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1. GRACE/GRACE-FO SH product post- preprocessing 

The GRACE SH Level 2 datasets were post-preprocessed considering the following 

factors: 1) The degree one coefficient was replaced by the geocentric correction term 

calculated by Swenson et al., (2008) [1], and the original C20 coefficients were replaced by 

SRL observations [2], as the influence of the satellite’s near-polar orbit design, GRACE 

cannot directly observe geocentric motion and is insensitive to C20 (degree 2 order 0) 

coefficients. In this study; 2) A 300 km Gaussian filter was applied to the SH coefficients to 

suppress high-frequency noise. [3]; 3) Long-term gravity variations caused by the process 

of glacial isostatic adjustment (GIA) were compensated using a GIA model [4]; 4) Signal 

leakage and bias were recovered using the scaling factor method based on the GLDAS data 

[5], [6]. 

2. Deep Learning 

2.1 LSTM 

Hochreiter and Schmidhuber, (1997) first proposed the Long Short-Term Memory 

Network (LSTM) [7], which is a special type of Recurrent Neural Network (RNN), 

effectively solving the problems of gradient explosion and vanishing gradient of RNN, and 

has been widely in fields such as hydrology and climate simulation. The core part of LSTM 

consists of three gate structures (i.e., Forget Gate, Input Gate, and Output Gate), as well as 

cell candidate states (as shown in Figure S1), which controlled information input and 

output. At the time step t, LSTM has three input variables: cell state 1tC − , hidden state 

, and input features tx , and two output variables: cell state tC  and hidden state th . 

The main function of the forget gate is to determine which information from input features 

1th −
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tx  and hidden state 1th −  should be used in calculating the cell state tC , and which 

information should be forgotten. The function of the input gate is to update the cell state. 

First, the previous hidden state 1th −  and the current input features tx  are passed to the 

activation function   to determine what information is retained; next, the 1th −  and tx  

are passed to an activation function tanh to create a cell candidate state 
tC ; finally, 

multiply the output values of the two steps above to determine which information is 

updated. The cell state was used to determine the retained information in the cell state. 

The previous cell state 1tC −  and forget vector tf  multiplied element-wise, and the 

information in the new cell state that is close to 0 is discarded. And then, the value is added 

point by point with the output value of the input gate to update the new information found 

by the neural network to the cell state, and finally, the updated cell state is obtained. The 

output gate is used to determine the hidden state th . The hidden state contains the 

previous input information. First, the previous hidden state 1th −  and the current input 

feature tx  are passed to the activation function  , then the cell state tC  is passed to 

the activation function tanh, and finally, the output values of the two are multiplied to 

determine the information that the hidden state th  should carry, and the hidden state th  

is output. The LSTM gate structure and the cell state are calculated as follows: 

 1( )t f t f t ff W x R h b −= + +  (S1) 
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where t  stands for the time step, is the Hadamard product, tx is the input features of 

t , 1th − and th  are the hidden state of 1t −  and t  time step, respectively, f , i , C

and o represent the forget gate, the input gate, the cell candidate state, and the output 

gate, respectively, W and R  are the input weight matrix and the recurrent weight matrix, 

respectively, and b is the bias vector. 

 

Figure S1. The structure of LSTM 

2.2 GRU 

GRU is a neural network model proposed by Chung et al., (2014) [8]. Like LSTM, GRU 

operates by utilizing special gate structures to facilitate information transfer. However, the 

structure of GRU is simpler than LSTM, and it only has two gates (i.e., Update Gate and 

Reset Gate) (as shown in Figure S2). At the time step t , the GRU has two input variables: 

the input features tx and hidden state 1th − , and one output variable: the hidden state th . 

The mathematical expressions of the GRU are as follows: 

 1( )t xz t hz t zz W x W h b −= + +  (S4) 

 1( )t xr t hr t rr W x W h b −= + +  (S5) 

 1tanh( ( ) )t xh t hh t t hh W x W h r b−= + +  (S6) 

 1 (1 )t t t t th z h z h−= + −  (S7) 



 

 5 

where   and tanh are the activation functions, th  are the hidden candidate state, W  

and b  are the weights and bias, respectively. 
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Figure S2. The structure of GRU 

2.3 MLP 

MLP is a typical feed-forward Artificial Neural Network (ANN), mainly composed of 

three parts: input layer, hidden layer, and output layer. The input layer represents the 

input features, while the hidden layer can be a single layer or multiple layers. When MLP 

has multiple hidden layers, the output of the previously hidden layer becomes the input 

of the next hidden layer. Depending on the application, the output layer can be a sigmoid 

function or a linear function [9–10]. MLP can be used for classification, regression, and 

simply unsupervised learning, and is suitable for classification of large amounts of data 

and establishing complex nonlinear mappings, etc. MLP can be simply described as a 

mapping from input features x  to output features y  [11], with the mathematical 

formula as follows [12]: 

 ( )y f x = +  (S8) 

where f  represents the mapping and  is the process noise. 
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The hidden layer consists of K hidden neurons, and each neuron is a weighted sum 

of predictors [11]:  

 
(1) (1)

0
1

, 1, ,
M

k ki i k
i

a w x w k K
=

=  + =   (S9) 

where ka is a hidden neuron, 
(1)

1{ }M

ki iw =  are unknown weights associated with each input 

neuron, 
(1)

0kw  is an unknown bias used to correct the estimation bias; the superscript in Eq. 

