove ineffective due to prevailing and
persistent cloud cover or daylight restrictions.

Synthetic aperture radar (SAR) provides an alternative that can penetrate clouds
independent of daylight and weather conditions. SAR systems exhibit a side-looking
imaging geometry and operate on a pulsed radar mounted on a moving platform. The
radar system emits high-power electromagnetic pulses and sequentially captures the echoes
of the backscattered signal [8]. The transmitted pulse interacts with the Earth’s surface, and
only a fraction of it is backscattered to the receiving antenna. The amplitude and phase of
the backscattered signal are dependent on the physical characteristics (such as geometry
and roughness) and electrical properties (such as dielectric permittivity) of the imaged
object. Depending on the frequency band, significant penetration may occur, necessitating
the modelling of imaged objects and media as volumes (e.g., vegetation, ice and snow,
dry soil). Radar systems employing longer wavelengths lead to increased electromagnetic
pulse penetration in media. [9]. As such, wavelength is a parameter that will dictate the
perceivable properties of the imaged object. The chosen wavelength affects what the radar
will detect, and is thus selected based on the goal of the study. Within the microwave
portion of the electromagnetic spectrum, the wavelength bands range from 0.8 cm λ, for
the Ka band, to 100 cm λ for the P band (λ is the symbol indicating wavelength). A list of
microwave bands that were most used by the radar community is presented in Table 1.
Wavelength is the primary factor affecting the penetration ability of the radar: longer
wavelengths mean greater penetration through soil, snowpack or forest canopy [10].

Table 1. Designation of microwave bands [11].

Band Frequency Wavelength

Ka 27–40 GHz 0.8–1.1 cm
K 18–27 GHz 1.1–1.7 cm

Ku 12–18 GHz 1.7–2.4 cm
X 8–12 GHz 2.4–3.8 cm
C 4–8 GHz 3.8–7.5 cm
S 2–4 GHz 7.5–15 cm
L 1–2 GHz 15–30 cm
P 0.3–2 GHz 30–100 cm

In addition, polarization modes are selected based on availability and requirements.
Radar signal is polarized, which means the vibrations in the vector of radiation are confined
to one plane [12]. There are four main types of controlled polarization:

• HH: horizontal transmit, horizontal receive.
• HV: horizontal transmit, vertical receive.
• VV: vertical transmit, vertical receive.
• VH: vertical transmit, horizontal receive.

The nature of the imaged object will dictate the choice of polarization. Furthermore,
the characteristics of the object influence the radar signal. Roughness is a relative concept,
but as a rule of thumb it can be described as the height variation (in the order of centimetres)
within the targeted object relative to the wavelength [12]. A smooth surface (i.e., open
water) reflects the radar signal away from the radar and thus will appear dark, while a
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rough surface will appear bright because the signal will be scattered in different directions.
Volume scattering refers to the scattering of radar energy within a volume, that is, a target
surface that consists of multiple volumes (i.e., vegetation, snowpack). Geometry affects the
returned signal in a similar way to roughness but at a larger scale. For example, urban areas
produce a very bright image because of the flat and perpendicular (to the ground) geometry
of the buildings, causing the ‘double-bounce’ effect [12]. The dielectric constant—also
known as relative permittivity—is a measure of the electric properties of the object. This
is a measure of the permittivity and conductivity of the object, and is highly affected by
the moisture content. In dry conditions, most natural materials have a dielectric constant
between 3 and 8 (in the microwave region), but as water has a dielectric constant of 80, the
presence of moisture in the targeted object greatly influences this parameter. As a result, a
change in moisture content provokes a significant increase in radar reflectivity [10].

