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Abstract: When a remote sensing camera work in push-broom mode, the obtained image usually
contains significant stripe noise and random noise due to differences in detector response and
environmental factors. Traditional approaches typically treat them as two independent problems and
process the image sequentially, which not only increases the risk of information loss and structural
damage, but also faces the situation of noise mutual influence. To overcome the drawbacks of
traditional methods, this paper leverages the double low-rank characteristics in the underlying prior
of degraded images and presents a novel approach for addressing both destriping and denoising
tasks simultaneously. We utilize the commonality that both can be treated as inverse problems and
place them in the same optimization framework, while designing an alternating direction method of
multipliers (ADMM) strategy for solving them, achieving the synchronous removal of both stripe
noise and random noise. Compared with traditional approaches, synchronous denoising technology
can more accurately evaluate the distribution characteristics of noise, better utilize the original
information of the image, and achieve better destriping and denoising results. To assess the efficacy
of the proposed algorithm, extensive simulations and experiments were conducted in this paper.
The results show that compared with state-of-the-art algorithms, the proposed method can more
effectively suppress random noise, achieve better synchronous denoising results, and it exhibits a
stronger robustness.

Keywords: denoising; destriping; low rank; remote sensing

1. Introduction

Due to factors such as imaging circuits and the environment, random noise widely
exists in remote sensing images. Additionally, the existing photoelectric detectors often
exhibit certain variations in response within the same light field due to manufacturing
technology. This results in the inevitable occurrence of stripe noise during the imaging
process. Taking the entire process into consideration, we can draw the following conclusion:
remote sensing image degradation is simultaneously influenced by both stripe noise and
random noise (see Figure 1). Unlike random noise, stripe noise is a typical structured noise
that exhibits obvious structural and directional characteristics. Therefore, the combination
of these two types of noise affects both the grayscale information and the structure of the
image accordingly.

To tackle the previously mentioned concerns, researchers have proposed numerous
algorithms for image denoising [1–14] and destriping [15–32] over the past decade, achiev-
ing satisfactory results. However, most of these algorithms are only applicable to scenarios
where random noise or stripe noise exists separately, requiring multiple processing steps to
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obtain the final image. This strategy overlooks the mutual influence among noise compo-
nents while increasing the risks of information loss and structural damage to the image. In
contrast, synchronous denoising schemes can effectively avoid these issues, providing a
more accurate estimation of the distribution and structural characteristics of different types
of noise. This holds significant value for the subsequent applications of image data. For
instance, in the context of monitoring natural disasters as discussed in [33], incorporating
more information about the image structure enables a more precise assessment of changes
in mountainous areas and on water surfaces. This contributes to furnishing more reliable
raw information for monitoring natural disasters, greatly enhancing the accuracy of early
warnings. Simultaneously, it allows for a more accurate evaluation of destructiveness. Fur-
thermore, in tasks related to image processing in [34], a more precise estimation of different
types of noise can significantly reduce their impact, leading to superior processing results.

(a) Original image (b) Random noise (c) Stripe noise (d) Degraded image

Figure 1. Noise type and image degradation simulation.

Related Work

Researchers have proposed a series of approaches to address the challenge of simul-
taneous destriping and denoising. In 2013, after noticing the mixture of stripe noise and
random noise in images, Chang et al. proposed a joint model that combined variation
and image sparse representation to simultaneously remove both stripe noise and random
noise [35]. This approach cleverly exploited the property that random noise cannot be
sparsely encoded and successfully achieved the purpose of synchronous denoising. After
that, Liu et al. proposed an approach where the unidirectional gradient matrix was consid-
ered as a sparse prior. By applying the l0 norm as a constraint, they effectively removed
stripe noise. Simultaneously, the image was transformed into the wavelet domain for de-
noising purpose [36]. In addition, the low-rank-based single-image decomposition model
(LRSID) proposed by Chang et al. can suppress the random noise while removing the stripe
noise, and to a certain extent, it also achieves the purpose of simultaneous denoising [25].
In 2017, Kuang et al. used the SNRCNN network to remove optical noise in infrared im-
ages [28]. To achieve better results, Huang et al. proposed two different approaches in 2019
and 2020, respectively. In their research work in 2019, Huang et al. transferred the relevant
studies on CNN denoising to the field of synchronous denoising. They combined the
unidirectional variation model with CNN denoising networks to construct the UV-DCNN
network [37]. In 2020, they exploited the advantages of analysis sparse representation
and synthesis sparse representation and proposed a joint analysis and weighted synthesis
sparsity (JAWS) model [38]. In 2020, Chang et al. designed a dual-stream CNN structure
called TSWEU after considering various scenarios of stripe noise comprehensively [39]. The
TSWEU network not only modeled stripes and image components but also incorporated
a wavelet transform denoising module. In 2023, Song et al. employed the maximum a
posteriori (MAP) estimation theory to model the synchronous denoising problem. They
proposed the stripe estimation and image denoising (SEID) algorithm [40], which approxi-
mates the conditional expectation of the image using a modified NLM algorithm. The SEID
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algorithm achieved significant improvements in synchronous denoising, demonstrating
better denoising performance.

The aforementioned research can be broadly categorized into two approaches. The
first approach involves incorporating relevant theories from traditional image denoising
techniques and utilizing the MAP estimation to reconstruct the underlying image from
the degraded input. The other approach relies on deep learning networks, using an
end-to-end network to simultaneously perform denoising and destriping tasks. These
methods can achieve the goal of synchronous denoising, but there are still some issues in
practical applications. For example, in the model proposed by Chang et al. in 2013 [21] ,
it can be challenging to achieve stable processing results due to the sensitivity of sparse
dictionaries to the specific characteristics of the image dataset. The models based on CNN
networks (such as SNRCNN, UV-CNN, and TSWEU) face significant domain adaptation
issues and exhibit noticeable performance loss when dealing with different images. In
the SEID model proposed by Song et al. [40], the modified NLM algorithm discards the
neighborhood windows with the same column of target pixels, resulting in blurred edge in
the image (see Figure 2), especially the structure with the same direction as the stripe noise
(see Figure 2b).

(a) Blurred edge (b) Details in red box

Figure 2. The processing result of SEID.

Considering the challenges mentioned in the previous approaches, we propose a
synchronized denoising model based on double low-rank matrix recovery. The low-rank
characteristics of the image prior and stripe noise are used to recover two low-rank matri-
ces simultaneously, so as to realize the synchronous decoupling of the underlying prior.
Additionally, we also design an ADMM strategy to approximate the optimal solution of the
model. The experimental results, both in simulated and real images’ mixed noise removal,
demonstrate that the proposed model in this paper outperforms the state-of-the-art models
in terms of processing effectiveness, robustness, and applicability. The main ideas and
contributions of this paper can be summarized as follows:

(1) We propose a synchronous denoising model based on double low-rank matrix recovery
by capitalizing on the full potential of the low-rank characteristics exhibited by both
image prior and stripe noise.
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(2) By employing the research approach of image decomposition, this paper simultane-
ously optimizes the solutions for all underlying priors within a unified framework,
achieving the goal of synchronous denoising.