SAR has long been employed in silvicultural studies, and there is a large record
of the successful application of SAR in monitoring forest change and biomass [13–20].
The continuous technological advances and increasing number of available sensors [11]
have resulted in the emergence of new approaches to forest monitoring. The launch of
ESA’s Sentinel-1 satellites in 2014, along with its free data policy, facilitated research on
the topic. In fact, C-band SAR—Sentinel-1′s—data are particularly suitable for forest
canopy studies as the wavelength penetrates the vegetation volume [8,21]. The interest
in improving SAR-based methods as complementary datasets over consistently cloudy
regions is continuously growing, despite instances of optical-based analysis providing far
greater accuracy than radar-based methods [22]. Ruiz-Ramos et al. (2020) [19] developed an
approach to map forest structural changes: this method utilizes a dense series of Sentinel-1
C-band satellite images to achieve continuous and near-real-time monitoring, with an
overall accuracy of 77%. Bouvet et al. (2018) [15] introduced a new deforestation indicator
based on the distinctive geometric artifact that manifests as a shadow along the border
of deforested areas, achieving a detection rate of more than 95%, also using Sentinel-1
C-band data. Dual polarization C-band data proved effective in quantifying the biomass of
complex sub-tropical forests [20]. While many studies focused on the detection of forest
degradation and deforestation, the literature on the influence that environmental factors
such as Vegetation Surface Water (VSW) exert on SAR signals is very limited. The influence
of vegetation surface water (VSW) content on the backscatter coefficient (σ0) from forests
was investigated by Rignot et al. (1994) [23], who concluded that, in taiga forest ecosystems,
the variation in C-band backscatter is explained by the changes in the dielectric properties
of the forest canopy and forest floor, induced by seasonal patterns of precipitation and
freezing. Similarly, the effect on the SAR backscatter of moisture-driven changes in the
dielectric properties of forests were analyzed by de Jong et al. (2000), who [24] studied the
C-band backscatter acquired by the ERS1 and ERS2 satellites and found that the backscatter
of a closed, broadleaf forest can show an observed change of 0.7 dB and 2.5 dB when dry
or wet. Interestingly, conifer-dominated plots of temperate forest showed a more evident
backscatter increase in the presence of VSW compared to deciduous plots in Vaca and van
der Tol (2018) [25], who found that the backscatter of a Douglas fir canopy is ~1.5 dB and
~1 dB higher than when the canopy is dry at C-band VH and VV polarization, respectively.
Cross-polarization backscatter observation yielded a higher coefficient in the study Doblas
et al. (2020) [26] as well, who also utilised Sentinel-1 C-band data, in this case in the
Amazonian tropical forest. These four studies represent the most relevant documentation
of attempts to quantify the impact of naturally occurring VSW on microwave backscatter
within forested environments. In contrast, the literature on microwave detection of the
dielectric properties of vegetation and how moisture affects them, in relation to crop species
and irrigation, is vast [27–33]. In light of this gap in silvicultural research, the authors
believe there is a need to expand our collective understanding of the impact of VSW on
forest canopies due to the growing importance of monitoring forest health and resilience to
drought.
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This study investigated the change in the C-band backscatter of a temperate conif-
erous forest on days in which precipitation occurred. Our objectives were: (1) to in-
vestigate whether it was possible to detect VSW over conifer-dominated plots of forest
plantations (i.e., detecting changes in dielectric properties); (2) to investigate whether
single-polarization or dual-polarization C-band signal is more sensitive to VSW.

2. Methods

The area of study is part of the Queen Elizabeth Forest Park near Aberfoyle, cen-
tral Scotland. This area is strictly managed as a logging concession, so regular logging
operations take place in the area.

2.1. Forestry Data

The data on the observed plantation plots, depicted in Figure 1, were provided by
‘Forest Research—Aberfoyle District management and planning team’, which collected
and shared its measurement on dominant species (more than 20%) and top height of
canopy (Crown Copyright, courtesy Forestry Commission (2020), licensed under the Open
Government Licence—https://www.forestresearch.gov.uk/ (accessed on 10 October 2019).
A summary of the details of the plots can be seen in Table 2.
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Each group was divided into two or three different polygons by the original sampling
authorities based on felling regime, year of plantation, and other variables which are not
relevant to this study and hence will not be further looked at. An extensive record of
rainfall—in millimetres per day—was obtained courtesy of the Scottish Environmental

https://www.forestresearch.gov.uk/
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Protection Agency (SEPA), which owns and monitors weather stations across the country—
for this project, data collected from the High Corrie station, located 3.8 km from the
centre of the area of interest, were utilized (contains SEPA data © Scottish Environment
Protection Agency and database right [2020], all rights reserved). The temperature data—in
degrees Celsius—were provided by the Met Office (© Crown Copyright [2020]. Information
provided by the National Meteorological Library and Archive—Met Office, Exeter, UK),
and was collected from a weather station at Gartocharn Portnellan Farm, 18.6 km from the
location of the plots.

Table 2. Data regarding the plots of coniferous woodland area. Dominancy was established with a
20% abundance.

Group N◦ Dominant Species Mean Top Canopy Height
(m) Gross Area (ha)

1 Scots pine 18.5 0.6
2 Norway spruce 27 5.5
3 Sitka spruce 23.5 9.2
4 Sitka spruce 33 11
5 Japanese larch 29 1.1
6 Sitka spruce 17.5 1.39

2.2. SAR Data

The SAR data were obtained through the Google Earth Engine platform (GEE) avail-
able at: https://earthengine.google.com/ (accessed on 15 October 2019). This contains
open-source data from ESA for the C-band SAR Sentinel-1 mission. The characteristics of
the dataset acquired for the purpose of this study are defined by the acquisition mode, in
this case, IW_GRD_HR: Interferometric Wide Swath GRD High Resolution. This entails a
16-bit dual polarization product with a 10 × 10 m ground spatial resolution, and a mean
incidence angle of 38.3◦ over the study area (ESA 2016). The preprocessing steps applied
by Google Earth Engine include thermal noise removal, radiometric calibration, terrain
correction, and conversion of the backscatter intensities to a logarithmic scale, i.e., decibels.
Subsequently, the data are projected by GEE to a common grid to ensure pixel alignment or
co-registration. We used both VV and VH polarizations, filtering the imagery to include
ascending orbits only. This is to avoid changes being introduced by the looking angle, as
occurs when ascending and descending passes are combined. To extract the backscatter
time series for an individual sample from the in situ information, a buffer of 30 m radius is
applied to each location. The pixels that fall within this buffered area are then averaged.
Since this procedure is implemented, no speckle filtering was deemed to be necessary. All
data—rainfall, temperature, backscatter, and canopy details—covered the period between
1 January 2017 and 25 September 2019. Across this time, the datapoints were collected
every 6 days as per the Sentinel-1 repeat cycle.

2.3. Statistical Analysis

The collated data were imported into RStudio 4.3.0 for sorting and analysis. For
each forest group, the average of the backscatter of all pixels was calculated per each day.
Although rainfall and temperature observations were made daily, every sixth datapoint
was extracted and included in the data frame to match the Sentinel-1 acquisition cycle.

It was decided to firstly apply a multiple regression analysis to the data set, followed
by a generalised linear model (GLM). In the analysis, the (sigma nought) σ0 intensity values
were included as the response variables, and rainfall was included as a predictor. Moreover,
due to the intuitive correlation between rainfall and daily surface temperature, temperature
values were also included as a predictor. A collinearity test between these two variables
was then performed to assess the fit of the models. Finally, the tree plot data, including top
height and dominant species (Scots pine, Norway spruce, Sitka spruce, Japanese larch),
were also considered as predictors when conducting the analysis but were only included in

https://earthengine.google.com/
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the attempts to conduct a multiple regression analysis. In the case of the GLM, the variable
of rainfall was converted to binary, with 0 meaning no rain was recorded that day, and 1
meaning any amount of rainfall was recorded that day.

Subsequently, using R package [34], we built a random forest model (RF). K-fold
cross-validation was implemented in the model with a K value of 5- to prevent overfitting.
It was decided to include the RF model in case our assumption of linearity was not met.
The independent variables in the RF are rain (mm), temperature (◦C), average height (m),
and dominant species. The RF model allowed for us to build a data frame of observed
and predicted values, the agreement of which was then examined with Pearson’s product-
moment correlation test (significance at p-value < 0.05).

3. Results
3.1. Preliminary Analysis

A first data exploration was performed to confirm that the selected methodology was
appropriate. Table 3 shows a summary of the radar backscatter. It should be noted that
the spread of values in the dataset across the polarization channels—as indicated by the
quartiles—is minimal, (σ0 ≈ 2 dB for both VV and VH polarizations). This shows that, for
each polarisation channel, 95% of the data fall within a 2 dB signal range.

A visual inspection of the data distribution revealed the presence of outliers in both
polarizations, as seen in Figure 2. It can be observed in Table 3 and Figure 2 that the spread
of values is around 2 dB in both polarizations, with VH having lower values and a slightly
wider distribution. Moreover, the visual inspection of the boxplots shows that, in terms of
the VV polarization, the median value is closer to the mean than the VH polarization.
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Table 3. Mean (µ), 25% and 75% percentiles (Q1 and Q3) of C-band VV and VH backscatter.

Backscatter (dB)

Q1 µ Q3
VH −16.8 −15.92 −14.8
VV −10.8 −10 −8.98

A further investigation of the dataset is reported in Figures 3 and 4. The boxplots show
the spread of backscatter values per tree species, at VH in Figure 3 and at VV in Figure 4.
Interestingly, at both polarizations, the ‘ranking’ of the species in terms of backscattering
values is the same (Norway spruce has the highest values, then Sitka spruce, Japanese
larch, and Scots pine), and the spread of values for each species is comparable and between
1 dB and 1.5 dB. In most cases, the mean is marginally lower than the median, with the
exception of Japanese larch and Scots pine at VV.
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3.2. Regression Analysis

The first step uses all the variables inside a multiple regression analysis. The collinear-
ity test rejected the assumption that the continuous variables (including rainfall and temper-
ature) might show collinearity. Dominant species and top canopy heights were considered
categorical (i.e., factors) in the analysis. Despite being a numerical value, top height was
treated as categorical in that we only had one average value for height for each plot, not a
continuous scale. Models including the main effects for each predictor (rainfall, tempera-
ture, species and top height) were built for the two backscattering values. The diagnostics
plots and histograms of the residual errors for both models showed that the residuals
presented a Gaussian distribution only in the case of the VV polarization, whereas for
VH they presented a negatively skewed distribution. Despite the fact that the normal
distribution of the residuals is one assumption for a multiple-regression analysis, as it is an
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assumption for the T-test, it was decided to continue with the analysis, keeping in mind that
the p-values for the VH may not be very reliable. The diagnostic plots, as shown in Figure 5,
highlight that the residual errors of the models are not exactly normally distributed. This
is stressed by the Normal Q–Q plot in Figure 5A (VH), where the lower tail of the graph
moves away from the line. The first linear model considered the forest types, and produced
the results shown in Table 4. This illustrates the lack of a significant correlation between
the variation in the backscatter coefficients and the variation in daily rainfall. The equation
of these models was plugged in R as follows:

Backscatter ∼ rain + temperature + species + height. (1)

The p-value for rainfall is non-significant at both polarizations; furthermore, the
adjusted R2 values indicate that the model is not a good fit. Notably, the Japanese larch
level is missing from the table, as this is the baseline level for the categorical variable and
corresponds with the intercept; the other categorical coefficients are relative to the intercept.

In this section, we focused on analysing the effect of rainfall on the backscattering in
the different tree species. In this analysis, we used an ANCOVA to observe the apparent
increase in backscatter per tree species, controlling for the variable rainfall.

In Figures 6 and 7, rainfall values of only up to 150 mm were selected, as values above
that amount were scarce in the dataset. It is of interest that Figures 6 and 7 show a clear
zonation of points led by the dominant species. The regression lines in Figures 6 and 7
help to highlight this. Looking at the regression lines, it is immediately obvious that the
Scots pine canopy scatters significantly less than the other species, approximately 2 dB less
at both polarizations. The separation of canopy types is much more evident with the VV
channel; however, it remains visible at VH as well.
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polarization. The black line in the middle of the boxplots shows the median values. The blue cross
represents the mean value.



Remote Sens. 2023, 15, 5723 9 of 18Remote Sens. 2023, 15, x FOR PEER REVIEW 10 of 19 
 

 

 

Figure 5. Diagnostics plot for the multiple regression analysis with the response variable of the
backscatter coefficient for VH polarization (A) and VV polarization (B).



Remote Sens. 2023, 15, 5723 10 of 18

Table 4. Results of the multiple regression analysis for all backscattering values.

VH Coefficient p-Value

Intercept −1.678 <2−16

Rainfall 4.16 × 10−5 0.946

Temperature 0.003 0.001

Norway spruce 0.738 1.36 × 10−8

Scots pine −1.820 3.36 × 10−30

Sitka spruce 0.153 1.164

Height 0.030 0.0002

Model-Adjusted R2 0.379

VV Coefficient p-Value

Intercept −1.199 <2−16

Rainfall 0.0002 0.63

Temperature 0.002 0.009

Norway spruce 1.405 3.10 × 10−39

Scots pine −1.235 7.85 × 10−23

Sitka spruce 0.778 3.12 × 10−18

Height 0.05 5.76 × 10−18

Model-Adjusted R2 0.549
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Figure 6. Scatter plot of VH values in relation to rainfall. The regression lines are generated with
an ANCOVA and represent the apparent increase in backscatter per tree species, controlling for the
variable rainfall. For the purposes of visualization, in this figure, rainfall values of only up to 150 mm
were selected, given that values above that amount were scarce in the dataset.
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Figure 7. Scatter plot of VV values in relation to rainfall. The regression lines are generated with
an ANCOVA and represent the apparent increase in backscatter per tree species, controlling for the
variable rainfall. For the purposes of visualization, in this figure, rainfall values of only up to 150 mm
were selected, given that values above that amount were scarce in the dataset.

The multiple regression analysis showed a lack of correlation between backscatter
and the amount of rainfall. Therefore, we converted the rainfall variable into a binary
variable to fit logistic regression (i.e., a Generalized Linear Model (GLM)). For this model,
rainfall was included as a factor. Figures 8 and 9 show the logistic regression lines of the
effect of the presence of VSW per species. Through these figures, we can appreciate the
clear zonation of backscatter values depended on tree species. It appears that the species
ranking based on VSW remains identical to that in Figures 6 and 7, where we considered
the amount of rain in millimetres; however, upon closer inspection, Figure 8 presents an
interesting observation: whereas Norway spruce canopy and Scots pine canopy remain
very clearly at the higher and lower ends of the group, dry Japanese larch canopy (orange
line in the figure) has stronger backscattering at VH than Sitka spruce (purple line), but the
jump in backscatter values in the presence of VSW leads to higher backscattering in Sitka
spruce. Except for this, the visual inspection of Figures 8 and 9 failed to highlight a stark
contrast in the steepness of the regression lines, suggesting that both polarizations succeed
in detecting VSW.

The examination of the table of coefficients in Table 5 allows us to examine the results
in more depth.

Table 5. Table of coefficients for the GLM. In this model, the variable of rain was converted to a
binary variable indicating the presence or lack of VSW.