(3) To solve the proposed model, we devise an effective ADMM strategy and achieve
excellent processing results.

The subsequent content is organized as follows: Section 2 provides a comprehensive
introduction to the proposed synchronous denoising model, outlining its key components
and methodology in detail. In Section 3, we meticulously design simulations and exper-
iments to assess and validate the effectiveness and robustness of the proposed model.
Section 4 discusses the experimental results and addresses the determination of important
parameters. Finally, we conclude the paper and discuss future research in Section 5.

2. Simultaneous Destriping and Denoising

In this section, we provide a detailed introduction to the proposed double low-rank
simultaneous destriping and denoising model (DLRSDD). Firstly, the degradation model
of the image is explained. Then, based on the underlying prior information of the image,
we construct the synchronous denoising model. Finally, we design a reasonable ADMM
strategy to solve the model.

2.1. Degradation Model

Remote sensing images usually contain two types of noise: additive noise and mul-
tiplicative noise [41]. However, by applying logarithmic operations, multiplicative noise
can be converted into additive noise [42]. As a result, the noise in this paper is considered
as additive components. Therefore, we represent the degradation model of the image
as follows:

F = U + S + N (1)

where F, U, S, and N represent the degraded image, clean image, stripe noise, and random
noise, respectively.

2.2. The DLRSDD Model

Estimating any of the underlying priors from the degraded image F is a typical
ill-posed inverse problem. Previous research has mainly focused on separately recov-
ering the clean image U, completely ignoring the other underlying priors, which limits
the performance of the model. To overcome this limitation, we propose an approach to
simultaneously solve three underlying priors, aiming to achieve better denoising results.

In order to approximate the optimal solution to the ill-posed inverse problem, we need
to add regularization terms to the underlying priors. According to [25], we represent the
image synchronous denoising model as follows:

arg min
U,S,N

1
2
‖F−U − S− N‖2

F + λR(U) + γR(S) + τR(N) (2)

The terms in Equation (2) are defined as follows:
1
2‖F−U − S− N‖2

F: data fidelity term.
R(U): regularization term for the clean image.
R(S): regularization term for stripe noise.
R(N): regularization term for random noise.
λ, γ, τ: regularization parameters.

To preserve the texture information and structural features of the image, we employ
the unidirectional total variation model [43]. Therefore, the regularization term λR(U) can
be expressed as:

λR(U) = λ1‖∇xU‖1 + λ2
∥∥∇yU

∥∥
1 (3)
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where ∇x and ∇y represent the first-order derivative operators in the x and y directions,
respectively.

To address the issue of stripe noise, we leverage the overall low-rank attributes of the
stripe noise and the sparse properties of the gradient matrix in the stripe’s direction (in this
paper, the y-direction) to impose constraints [44]. Therefore, γR(S) can be expressed as:

γR(S) = γ1‖S‖∗ + γ2
∥∥∇yS

∥∥
0 (4)

In addition, we indirectly construct the regularization term for random noise. The
information in a clean image usually has high correlation, so we can use low-rank clustering
to restore the low-rank components to achieve the purpose of image denoising. Similarly,
the stripe noise is usually a low-rank matrix, which also means that its information is highly
relevant. Therefore, for the mixed components of the clean image and stripe noise, we can
also apply low-rank clustering to impose a low-rank constraint on them to remove random
noise from the mixed components. Here, the weighted minimum nuclear norm is used to
impose a low-rank constraint to achieve this purpose [8]. According to Equation (1), we
consider this as the regularization term for random noise, and τR(N) can be expressed as:

τR(N) = τ‖F− N‖w,∗ (5)

The final representation of the synchronous denoising model we built can be expressed as:

arg min
U,S,N

1
2‖F−U − S− N‖2

F + λ1‖∇xU‖1 + λ2
∥∥∇yU

∥∥
1

+γ1‖S‖∗ + γ2
∥∥∇yS

∥∥
0 + τ‖F− N‖w,∗

(6)

2.3. ADMM Optimization

In order to obtain the underlying priors in the model, we employ the ADMM to
approximate the optimal solution of Equation (6). We decompose it into the following three
independent subproblems:

arg min
U

1
2
‖F−U − S− N‖2

F + λ1‖∇xU‖1 + λ2
∥∥∇yU

∥∥
1 (7)

arg min
S

1
2
‖F−U − S− N‖2

F + γ1‖S‖∗ + γ2
∥∥∇yS

∥∥
0 (8)

arg min
N

1
2
‖F−U − S− N‖2

F + τ‖F− N‖w,∗ (9)

Equations (7)–(9) represent the subproblems regarding image U, stripe noise S, and random
noise N, respectively.

2.3.1. Solution of Image U

To obtain the solution for Equation (7), we let X = ∇xU, Y = ∇yU. It is then
transformed into the following constrained optimization problem:

arg min
U,X,Y

1
2
‖F−U − S− N‖2

F + λ1‖X‖1 + λ2‖Y‖1 (10)

subject to X = ∇xU, Y = ∇yU

Based on [45,46], the representation of the augmented Lagrangian equation corresponding
to Equation (10) is as follows:

arg min
U,X,Y

1
2
‖F−U − S− N‖2

F + λ1‖X‖1 + λ2‖Y‖1 + UL + Uα (11)

where
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UL =< L1, X−∇xU > + < L2, Y−∇yU >

Uα = α1
2 ‖X−∇xU‖2

F +
α2
2

∥∥Y−∇yU
∥∥2

F

This leads to three subproblems:

arg min
X

λ1‖X‖1+ < L1, X−∇xU > +
α1

2
‖X−∇xU‖2

F (12)

arg min
Y

λ2‖Y‖1+ < L2, Y−∇yU > +
α2

2

∥∥Y−∇yU
∥∥2

F (13)

arg min
U

1
2
‖F−U − S− N‖2

F + UL + Uα (14)

The solutions of Equations (12) and (13) can be obtained by soft-threshold shrinkage [47]
as follows:

Xk+1 = so f t_shrink(∇xUk −
Lk

1
α1

,
λ1

α1
) (15)

Yk+1 = so f t_shrink(∇yUk −
Lk

2
α2

,
λ2

α2
) (16)

where
so f t_shrink(L, ξ) =

L
|L| ∗max(L− ξ, 0) (17)

Equation (14) is a typical quadratic optimization problem. By setting its first derivative to
zero and applying a two-dimensional Fourier transform, the solution can be obtained [48].