VH Coefficient p-Value

Intercept −17.049 0.00

VSW 0.454 2.47 × 10−8

Temperature 0.002 0.012
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Table 5. Cont.

VH Coefficient p-Value

Norway spruce 0.738 7.98 × 10−9

Scots pine −1.820 4.52 × 10−31

Sitka spruce 0.153 0.157

Height 0.030 0.0002

Model p-value 0.00

VV Coefficient p-Value

Intercept −12.186 1.03 × 10−317

VSW 0.345 9.88 × 10−8

Temperature 0.001 0.063

Norway spruce 1.405 2.99 × 10−40

Scots pine −1.235 1.98 × 10−23

Sitka spruce 0.778 1.04 × 10−18

Height 0.057 1.96 × 10−18

Model p-value 0.00
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GLM and represent the apparent increase in backscatter per tree species, controlling for the variable
rainfall.
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backscattering, but the presence of VSW on leaves does.  

Figure 9. Scatter plot of VV values in relation to VSW. The regression lines are generated with an
GLM and represent the apparent increase in backscatter per tree species, controlling for the variable
rainfall.

This table of coefficients was extracted using the following model equation:

Backscatter ∼ rain (as binary) + temperature + species + height (2)

The diagnostic plots in Figure 10 allow us to identify the sufficiently Gaussian distribu-
tion of the residuals, validating the model results portrayed in Table 5. The model p-values,
calculated through Chi-square and degrees of freedom, indicate that both models are robust.
The variable VSW appears significant at both polarizations, confirming our hypothesis. It
is important to note that Table 5 indicates that VSW triggers a larger backscatter increase
at VH polarization: 0.45 dB compared to a value of 0.35 dB at VV polarization. The VSW
coefficients displayed in the table largely confirm what we expected from the inspection of
Figures 8 and 9. The temperature value was clearly non-significant in both models. The tree
species levels also broadly match that we expected from Figures 8 and 9. In fact, considering
the intercept as the reference-level species, i.e., Japanese larch, we can see the same ranking
of the dominant species that we previously discussed, shown in Figures 8 and 9. The height
variable, while significant, showed negligible coefficients at both polarizations.

From the logistic regression, we can see that the amount of rain does not impact the
backscattering, but the presence of VSW on leaves does.
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Figure 10. Diagnostics plots for the generalised linear models including the VH polarization (A) and
VV polarization (B).

3.3. Random Forest

Finally, we want to investigate whether a non-parametric model could capture the
effect of accumulated rain on backscatter. Therefore, we applied a random forest, and
the results are reported in Table 6. In this case, we only included rain (mm/day) as an
independent variable. The mean of squared residuals (MSR) values for both polarizations
are low, at 1.88 dB and 2.05 dB, attesting to the validity of the model. The percentage of
explained variance, however, is suboptimal in both cases, suggesting a very poor model
performance and indicating that the model did not capture any useful patterns in the
data. The Pearson’s correlation coefficient in Table 6 shows poor agreement between the
predicted and observed variables at VV, and a good agreement at VH. Ultimately, as the
correlation did not drastically improve, the linear model is preferred.
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Table 6. RF and Pearson’s product–moment correlation results for both polarizations.

RF Pearson’s Product–Moment Correlation

MSE p-Value Coeff

VH 1.88 <2 × 10−16 0.54

VV 2.05 2.94 × 10−6 0.26

4. Discussion

The first objective of this study was to investigate whether it is possible to detect
the change in permittivity triggered by the VSW of conifer-dominated forest plots with
Sentinel-1 data. Our methodology revealed that VSW does modulate backscatter in these
conditions; however, that modulation is not affected by the cumulative amounts of water
that occurred due to precipitation. We propose two reasons for this: (1) it is known that
heavy rain can disturb the backscatter [35,36]; (2) foliage, unlike soil, is a relatively dry
environment because wind, the movement of branches and temperature eliminate the
water quite rapidly [37,38]; therefore, the excess water in the canopy is eliminated at higher
rates than can be detected. It is suspected that the choice of wavelength has an impact on
the poor results when considering the accumulated rainfall. The C-band signal does not
have a great penetrative ability in in forest canopies as it reaches saturation much faster
than longer wavelengths [39,40]. We suspect that as rainwater accumulates below the
canopy, it escapes the radar signal.