Uk+1 = F−1

F (F− Sk − Nk) +F (α1∇T
x (Xk+1 +

Lk
1

α1
)) +F (α2∇T

y (Yk+1 + L2
α2
))

F (1 + α1∇T
x∇x + α2∇T

y∇y)

 (18)

2.3.2. Solution of Stripe Noise S

For the solution of Equation (8), we also make the following variable substitutions
P = S and Q = ∇yS, and it becomes the following constrained optimization problem:

arg min
S

1
2
‖F−U − S− N‖2

F + γ1‖P‖∗ + γ2‖Q‖0 (19)

Subject to P = S, Q = ∇yS

The representation of the augmented Lagrangian equation corresponding to Equation (19)
is as follows:

arg min
S,P,Q

1
2
‖F−U − S− N‖2

F + γ1‖P‖∗ + γ2‖Q‖0 + SL + Sβ (20)

where

SL =< L3, P− S > + < L4, Q−∇yS >

Sβ = β1
2 ‖P− S‖2

F +
β2
2

∥∥Q−∇yS
∥∥2

F

This leads to three subproblems:

arg min
P

γ1‖P‖∗+ < L3, P− S > +
β1

2
‖P− S‖2

F (21)

arg min
P

γ2‖Q‖0+ < L4, Q−∇yS > +
β2

2

∥∥Q−∇yS
∥∥2

F (22)
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arg min
S

1
2
‖F−U − S− N‖2

F + SL + Sβ (23)

To solve Equation (21) using singular-value soft-threshold shrinkage, one can follow the
procedure outlined in reference [49].

Pk+1 = K(so f t_shrink(∑, γ1))VT (24)

where F −Uk+1 − Nk = K ∑ VT is the singular value decomposition of F −Uk+1 − Nk,
and ∑ii is the diagonal element of the singular value matrix ∑.

Equation (22) can be solved by a hard-threshold shrinkage [50,51] as follows.

Qk+1 = hard_shrink(DySk − L4

β2
,

√
2γ2

β2
) (25)

where

hard_shrink(θ, T) =
{

θ, |θ| ≥ T
0, |θ| < T

(26)

Stripe noise S can be solved from Equation (23):

Sk+1 = F−1

F (F−Uk+1 − Nk + L3 + β1P) +F (β2∇T
y (Qk+1 + L4

β2
))

F (1 + β1 + β2∇T
y∇y)

 (27)

2.3.3. Solution of Random Noise N

For Equation (9), we set M = F− N, then the augmented Lagrange equation can be
expressed as:

arg min
N,M

1
2
‖F−U − S− N‖2

F + τ‖M‖w,∗ + NL + Nµ (28)

where

NL =< L5, M− (F− N) >

Nµ = µ
2 ‖M− (F− N)‖2

F

This leads to two subproblems:

arg min
M

τ‖M‖w,∗ + NL + Nµ (29)

arg min
N

1
2
‖F−U − S− N‖2

F + NL + Nµ (30)

when we treat F− N as a whole, Equation (29) represents a typical process of image denois-
ing using weighted nuclear norm minimization (WNNM) for low-rank matrix recovery.
Therefore, according to [8], we have:

Mk+1 = KSw(∑)VT (31)

where
Sw(∑)ii = max(∑

ii
−wii, 0) (32)

F− Nk = K ∑ VT is the singular value decomposition of the matrix F− Nk, and w is the
weight matrix.

For the estimation of the weight matrix w, we followed the strategy in [8]:

wi = c
√

n/(σi(Mj) + ε) (33)
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σi(Mj) =
√

max(σ2
i (F− N)j − nσ2

n , 0) (34)

where c is a constant, n represents the number of clusters of similar image patches, σ2
n rep-

resents noise variance, ε = 10−16 is used to avoid division by zero. σi(Mj) and σi(F− N)j,
respectively, denote the ith singular value of the jth low-rank clustered matrix for M and
F− N.

Then, we obtain random noise N from Equation (30) :

Nk+1 = F−1

(
F (F−Uk+1 − Sk+1 − L5 + µ(F−Mk+1))

F (1 + µ)

)
(35)

Afterwards, we incorporate the following modification to the Lagrange multiplier:

Lk+1
1 = Lk

1 + α1(Xk+1 −∇xUk+1) (36)

Lk+1
2 = Lk

2 + α2(Yk+1 −∇yUk+1) (37)

Lk+1
3 = Lk

3 + β1(Pk+1 − Sk+1) (38)

Lk+1
4 = Lk

4 + β2(Qk+1 −∇ySk+1) (39)

Lk+1
5 = Lk

5 + µ(Mk+1 − (F− Nk+1)) (40)

The solving process is summarized as Algorithm 1:

Algorithm 1 Double low-rank simultaneous destriping and denoising algorithm

Input: Degraded image F, parameters.
1: Initialize.
2: For k = 1: K do
3: Solve Xk+1, Yk+1 and Uk+1 via (15), (16), and (18).
4: Solve Pk+1, Qk+1 and Sk+1 via (24), (25), and (27).
5: Solve Mk+1 and Nk+1 via (31) and (35).
6: Update Lagrange multiplier Lk+1

1 , Lk+1
2 , Lk+1

3 , Lk+1
4 and Lk+1

5 .
7: End for
Output: Image I, stripe noise S, and random noise N.

3. Simulation and Experiments

To evaluate the model’s real processing capabilities, we conducted simulations and
validation experiments. We conducted a comparative analysis of the experimental results
with four state-of-the-art methods: LRSID, SNRCNN, TSWEU, and SEID. Among them,
LRSID and SEID represent approaches using the MAP estimation theory, while SNRCNN
and TSWEU represent approaches using deep neural networks.

3.1. Experimental Settings

Throughout the entire experimental process, we conducted simulation on the Set12
dataset (see Figure 3) and remote sensing images with different spatial resolutions in
Figure 4 (all from the DIOR dataset [52]). We also performed validation experiments on
Compact High Resolution Imaging Spectrometer (CHRIS) images as well as actual remote
sensing images acquired in the laboratory.

During the simulation, we controlled the degradation of the images using three
parameters: rStr, mStr, and nSig. rStr reflects the proportion of image columns affected
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by stripe noise, mStr represents the maximum intensity, and nSig represents the standard
deviation of the random noise. For example, rStr = 0.5, mStr = 10, and nSig = 5 indicate
that 50% of the columns in the image are affected by stripe noise, with a maximum noise
intensity of 10, and there is also random noise with a standard deviation of 5. We conducted
the simulation on degraded images with rStr = 0.5, mStr = 5, 10, 15, and nSig = 5, 10. The
peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM) [53] are commonly
used objective metrics for evaluating the quality of processed images. These metrics provide
quantitative measures to assess the fidelity and similarity between the processed image
and the original image.