The GLM results in Table 5 report an increase of 0.35 dB in VV backscatter, and of
0.45 dB in VH backscatter, on days with reported rainfall events. This is in alignment with
a previous study by Vaca and Van der Tol (2018) [25]. They used the same data product
employed in this paper and found that the backscatter of a wet Douglas fir canopy is ~1.5 dB
and ~1 dB higher than the backscatter when the canopy is dry at VH and VV polarizations,
respectively. Their study also looked at beech stands and found that the rainfall effect was
not detectable on beech-dominated plots. This suggests that our detection of backscatter
increases in the presence of VSW may have been facilitated by the characteristics of the
forest plots. In fact, coniferous species, such as those observed in this research, have
a stronger tendency to produce higher backscatter when wet compared to deciduous
species [25], possibly due to the greater rain-storage capacity of needles [41]. Additionally,
the time series variations in the power of volume scattering due to the foliage growth and
the drop in the case of deciduous tree species is much higher than the variation due to
the autumn needle drop in the case of conifers [16]. This was confirmed in a study [42]
considering a mixed forest in Northern Switzerland, where a time series analysis was
conducted with Sentinel-1 C-band backscatter in VV and VH polarization. Their results
supported this concept, illustrating that the seasonal signatures of the spruce-dominated
forest plots were less pronounced and more gradual than their deciduous counterparts. The
summary of the backscatter values of the dataset hereby used (reported in Table 3) coincides
with the values reported in Rüetschi and colleagues’ study [42], validating the present
values. This minor seasonal variation in conifers is assumed to have benefitted this research,
since the radar data range across two years and hence span multiple seasons. Consequently,
the approximately constant appearance of conifers might have led to a more uniform radar
signal, which allowed for a more accurate deduction of the effects of surface water. While
we recognize the effect that seasonal variations may have had on the quality of the data, it
is notable that this research did not present a timeseries evaluation of the backscatter. The
reason for this is that the aim of this study was to detect the relative variation at the pixel
level triggered by changes in dielectric properties due to VSW. The potential influence that
seasonality can have on the signal is present in all the images; therefore, accounting for this
goes beyond the scope of this study.

Species variation is treated in a similar fashion. As highlighted by the scatter plots in
Figures 6–9, the dominant species clearly dictates the zonation of the backscatter values
across the full range. The coefficient tables confirm this as well, suggesting that each tree
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species might have an identifiable backscatter signature. This aligns with the findings of
Udali et al. (2021) [43], who evaluated the capacity of C-band SAR backscatter to accurately
perform tree species classification. They found that coniferous tree species were more
suitable for classification, as they showed larger differences in backscatter between each
other than deciduous species. It is significant that our analysis confirms Sentinel-1′s use in
tree classification and, while it offers a direction for future research, species classification
was beyond the scope of this research. Similarly to seasonality, dominant species affected
each image equally; therefore, they would not affect the observability of relative variation.

The results of this study report that the presence of surface water on vegetation due to
the occurrence of rainfall triggers an increase in radar backscatter of ±0.45 dB in VH, and
±0.35 dB in VV, suggesting that cross-channels are better suited to forestry studies. This
outcome is in agreement with existing research. In fact, higher sensitivity to precipitation-
induced backscatter increases in VH polarization was also noted in tropical forests by
Doblas et al. (2020) [26], and VH performed better in the study of Vaca and Van der Tol as
well [25].

The authors propose that our results are highly influenced by the canopy charac-
teristics, both at a high level, e.g., tropical versus temperate forest, and at species level.
Seasonality and forest properties such as age and height also have an impact on backscat-
tering properties. A limitation of this research is the lack of consideration of forest biomass,
which also affects backscatter [8]. Future research can improve on this study by aggregating
VSW detection with forest above-ground biomass evaluation, potentially incorporating
longer wavelengths as they have, at times, proved to be better-suited to biomass estima-
tion [39]. Nevertheless, this research inserts itself in a growing archive of empirical proof
that surface water content in forest vegetation causes a quantifiable increase in co-polarised
and cross-polarised SAR backscatter.

5. Conclusions

The present study intended to shed light on the effect of VSW on C-band SAR backscat-
ter in temperate forests by quantifying the increase in backscatter triggered in changes in
dielectric properties. The increase in radar backscatter of ±0.45 dB in VH, and ±0.35 dB in
VV has shown that VSW modulates the backscattering at C-band, with the cross-polarized
channel performing better in the detection of canopy changes. This variation in the backscat-
tering might have a significant impact on the estimations/detections, increasing false-alarm
rates and classification errors/biases; therefore, it needs to be considered when performing
biomass estimation or change detection analyses. However, meteorological information,
such as for the presence of a perturbation, is available for most places, and this could
be used to provide a correction or calibration of the data before performing backscatter-
ing estimations. The amount of calibration needed can be easily estimated by looking
at the time series and performing a logistic regression between backscattering and the
presence/absence of rain. Such a correction could avoid biases.
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16. Dostálová, A.; Milenković, M.; Hollaus, M.; Wagner, W. Influence of Forest Structure on the Sentinel-1 Backscatter Variation-

Analysis with Full-Waveform LiDAR Data. In Proceedings of the Living Planet Symposium, Prague, Czech Republic, 9–13 May
2016; Volume 740, p. 202.

17. Ferrazzoli, P.; Paloscia, S.; Pampaloni, P.; Schiavon, G.; Solimini, D.; Coppo, P. Sensitivity of Microwave Measurements to
Vegetation Biomass and Soil Moisture Content: A Case Study. IEEE Trans. Geosci. Remote Sens. 1992, 30, 750–756. [CrossRef]

18. Hamdan, O.; Aziz, H.K.; Rahman, K.A. Remotely Sensed L-Band Sar Data for Tropical Forest Biomass Estimation. J. Trop. For. Sci.
2011, 23, 318–327.

19. Ruiz-Ramos, J.; Marino, A.; Boardman, C.; Suarez, J. Continuous Forest Monitoring Using Cumulative Sums of Sentinel-1
Timeseries. Remote Sens. 2020, 12, 3061. [CrossRef]

20. Sarker, M.L.R.; Nichol, J.; Iz, H.B.; Ahmad, B.B.; Rahman, A.A. Forest Biomass Estimation Using Texture Measurements of
High-Resolution Dual-Polarization C-Band SAR Data. IEEE Trans. Geosci. Remote Sens. 2013, 51, 3371–3384. [CrossRef]

21. Konings, A.G.; Rao, K.; Steele-Dunne, S.C. Macro to Micro: Microwave Remote Sensing of Plant Water Content for Physiology
and Ecology. New Phytol. 2019, 223, 1166–1172. [CrossRef]

22. Lehmann, E.A.; Caccetta, P.; Lowell, K.; Mitchell, A.; Zhou, Z.-S.; Held, A.; Milne, T.; Tapley, I. SAR and Optical Remote Sensing:
Assessment of Complementarity and Interoperability in the Context of a Large-Scale Operational Forest Monitoring System.
Remote Sens. Environ. 2015, 156, 335–348. [CrossRef]

23. Rignot, E.; Way, J.B.; McDonald, K.; Viereck, L.; Williams, C.; Adams, P.; Payne, C.; Wood, W.; Shi, J. Monitoring of Environmental
Conditions in Taiga Forests Using ERS-1 SAR. Remote Sens. Environ. 1994, 49, 145–154. [CrossRef]

24. de Jong, J.; Klaassen, W.; Ballast, A. Rain Storage in Forests Detected with ERS Tandem Mission SAR. Remote Sens. Environ. 2000,
72, 170–180. [CrossRef]

25. Vaca, C.C.; Van Der Tol, C. Sensitivity of Sentinel-1 to Rain Stored in Temperate Forest. In Proceedings of the IGARSS 2018—2018
IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; IEEE: Valencia, Spain, 2018;
pp. 5330–5333.

26. Doblas, J.; Carneiro, A.; Shimabukuro, Y.; Sant’Anna, S.; Aragão, L. Assessment of rainfall influence on sentinel-1 time series on
amazonian tropical forests aiming deforestation detection improvement. In Proceedings of the 2020 IEEE Latin American GRSS &
ISPRS Remote Sensing Conference (LAGIRS), Santiago, Chile, 22–26 March 2020. [CrossRef]

https://doi.org/10.1007/s11431-010-0131-3
https://doi.org/10.1080/01431169208904049
https://doi.org/10.1016/S0034-4257(96)00067-3
https://doi.org/10.1016/S0034-4257(98)00081-9
https://doi.org/10.1016/0034-4257(93)90022-P
https://doi.org/10.3390/f14071418
https://doi.org/10.2528/PIERB07110101
https://doi.org/10.1016/j.eswa.2022.117342
https://doi.org/10.1109/MGRS.2013.2248301
https://doi.org/10.1007/s40725-017-0052-5
https://doi.org/10.1007/s40725-015-0021-9
https://doi.org/10.3390/rs10081250
https://doi.org/10.1109/36.158869
https://doi.org/10.3390/rs12183061
https://doi.org/10.1109/TGRS.2012.2219872
https://doi.org/10.1111/nph.15808
https://doi.org/10.1016/j.rse.2014.09.034
https://doi.org/10.1016/0034-4257(94)90051-5
https://doi.org/10.1016/S0034-4257(99)00100-5
https://doi.org/10.1109/lagirs48042.2020.9165566


Remote Sens. 2023, 15, 5723 18 of 18

27. Metlek, S.; Kayaalp, K.; Basyigit, I.B.; Genc, A.; Dogan, H. The Dielectric Properties Prediction of the Vegetation Depending on
the Moisture Content Using the Deep Neural Network Model. Int. J. RF Microw. Comput.-Aided Eng. 2021, 31, e22496. [CrossRef]

28. Chuah, H.T.; Kam, S.W.; Chye, Y.H. Microwave Dielectric Properties of Rubber and Oil Palm Leaf Samples: Measurement and
Modelling. Int. J. Remote Sens. 1997, 18, 2623–2639. [CrossRef]

29. Afzal, A.; Mousavi, S.-F. Estimation of Moisture in Maize Leaf by Measuring Leaf Dielectric Constant. Int. J. Agric. Biol. ISSN
Print 2008, 10, 66–68.