(a) Cam. (b) Hou. (c) Pep. (d) Fis. (e) Mon. (f) Jet.

(g) Par. (h) Riv. (i) Bar. (j) Shi. (k) Man. (l) Cou.

Figure 3. Images in the Set12 dataset for the simulation.

(a) Dior-1 (b) Dior-2 (c) Dior-3 (d) Dior-4 (e) Dior-5 (f) Dior-6

Figure 4. Remote sensing images with different spatial resolutions for the simulation.

In the actual validation experiment of remote sensing images, we performed syn-
chronized denoising on the four test images shown in Figure 5. Figure 5a,b are CHRIS
images that can be obtained from the website (http://www.brockmann-consult.de/beam/
data/products/(accessed on 15 July 2023)), while Figure 5c,d are test images from our
laboratory. They represent four different noise-mixing scenarios: (a) and (b) represent the
mixture of conventional stripe noise and random noise of different intensities, respectively,
while (c) and (d) represent the mixture of two types of unconventional stripe noise (bidirec-
tional stripe and incomplete stripe) and random noise. The synchronous denoising results
under these four scenarios can comprehensively evaluate the denoising performance of
the algorithms. To facilitate a direct comparison of the processing results, we introduced
two objective evaluation metrics: the photoresponse nonuniformity (PRNU) and standard
deviation (STD) of the image [44]. We evaluated the algorithm’s performance on stripe
noise and random noise by computing the PRNU and STD of the uniform regions (green
rectangular boxed region) in Figure 5. Smaller values of PRNU and STD typically indicate a
lower intensity of stripe noise and random noise, resulting in a more uniform image. They
also indicate a better performance of the algorithm in handling the uniform regions.

http://www.brockmann-consult.de/beam/data/products/
http://www.brockmann-consult.de/beam/data/products/
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(a) Chris-1 (b) Chris-2 (c) Lab-1 (d) Lab-2

Figure 5. Test images on validation experiments.

3.2. Results on Synthesized Images

Tables 1 and 2 display the PSNR and SSIM values for the Set12 dataset at varying levels
of mixed noise, while Table 3 are the results of images in Figure 4. To visually represent the
processing results, we have marked the better metrics in the table. The best-performing
metric is indicated in red, while the second-best is indicated in green.

By analyzing the data in Tables 1 and 2 comprehensively, we can observe that SEID
and the proposed DLRSDD exhibit overall excellent processing performance. Regardless of
variations in the random noise or stripe noise, they achieve good synchronized denoising
effects. However, when the intensity of the random noise is low, SEID has a significant
performance degradation when processing Pep. and Cou. It may be related to the use
of the median filter to obtain the initial value, which also affects the performance of the
algorithm on SSIM. In scenarios where the random noise has the same intensity but the
stripe noise has varying intensities, LRSID, SNRCNN, and TSWEU all demonstrate a highly
stable processing performance. However, when confronted with situations where the
stripe noise has the same intensity but the random noise has varying intensities, they all
exhibit a significant performance degradation, indicating that these methods are highly
effective in suppressing stripe noise but have limited capabilities in suppressing random
noise. The simulation results for remote sensing images can be obtained from Table 3.
Unlike the Set12 dataset, the overall performance of LRSID is superior to that of SEID.
The latter shows a significant performance decline when dealing with remote sensing
images with richer information. In addition, when the spatial resolution of the image
changes, the processing results of SEID also exhibit significant differences. When the
image’s spatial resolution is low, the edge-blurring phenomenon caused by the window-
weighted averaging severely reduces image quality, leading to poor performance. However,
when the spatial resolution is high, the impact of edge blurring is relatively reduced, and
SEID can still maintain relatively excellent processing results. Overall, the robustness
of SEID is weaker than that of the other algorithms compared in the experiment. In
contrast, the proposed DLRSDD model achieves excellent processing results in various
complex mixed-noise scenarios, and it does not show significant performance differences
when processing different images. Although DLRSDD experiences a certain degree of
performance degradation as the intensity of the random noise increases, it still outperforms
the other compared algorithms comprehensively.

Table 1. PSNR (dB) of Set12 processed by different methods under various conditions.

Noise Level Method Cam. Hou. Pep. Sta. But. Jet. Par. Riv. Bar. Shi. Man. Cou. Ave.

mStr = 5
nSig = 5

LRSID 31.54 29.96 27.82 32.47 32.52 34.18 34.16 32.52 30.60 33.15 34.31 31.29 32.04

SNRCNN 34.00 34.19 31.85 33.79 34.06 33.84 34.09 33.64 33.78 33.82 33.81 33.57 33.70

TSWEU 33.71 33.58 32.96 32.74 32.83 33.54 33.33 32.55 32.64 33.50 32.93 31.85 33.01

SEID 34.79 35.96 32.09 34.23 35.43 35.17 35.38 34.14 35.73 35.74 34.11 32.87 34.64

DLRSDD 36.44 37.31 35.98 36.08 37.23 35.70 36.43 35.84 35.64 36.85 36.36 35.09 36.25
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Table 1. Cont.

Noise Level Method Cam. Hou. Pep. Sta. But. Jet. Par. Riv. Bar. Shi. Man. Cou. Ave.