30. van Emmerik, T.; Steele-Dunne, S.; Judge, J.; van de Giesen, N. A Comparison between Leaf Dielectric Properties of Stressed and
Unstressed Tomato Plants. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS),
Milan, Italy, 26–31 July 2015; pp. 275–278.

31. Trabelsi, S.; Mckeown, M.S.; Nelson, S.O. Dielectric Properties-Based Method for Rapid and Nondestructive Moisture Sensing in
Almonds. J. Microw. Power Electromagn. Energy 2016, 50, 94–105. [CrossRef]

32. Kocakusak, A.; Colak, B.; Helhel, S. Frequency Dependent Complex Dielectric Permittivity of Rubber and Magnolia Leaves and
Leaf Water Content Relation. J. Microw. Power Electromagn. Energy 2016, 50, 294–307. [CrossRef]

33. Veloso, A.; Mermoz, S.; Bouvet, A.; Le Toan, T.; Planells, M.; Dejoux, J.-F.; Ceschia, E. Understanding the Temporal Behavior
of Crops Using Sentinel-1 and Sentinel-2-like Data for Agricultural Applications. Remote Sens. Environ. 2017, 199, 415–426.
[CrossRef]

34. Liaw, A.; Wiener, M. Classification and Regression by Random Forest. R News 2002, 2, 18–22.
35. Zhang, G.; Li, X.; Perrie, W.; Zhang, B.; Wang, L. Rain Effects on the Hurricane Observations over the Ocean by C-Band Synthetic

Aperture Radar. J. Geophys. Res. Ocean. 2016, 121, 14–26. [CrossRef]
36. Danklmayer, A.; Doring, B.J.; Schwerdt, M.; Chandra, M. Assessment of Atmospheric Propagation Effects in SAR Images. IEEE

Trans. Geosci. Remote Sens. 2009, 47, 3507–3518. [CrossRef]
37. De Ridder, K. Rainwater Storage on Plant Canopies. J. Geophys. Res. 2001, 106, 14819–14825. [CrossRef]
38. de Jong, J.; Moors, E.; Klaassen, W.; Kuiper, P.; Saich, P.; Borgeaud, M. Estimations of Rainwater Storage in a Deciduous

Forest Canopy by Satellite Radar. Available online: https://pure.rug.nl/ws/portalfiles/portal/3090751/c5.pdf (accessed on 25
September 2023).

39. Huang, X.; Ziniti, B.; Torbick, N.; Ducey, M.J. Assessment of Forest above Ground Biomass Estimation Using Multi-Temporal
C-Band Sentinel-1 and Polarimetric L-Band PALSAR-2 Data. Remote Sens. 2018, 10, 1424. [CrossRef]

40. Wang, Y.; Hess, L.L.; Filoso, S.; Melack, J.M. Canopy Penetration Studies: Modeled Radar Backscatter from Amazon Floodplain
Forests at C-, L-, and P-Band. In Proceedings of the IGARSS’94—1994 IEEE International Geoscience and Remote Sensing
Symposium, Pasadena, CA, USA, 8–12 August 1994; Volume 2, pp. 1060–1062.

41. Klaassen, W. Evaporation from Rain-Wetted Forest in Relation to Canopy Wetness, Canopy Cover, and Net Radiation. Water
Resour. Res. 2001, 37, 3227–3236. [CrossRef]

42. Rüetschi, M.; Schaepman, M.E.; Small, D. Using Multitemporal Sentinel-1 C-Band Backscatter to Monitor Phenology and Classify
Deciduous and Coniferous Forests in Northern Switzerland. Remote Sens. 2018, 10, 55. [CrossRef]

43. Udali, A.; Lingua, E.; Persson, H.J. Assessing Forest Type and Tree Species Classification Using Sentinel-1 C-Band SAR Data in
Southern Sweden. Remote Sens. 2021, 13, 3237. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1002/mmce.22496
https://doi.org/10.1080/014311697217503
https://doi.org/10.1080/08327823.2016.1190153
https://doi.org/10.1080/08327823.2016.1254135
https://doi.org/10.1016/j.rse.2017.07.015
https://doi.org/10.1002/2015JC011044
https://doi.org/10.1109/TGRS.2009.2022271
https://doi.org/10.1029/2001JD900128
https://pure.rug.nl/ws/portalfiles/portal/3090751/c5.pdf
https://doi.org/10.3390/rs10091424
https://doi.org/10.1029/2001WR000480
https://doi.org/10.3390/rs10010055
https://doi.org/10.3390/rs13163237

	Introduction 
	Methods 
	Forestry Data 
	SAR Data 
	Statistical Analysis 

	Results 
	Preliminary Analysis 
	Regression Analysis 
	Random Forest 

	Discussion 
	Conclusions 
	References