mStr = 10
nSig = 5

LRSID 31.02 29.94 27.66 32.23 32.36 33.97 34.29 32.37 31.29 33.15 34.08 31.20 31.96

SNRCNN 33.63 33.71 31.52 33.23 33.42 33.37 33.62 33.13 33.17 33.34 33.19 33.05 33.20

TSWEU 33.77 33.65 32.97 32.93 32.74 33.55 33.43 32.68 32.75 33.56 33.07 32.02 33.09

SEID 34.95 35.91 32.00 34.08 35.28 35.08 35.40 34.13 35.51 35.79 34.02 32.82 34.58

DLRSDD 36.19 36.97 35.49 35.75 36.58 35.48 36.18 35.38 35.20 36.50 35.84 34.86 35.87

mStr = 15
nSig = 5

LRSID 31.31 29.61 27.64 32.01 32.41 34.00 34.06 32.11 31.09 33.15 33.85 31.26 31.87

SNRCNN 32.61 32.82 31.00 32.10 32.73 32.33 32.41 32.17 32.00 32.31 32.17 32.18 32.24

TSWEU 33.72 33.63 33.11 33.17 33.08 33.68 33.44 32.85 32.94 33.68 33.07 32.47 33.24

SEID 34.31 36.05 31.79 34.00 35.47 35.03 35.32 33.99 35.29 35.62 34.16 32.92 34.50

DLRSDD 35.67 36.12 34.96 34.97 36.34 34.82 35.60 34.67 34.52 35.66 35.17 34.44 35.24

mStr = 5
nSig = 10

LRSID 28.12 27.64 25.91 28.20 28.22 28.65 28.73 28.18 27.38 28.51 28.67 27.75 28.00

SNRCNN 28.55 28.56 27.73 28.39 28.47 28.43 28.55 28.36 28.38 28.43 28.41 28.35 28.38

TSWEU 27.78 27.93 27.66 27.61 27.64 27.93 27.50 27.58 27.60 27.95 27.78 27.22 27.68

SEID 29.37 32.66 29.29 29.63 30.48 30.00 30.37 28.85 31.47 30.88 29.19 27.91 30.01

DLRSDD 33.33 34.69 33.37 32.68 33.93 32.31 32.97 32.74 33.39 34.06 33.13 32.62 33.27

mStr = 10
nSig = 10

LRSID 27.96 27.38 25.84 28.06 28.15 28.57 28.65 28.04 27.72 28.39 28.62 27.80 27.93

SNRCNN 28.38 28.42 27.57 28.08 28.23 28.17 28.36 28.17 28.09 28.24 28.23 28.15 28.17

TSWEU 27.81 27.93 27.71 27.68 27.72 27.92 27.48 27.68 27.68 27.97 27.83 27.30 27.73

SEID 29.26 32.59 29.28 29.42 30.59 30.00 30.26 28.91 31.38 30.88 29.19 27.99 29.98

DLRSDD 33.18 34.67 33.12 32.28 33.69 32.09 32.79 32.54 33.12 33.81 32.97 32.53 33.07

mStr = 15
nSig = 10

LRSID 28.05 27.41 25.75 27.98 28.05 28.52 28.59 27.96 27.44 28.23 28.50 27.67 27.85

SNRCNN 28.03 28.04 27.24 27.72 27.74 27.91 27.98 27.73 27.63 27.83 27.79 27.67 27.78

TSWEU 27.77 27.93 27.72 27.79 27.91 28.00 27.66 27.71 27.78 27.96 27.87 27.41 27.79

SEID 29.31 32.64 28.97 29.58 30.63 30.04 30.58 28.84 31.45 30.88 29.22 27.79 29.99

DLRSDD 32.67 34.05 32.20 31.81 32.83 31.74 32.44 31.83 32.55 33.23 32.28 31.75 32.45

Table 2. SSIM of Set12 processed by different methods under various conditions.

Noise Level Method Cam. Hou. Pep. Sta. But. Jet. Par. Riv. Bar. Shi. Ma. Cou. Avg

mStr = 5
nSig = 5

LRSID 0.869 0.856 0.896 0.929 0.916 0.892 0.895 0.965 0.959 0.961 0.974 0.937 0.921

SNRCNN 0.852 0.844 0.876 0.915 0.901 0.872 0.874 0.970 0.974 0.965 0.968 0.970 0.915

TSWEU 0.849 0.842 0.875 0.914 0.897 0.869 0.872 0.961 0.968 0.961 0.967 0.949 0.910

SEID 0.942 0.907 0.929 0.938 0.957 0.932 0.944 0.959 0.977 0.971 0.956 0.928 0.945

DLRSDD 0.946 0.936 0.942 0.958 0.969 0.939 0.953 0.981 0.982 0.983 0.978 0.971 0.961

mStr = 10
nSig = 5

LRSID 0.866 0.854 0.895 0.928 0.916 0.891 0.895 0.963 0.961 0.961 0.972 0.936 0.920

SNRCNN 0.849 0.841 0.873 0.910 0.897 0.868 0.870 0.965 0.970 0.960 0.962 0.965 0.911

TSWEU 0.849 0.842 0.875 0.914 0.897 0.869 0.872 0.961 0.969 0.961 0.967 0.950 0.911

SEID 0.942 0.907 0.928 0.937 0.957 0.932 0.944 0.960 0.977 0.971 0.956 0.930 0.945

DLRSDD 0.946 0.936 0.941 0.957 0.968 0.939 0.952 0.977 0.980 0.981 0.976 0.971 0.960

mStr = 15
nSig = 5

LRSID 0.868 0.853 0.895 0.928 0.916 0.892 0.895 0.960 0.959 0.961 0.972 0.937 0.920

SNRCNN 0.836 0.828 0.857 0.897 0.888 0.858 0.852 0.952 0.956 0.945 0.947 0.955 0.898

TSWEU 0.849 0.842 0.875 0.915 0.897 0.869 0.872 0.961 0.969 0.962 0.968 0.958 0.911

SEID 0.942 0.907 0.929 0.939 0.958 0.931 0.944 0.959 0.977 0.971 0.956 0.931 0.945

DLRSDD 0.945 0.933 0.939 0.954 0.967 0.935 0.950 0.970 0.975 0.977 0.972 0.967 0.957

mStr = 5
nSig = 10

LRSID 0.658 0.643 0.706 0.791 0.759 0.704 0.708 0.902 0.902 0.883 0.911 0.889 0.788

SNRCNN 0.651 0.629 0.689 0.776 0.745 0.689 0.693 0.910 0.921 0.892 0.911 0.919 0.785

TSWEU 0.633 0.616 0.678 0.768 0.734 0.678 0.677 0.888 0.905 0.877 0.900 0.886 0.770

SEID 0.861 0.865 0.878 0.866 0.915 0.884 0.868 0.909 0.946 0.916 0.870 0.848 0.886

DLRSDD 0.913 0.883 0.913 0.918 0.951 0.904 0.912 0.959 0.967 0.965 0.950 0.949 0.932
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Table 2. Cont.

Noise Level Method Cam. Hou. Pep. Sta. But. Jet. Par. Riv. Bar. Shi. Ma. Cou. Avg

mStr = 10
nSig = 10

LRSID 0.656 0.639 0.705 0.789 0.758 0.703 0.707 0.897 0.903 0.881 0.910 0.891 0.787

SNRCNN 0.647 0.626 0.685 0.772 0.740 0.685 0.690 0.904 0.912 0.886 0.905 0.914 0.780

TSWEU 0.632 0.616 0.679 0.768 0.735 0.678 0.677 0.889 0.906 0.878 0.900 0.888 0.770

SEID 0.862 0.865 0.878 0.866 0.915 0.885 0.868 0.909 0.945 0.916 0.870 0.849 0.886

DLRSDD 0.912 0.886 0.910 0.917 0.949 0.903 0.911 0.955 0.963 0.963 0.950 0.949 0.931

mStr = 15
nSig = 10

LRSID 0.657 0.640 0.703 0.789 0.757 0.703 0.707 0.896 0.898 0.879 0.908 0.888 0.785

SNRCNN 0.639 0.617 0.673 0.762 0.730 0.679 0.681 0.891 0.902 0.872 0.888 0.901 0.770

TSWEU 0.632 0.616 0.679 0.769 0.736 0.678 0.677 0.890 0.907 0.878 0.901 0.890 0.771

SEID 0.864 0.865 0.873 0.866 0.915 0.885 0.875 0.909 0.945 0.916 0.870 0.848 0.886

DLRSDD 0.909 0.888 0.907 0.911 0.945 0.901 0.909 0.949 0.959 0.959 0.942 0.942 0.927

Table 3. PSNR and SSIM of images in Figure 4 processed by different methods under various
conditions.

Noisy Level Method
PSNR SSIM

Dior-
1

Dior-
2

Dior-
3

Dior-
4

Dior-
5

Dior-
6 Avg. Dior-

1
Dior-

2
Dior-

3
Dior-

4
Dior-

5
Dior-

6 Avg.

mStr = 5
nSig = 5

LRSID 34.32 32.95 33.31 33.68 33.71 34.04 33.67 0.975 0.965 0.990 0.992 0.975 0.970 0.978

SNRCNN 33.85 33.66 33.22 33.48 33.71 34.06 33.66 0.973 0.967 0.989 0.991 0.970 0.969 0.977

TSWEU 33.13 32.74 32.17 32.56 33.01 33.22 32.80 0.973 0.961 0.987 0.989 0.970 0.966 0.974

SEID 33.35 33.48 29.94 31.81 34.33 35.12 33.00 0.945 0.933 0.937 0.972 0.952 0.945 0.947

DLRSDD 35.52 36.19 34.59 35.02 36.02 38.00 35.89 0.977 0.976 0.992 0.993 0.979 0.978 0.983

mStr = 10
nSig = 5

LRSID 34.15 32.91 33.07 33.56 33.67 33.94 33.55 0.975 0.965 0.990 0.991 0.975 0.969 0.977

SNRCNN 33.22 33.15 32.53 32.84 33.27 33.53 33.09 0.967 0.962 0.987 0.989 0.967 0.964 0.973

TSWEU 33.19 32.78 32.30 32.59 33.12 33.26 32.87 0.973 0.961 0.987 0.989 0.970 0.967 0.975

SEID 33.23 33.39 29.94 31.72 34.33 35.02 32.94 0.945 0.932 0.937 0.972 0.952 0.945 0.947

DLRSDD 34.93 35.74 34.05 34.55 35.61 37.27 35.36 0.973 0.974 0.991 0.992 0.977 0.976 0.980

mStr = 15
nSig = 5

LRSID 33.96 32.61 32.83 33.33 33.43 33.69 33.31 0.974 0.960 0.989 0.991 0.974 0.968 0.976

SNRCNN 32.13 32.28 31.19 31.73 32.27 32.62 32.04 0.952 0.950 0.980 0.984 0.956 0.955 0.963

TSWEU 33.39 32.95 32.30 32.89 33.38 33.45 33.06 0.973 0.962 0.987 0.990 0.972 0.967 0.975

SEID 33.30 33.41 29.82 31.56 34.20 35.16 32.91 0.945 0.933 0.936 0.972 0.952 0.945 0.947

DLRSDD 34.35 35.04 33.16 33.95 34.76 36.38 34.61 0.967 0.969 0.987 0.990 0.970 0.972 0.976

mStr = 5
nSig = 10

LRSID 28.61 28.36 28.29 28.45 28.50 28.68 28.48 0.918 0.904 0.971 0.975 0.919 0.906 0.932

SNRCNN 28.41 28.37 28.11 28.25 28.38 28.52 28.34 0.921 0.909 0.971 0.975 0.920 0.911 0.935

TSWEU 27.86 27.69 27.53 27.65 27.79 27.83 27.72 0.913 0.892 0.965 0.970 0.910 0.896 0.924

SEID 28.39 28.75 27.45 26.21 29.40 30.77 28.49 0.875 0.847 0.916 0.909 0.875 0.887 0.885

DLRSDD 32.05 32.92 30.48 31.04 32.63 34.76 32.31 0.949 0.946 0.978 0.982 0.952 0.953 0.960

mStr = 10
nSig = 10

LRSID 28.58 28.30 28.21 28.36 28.46 28.58 28.41 0.917 0.901 0.970 0.974 0.918 0.904 0.931

SNRCNN 28.20 28.17 27.88 27.99 28.14 28.30 28.11 0.916 0.902 0.968 0.972 0.913 0.906 0.929

TSWEU 27.88 27.70 27.58 27.71 27.83 27.88 27.76 0.913 0.892 0.965 0.971 0.910 0.897 0.925

SEID 28.40 28.75 27.43 26.22 29.36 30.77 28.49 0.875 0.847 0.916 0.909 0.874 0.887 0.885

DLRSDD 31.81 32.67 30.30 30.76 32.35 34.39 32.05 0.946 0.942 0.977 0.981 0.949 0.951 0.958

mStr = 15
nSig = 10

LRSID 28.46 28.18 28.12 28.30 28.37 28.49 28.32 0.916 0.900 0.970 0.974 0.917 0.902 0.930

SNRCNN 27.80 27.72 27.36 27.56 27.79 27.92 27.69 0.905 0.887 0.962 0.967 0.904 0.895 0.920

TSWEU 27.92 27.76 27.62 27.73 27.87 27.92 27.80 0.913 0.895 0.966 0.971 0.911 0.898 0.926

SEID 28.31 28.84 27.45 26.25 29.32 30.79 28.49 0.875 0.847 0.916 0.909 0.874 0.887 0.885

DLRSDD 31.23 32.04 29.74 30.26 31.76 33.68 31.45 0.939 0.935 0.973 0.977 0.943 0.945 0.952

To obtain a more precise assessment of the performance of different algorithms, we
present two sets of simulation results of Set12 in Figures 6 and 7. The former shows the
results of Cam. at nSig = 5 and mStr = 15, while the latter represents the results of Man. at



Remote Sens. 2023, 15, 5710 13 of 21

nSig = 10 and mStr = 15. Additionally, Figure 8 displays the simulation results of remote
sensing images with different spatial resolutions at nSig = 5 and mStr = 10. In all sets
of figures, (a,g) represent the original degraded simulated images, while (b–f) and (h–l)
represent the results of LRSID, SNRCNN, TSWEU, SEID, and DLRSDD, respectively. In
Figure 6, we can observe that the image processed by SNRCNN (Figure 6c) contains both
residual stripes and random noise, resulting in poor performance. Although LRSID and
TSWEU can effectively remove the stripe noise, their ability to suppress random noise is very
limited (Figure 6b,d). Furthermore, LRSID may also damage the original structural information
of the image (Figure 6b). In contrast, SEID achieves excellent results in smooth areas with less
information, but noticeable artifacts appear when processing the edge information of the image
(Figure 6e). In addition, the processing results of SEID also exhibit a pronounced oversmoothing
(see Figure 7e), which easily leads to the loss of image details, posing a significant disadvantage
for the subsequent applications of the images. When handling remote sensing images with
different spatial resolutions, all methods can effectively remove the stripe noise from the images,
but only SEID and DLRSDD can effectively suppress the random noise. By comparing the
results in Figure 8e,k, we can observe that SEID shows a more obvious oversmoothing when
dealing with information-rich remote sensing images. In contrast, the proposed DLRSDD not
only thoroughly removes noise but also well preserves the contour and edge information of the
images, achieving a more desirable processing outcome.

(a) Noisy (b) LRSID (c) SNRCNN (d) TSWEU (e) SEID (f) DLRSDD

Figure 6. The processing results of Cam. using different methods when nSig = 5 and mStr = 15.

(a) Noisy (b) LRSID (c) SNRCNN (d) TSWEU (e) SEID (f) DLRSDD

Figure 7. The processing results of Man. using different methods when nSig = 10 and mStr = 15.
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(a) Noisy (b) LRSID (c) SNRCNN (d) TSWEU (e) SEID (f) DLRSDD

(g) Noisy (h) LRSID (i) SNRCNN (j) TSWEU (k) SEID (l) DLRSDD

Figure 8. The processing results of remote sensing images with different spatial resolutions using
different methods when nSig = 5 and mStr = 10.

3.3. Results on Real Noisy Images

Tables 4 and 5 present the comparative results of PRNU and STD, respectively, and the
indicators with better performance are also identified. The results indicate that both SEID
and DLRSDD outperform other algorithms in terms of PRNU and STD. This suggests that
both of them can achieve good processing results for uniform regions. Upon examining
the processing results of SEID and DLRSDD, it can be observed that SEID performs better
overall in handling stripe noise (Table 4), while DLRSDD exhibits a superior suppression
of random noise (Table 5). Additionally, considering the presence of edge artifacts in the
SEID simulation, a subjective evaluation of the results is still necessary.

Table 4. PRNU of uniform regions of images in Figure 5.

Test Image Original LRSID SNRCNN TSWEU SEID DLRSDD

a 0.0155 0.0101 0.0114 0.0173 0.0087 0.0091

b 0.0355 0.0304 0.0322 0.0301 0.0299 0.0292

c 0.0162 0.0127 0.0128 0.0191 0.0107 0.0087

d 0.0448 0.0443 0.0374 0.0986 0.0198 0.0283

Avg 0.028 0.0244 0.0235 0.0413 0.0173 0.0188
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Table 5. STD of uniform regions of images in Figure 5.

Test Image Original LRSID SNRCNN TSWEU SEID DLRSDD

a 0.895 0.580 0.654 0.996 0.500 0.525

b 3.915 3.298 3.492 3.457 3.255 3.180

c 0.798 0.616 0.659 1.113 0.527 0.404

d 1.552 0.710 0.889 1.828 0.457 0.575

Avg 1.790 1.301 1.424 1.848 1.185 1.171

The experimental results of various algorithms on CHRIS images are illustrated in
Figure 9. It is evident that the compared methods exhibit an effective suppression of
conventional stripe noise. However, their performance significantly differs when it comes to
addressing random noise. These methods can obtain clean images with clear details at low
levels of random noise intensity (Figure 9a). However, as the intensity of the random noise
increases (Figure 9g), the results show significant differences. SNRCNN has the weakest
ability to suppress random noise, as evident from the presence of noticeable random noise
in the image (Figure 9i). LRSID and TSWEU have similar abilities to suppress random
noise, but neither of them can completely remove random noise in the image (Figure 9h,j).
SEID and DLRSDD exhibit an excellent suppression of random noise (Figure 9k,l), but the
proposed DLRSDD performs better in handling edge details.

(a) Noisy (b) LRSID (c) SNRCNN (d) TSWEU (e) SEID (f) DLRSDD

(g) Noisy (h) LRSID (i) SNRCNN (j) TSWEU (k) SEID (l) DLRSDD

Figure 9. The results of CHRIS images processed by different methods.

In addition, we also conducted synchronous denoising experiments on test images col-
lected in the laboratory (Figure 5c,d). The push-broom direction of Figure 5c was horizontal,
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and we rotated the image during processing. Different from the mixed noise in Figure 9,
some unconventional stripe noises (bidirectional stripe and incomplete stripe) appear in
Figure 5c,d, which greatly increases the difficulty of synchronous denoising. Figure 10
displays the synchronous denoising results of different algorithms on Figure 5c,d. By
examining Figure 10a–f, it is apparent that the proposed DLRSDD demonstrates favorable
denoising outcomes, even when faced with challenging bidirectional stripe noise. The
stripe noise is entirely eliminated, resulting in a clear image structure. However, LRSID,
SNRCNN, TSWEU, and SEID exhibit noticeable residual stripes in their results. When
dealing with incomplete stripe noise (Figure 10g), the performance of TSWEU and SEID is
unsatisfactory, showing obvious residual stripes. The image processed by SNRCNN has
blurred edges, and the details are to some extent damaged. SNRCNN performs slightly
better than TSWEU and SEID in handling stripe noise but still has a small number of
residual stripes. In comparison, LRSID and DLRSDD perform well and obtain an ideal
clean image. This is possibly because although the incomplete stripes violate the rank-one
assumption, it still satisfies the low-rank characteristics, allowing LRSID and DLRSDD to
effectively constrain the stripe noise.

Taking into account both subjective processing results and objective evaluation metrics,
the proposed DLRSDD demonstrates excellent performance in handling actual degraded
remote sensing images at various levels of degradation. It maintains robustness across
different types of images and overall outperforms other compared algorithms.

(a) Noisy (b) LRSID (c) SNRCNN (d) TSWEU (e) SEID (f) DLRSDD

(g) Noisy (h) LRSID (i) SNRCNN (j) TSWEU (k) SEID (l) DLRSDD

Figure 10. The results of laboratory images processed by different methods.
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4. Discussion
4.1. Parameter Determination

In the proposed algorithm, the values of λ1, λ2, γ1, γ2, and τ, along with their corre-
sponding parameters α1, α2, β1, β2, and µ, have an impact on the model’s performance.
Among these, λ1, λ2, α1, and α2 are used to adjust the image prior, while γ1, γ2, β1,
and β2 control the stripe noise. τ and µ constrain the random noise prior. In order
to achieve a favorable processing outcome, the following strategies were employed for
parameter determination.

According to traditional experience, the initial value for all parameters were set to 0.1, and
throughout the entire parameter adjustment process, the condition of α1 = α2 = β1 = β2 = µ
was always maintained. Initially, we explored the relationship between the image prior
regularization parameters λ1 and λ2. When dealing with vertical stripes in the y-direction, a
stronger constraint was needed for the image prior’s x-direction gradient. This implied that
there should exist the following relationship: λ1 > λ2. While keeping the other parameters
constant, we tested the processing result for λ1/λ2 ∈ (1, 10). The model’s performance was
optimal when λ1 = 5λ2, so we maintained that setting. Subsequently, we conducted the
same tests for λ2 and α2 (while keeping λ1 = 5λ2). Ultimately, we derived the following
relationship: λ1 = 5λ2 = 5α1 = 5α2.

After establishing the relationship for the image prior regularization parameters, we
proceeded to investigate the selection of noise prior regularization parameters. Unlike
the image prior, we applied the same level of constraint to the noise priors, meaning
γ1 = γ2 = τ. Additionally, we obtained the results for γ1 and β1 at different ratios and
found that the model could achieve a well-stabilized outcome when γ1 ≥ 5β1. The final
step was to determine the values of α1, α2 , β1, β2, and µ. We conducted separate tests for
the cases when they were set to (0.01, 1) and ultimately found that the model’s results were
close to the optimal solution when they were in the range of (0.2, 0.4). Therefore, we set
their values as 0.3. In summary, the preliminary determination of the parameters was as
follows: λ1 = 1.5, λ2 = 0.3, γ1 = γ2 = τ = 1.5, α1 = α2 = β1 = β2 = µ = 0.3.

In order to ensure the robustness of the model, during the process of simulation and
experiments, we made slight adjustments to the above-mentioned parameters based on
the actual processing results and ultimately determined the model parameters as follows:
λ1 = 1.5, λ2 = 0.3, γ1 = γ2 = 1.5, τ = 5, α1 = α2 = β1 = β2 = µ = 0.3.

4.2. Nuclear Norm Minimization (NNM) and Weighted Nuclear Norm Minimization (WNNM)

In the proposed DLRSDD model, we applied the NNM and WNNM to impose low-
rank constraints on different priors, respectively. In comparison to NNM, WNNM assigns
distinct weights to each singular value, theoretically offering better performance. However,
as observed in our earlier analysis, the similarity in stripe noise often results in a matrix
with extremely low rank, even as low as one. This implies that it has only a few or even just
one nonzero singular value, and applying different weights to it would not significantly
enhance performance but would substantially increase computational load. Therefore, for
the low-rank constraint on stripe noise, we adopted the NNM, while for the mixture of
image prior and stripe noise, we employed the WNNM.

4.3. Results Discussion

Based on the overall simulation and experimental process, the compared methods
show consistent issues. The LRSID model demonstrates excellent performance in handling
stripe noise, and even when facing bidirectional stripes or incomplete stripes, it maintains
satisfactory processing capability. Nonetheless, because of the low-rank constraint imposed
by the algorithm on stripe noise, random noise that does not adhere to the low-rank prop-
erty tends to persist in the image prior. Both SNRCNN and TSWEU achieve simultaneous
denoising using trained models, and the characteristics of the training dataset greatly influ-
ence the processing outcomes. For instance, the SNRCNN network was trained on infrared
images, which can lead to a noticeable decrease in performance when handling remote
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sensing images that contain more information. TSWEU encounters similar challenges in
this regard. Additionally, SNRCNN and TSWEU face challenges in attaining the desired
denoising outcomes on actual remote sensing images, primarily because of the discrepancy
between the degradation simulation utilized during training and the actual degradation
in the images. SEID is based on the MAP estimation theory and uses a modified NLM
algorithm to approximate the conditional expectation of an image. This algorithm achieves
good processing results for flat regions in images, but it introduces noticeable artifacts
when handling image contours and edges. Furthermore, the modified NLM algorithm,
while performing the weighted averaging process, excludes the neighboring windows of
the target pixel in the same column. This exclusion has a notable effect on the columnwise
structural information within the image, leading to subpar performance of SEID when
confronted with incomplete stripes. DLRSDD utilizes low-rank constraints for both stripe
noise and image priors, guaranteeing that random noise that violates the low-rank property
is eliminated from both the image prior and the stripe noise. As a result, the stripe noise
and image prior can be separated, and random noise within the image can be extracted
simultaneously, leading to an improved synchronous denoising effect.

5. Conclusions

The article introduced a novel synchronized denoising algorithm that employed a
double low-rank matrix recovery approach for effectively handling mixed noise in remote
sensing images. The algorithm explored the underlying low-rank characteristics in de-
graded images and applied constraints to the image prior, stripe noise, and random noise.
The ADMM strategy was used to approximate their optimal solutions at the same time to
achieve synchronous denoising.

Firstly, addressing the issue of mixed noise removal, this study adopted a novel re-
search approach. In the same framework, it simultaneously optimized the solution for all
underlying priors, achieving synchronous denoising through image decomposition. This
approach avoids the mutual interference between different noises, allowing the full utiliza-
tion of the characteristics of various priors. It accurately assesses the noise distribution in
degraded images, achieving the synchronous decoupling of underlying priors.

Furthermore, we conducted a detailed analysis of the relevant characteristics of the
underlying priors in degraded images, fully leveraging the individual and common aspects
of image priors, random noise priors, and stripe noise priors. We employed WNNM and
NNM to apply low-rank constraints to the corresponding regularization terms. Simulta-
neously, by combining the image detail-preserving capability of the unidirectional total
variation model, we achieved outstanding noise removal results. The ADMM solving
strategy designed for the model allowed for a rapid determination of the model’s solution,
leading to the acquisition of high-quality remote sensing image data.

Comprehensive simulations and experiments provided strong evidence that the pro-
posed DLRSDD algorithm surpassed other commonly used algorithms in effectively ad-
dressing mixed noise, as demonstrated by superior performance in terms of objective
metrics and subjective perception. It also exhibited a good robustness, enabling the syn-
chronized removal of stripe noise and random noise under various conditions and obtaining
high-quality remote sensing images.

Although DLRSDD demonstrated excellent performance, it still faces some challenges
in practical applications. For instance, this paper assumed that random noise follows a
Gaussian distribution, which generally satisfies most noise distribution conditions. How-
ever, it may not be applicable to certain extreme scenes where the noise characteristics
deviate significantly from a Gaussian distribution. Additionally, there might be signal-
related components present in mixed noise, which will restrict the processing performance
of the model and affect the processing effect. Our future research will focus on more
complex mixed-noise cases, analyze the potential distribution characteristics of different
types of noise, and actively optimize the proposed model, so that it can have a relatively
stable performance under different cases. In addition, the scope of application of the model
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will be actively expanded, and efforts will be made to enhance its application efficiency,
enabling it to play a more pivotal role across diverse domains.
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