(S9). indicates the number of the hidden layer. The rule of thumb is that the number of 

hidden neurons should be half the number of predictors and should never be more than 

twice as large [13]. The output of the hidden neuron is calculated by passing Eq. (S9) to the 

transfer function: 

 ( ) , 1, ,k kz a k K= =   (S10) 

Where kz  is the output and   is the logistic sigmoid transfer function, ranging from 0 

to 1. Finally, the connection between the hidden layer and the output layer is established 

using a linear transfer function. 

 
(2) (2)
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Where jy  is the output neuron, i.e., the predicted value of the model ( j =1, ……, J );

(2){ }K

jk kw  and 
(2)

0jw  represent the unknown weights and bias of the output layer, 

respectively. During the training period, the MLP model solves the unknown parameters 

of Eqs. (S9) and (S10) by backpropagation [9]. 

 

 



 

 7 

 

3. Three Methods for Integrating GRACE/GRACE-FO and Wells 

Data to Downsclae GWSA 

3.1 Method 1 

The downscaling steps for Method 1 are as follows:  

1) The features and targets: The downscaled feature variables are ERA5-Land P, 

GLAEM ET, CLSM SMSA, CLSM SNSA, CLSM CNSA, and CLSM temperature. All 

the feature variables have two spatial resolutions: 0.5°×0.5° and 0.25°×0.25° The target 

variables are the 6 GRACE-derived GWSAs. And the target variables only one spatial 

resolution, which is 0.5°×0.5°. 

2) Splitting the training and testing datasets: The training set consists of time series 

data from 21 grid cells (~70%), and the test set comprises time series data from the 

remaining 9 grid cells (~30%) (Figure S3). Both training and testing periods span from 

January 2004 to December 2021. 

3) DL model training and testing: The training dataset comprises 0.5°×0.5° features and 

0.5°×0.5° targets for the 21 grid cells mentioned above, covering the time range from 

January 2004 to December 2021. The testing datasets includes 0.5°×0.5° features and 

0.5°×0.5° targets for the 9 grid cells mentioned above. The LSTM model using the 

training dataset, validated with the testing dataset to ensure proper training, and the 

well-trained model is saved for further use. 
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4) Predicting the 0.25 target: Inputting the 0.25°×0.25° features of all grid cells into the 

well-trained model to predict 0.25°×0.25° GRACE-derived GWSA 𝐺𝑊𝑆𝐴𝐷𝑜𝑤𝑛𝑠𝑐𝑎𝑙𝑒𝑆𝐼𝑀. 

5) Error estimation: The errors from both the testing (Eq (S12)) and the training (Eq 

(S13)) are concatenated by latitude and longitude, forming a complete error dataset 

for the 30 grid cells. Then, using Kriging interpolation, the 0.5°×0.5° errors are 

interpolated to 0.25°×0.25° resolution (Eq (S14)) (Figure S3), serving as the error for 

the downscaling model 𝑒𝑟𝑟𝑜𝑟𝐷𝑜𝑤𝑛𝑠𝑐𝑎𝑙𝑒 . The downscaling results are obtained by 

adding the model-predicted 0.25°×0.25° GRCAE-derived GWSA (𝐺𝑊𝑆𝐴𝐷𝑜𝑤𝑛𝑠𝑐𝑎𝑙𝑒𝑆𝐼𝑀) 

to the estimated model error (𝑒𝑟𝑟𝑜𝑟𝐷𝑜𝑤𝑛𝑠𝑐𝑎𝑙𝑒) (Eq (S14)). Note: Since there are six 

target variables, the step 2) to 5) is repeated six times to obtain six different GRACE-

derived GWSAs. 

𝑒𝑟𝑟𝑜𝑟𝑇𝑟𝑖𝑎𝑛 = 𝐺𝑊𝑆𝐴𝑇𝑟𝑎𝑖𝑛𝑇𝑟𝑢𝑡ℎ − 𝐺𝑊𝑆𝐴𝑇𝑟𝑎𝑖𝑛𝑆𝐼𝑀 (S12) 

𝑒𝑟𝑟𝑜𝑟𝑇𝑒𝑠𝑡 = 𝐺𝑊𝑆𝐴𝑇𝑒𝑠𝑡𝑇𝑟𝑢𝑡ℎ − 𝐺𝑊𝑆𝐴𝑇𝑒𝑠𝑡𝑆𝐼𝑀 (S13) 

𝑒𝑟𝑟𝑜𝑟𝐷𝑜𝑤𝑛𝑠𝑐𝑎𝑙𝑒 = {
𝐾𝑟𝑖𝑔𝑖𝑛𝑔(𝑒𝑟𝑟𝑜𝑟𝑇𝑟𝑎𝑖𝑛), 𝑡ℎ𝑒 𝑔𝑟𝑖𝑑 𝑐𝑒𝑙𝑙 𝑖𝑛 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑒𝑡

𝐾𝑟𝑖𝑔𝑖𝑛𝑔(𝑒𝑟𝑟𝑜𝑟𝑇𝑒𝑠𝑡), 𝑡ℎ𝑒 𝑔𝑟𝑖𝑑 𝑐𝑒𝑙𝑙 𝑖𝑛 𝑡𝑒𝑠𝑡𝑖𝑛𝑔 𝑠𝑒𝑡
(S14) 

𝐺𝑊𝑆𝐴𝐷𝑜𝑤𝑛𝑠𝑐𝑎𝑙𝑒 = {
𝐺𝑊𝑆𝐴𝐷𝑜𝑤𝑛𝑠𝑐𝑎𝑙𝑒𝑆𝐼𝑀 + 𝑒𝑟𝑟𝑜𝑟𝐷𝑜𝑤𝑛𝑠𝑐𝑎𝑙𝑒 , 𝑀𝑒𝑡ℎ𝑜𝑑 1, 2

𝐺𝑊𝑆𝐴𝐷𝑜𝑤𝑛𝑠𝑐𝑎𝑙𝑒𝑆𝐼𝑀 , 𝑀𝑒𝑡ℎ𝑜𝑑 3
(S15) 

Where, 𝐺𝑊𝑆𝐴𝑇𝑟𝑎𝑖𝑛𝑇𝑟𝑢𝑡ℎ  represents the true values of the training set’s target, 

𝐺𝑊𝑆𝐴𝑇𝑟𝑎𝑖𝑛𝑆𝐼𝑀  represents the simulated values of the training set's target variable. 

𝐺𝑊𝑆𝐴𝑇𝑒𝑠𝑡𝑇𝑟𝑢𝑡ℎ  represents the true values of the testing set's target variable, and 

𝐺𝑊𝑆𝐴𝑇𝑒𝑠𝑡𝑆𝐼𝑀  represents the simulated values of the testing set's target variable. 

𝑒𝑟𝑟𝑜𝑟𝐷𝑜𝑤𝑛𝑠𝑐𝑎𝑙𝑒  represents the estimated downscaling model error. 𝐺𝑊𝑆𝐴𝐷𝑜𝑤𝑛𝑠𝑐𝑎𝑙𝑒𝑆𝐼𝑀  is 

the 0.25°×0.25° GRACE-derived GWSA simulated by the deep learning model. 
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6) Selecting the best downscaling result: At the regional average scale, calculate the 

correlation coefficients between the six downscaled GRACE-derived GWSAs and the 

monthly in-situ GWSA for Beijing (spanning from January 2007 to December 2021). 

Identify the two datasets with the highest correlation, which are JPL Mascon and 

GSFC Mascon. Compute the average of the 0.25°×0.25° JPL Mascon GWSA and GSFC 

Mascon GWSA as the final downscaled result. 

 

Figure S3. The red grids represent the training grids, the green represents the testing grids, 

and the number on each grid indicates the grid index. 
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Figure S4. (a) The 𝑒𝑟𝑟𝑜𝑟𝑇𝑟𝑎𝑖𝑛  and 𝑒𝑟𝑟𝑜𝑟𝑇𝑒𝑠𝑡  at the 0.5°×0.5° spatial resolution. The red 

grids represent the 𝑒𝑟𝑟𝑜𝑟𝑇𝑟𝑎𝑖𝑛, the green represents the 𝑒𝑟𝑟𝑜𝑟𝑇𝑒𝑠𝑡. (b) The estimated model 

error of downscaled 𝑒𝑟𝑟𝑜𝑟𝐷𝑜𝑤𝑛𝑠𝑐𝑎𝑙𝑒  at the 0.25°×0.25° spatial resolution. Kriging 

represents Kriging interpolation. 

3.2 Method 2 

The downscaling steps for Method 2 are as follows:  

1) Making the target variable: Extract 6 different 0.5°×0.5° GRACE-derived GWSAs (CSR 

Mascon, GSFC Mascon, JPL mascon, CSR SH, FZ SH, JPL SH) the grids of 14 districts 

in Beijing and calculate the average value of these 6 datasets in each district. At the 

regional average scale, compute the correlation of each 0.5°×0.5° GRACE-derived 

GWSA with the in-situ GWSA for that district. Choose the 0.5°×0.5° GRACE-derived 

GWSA with the highest correlation as the district's GRACE-derived GWSA and record 

the score of that dataset. Calculate the data score as follows: for example, in Changping 

District, if JPL Mascon GWSA has the highest correlation with the in-situ GWSA, it 

gets a score of one. If JPL Mascon GWSA still has the highest correlation in Chaoyang 

District, it gets another point. For grids outside the 14 districts, select the dataset with 
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the highest score among the 6 GRACE-derived GWSAs as the GRACE-derived GWSA. 

Finally, concatenate the selected GWSAs based on their coordinates to create the 

complete 0.5°×0.5° GRACE-derived GWSA, denoted as GRACE-derived 

𝐺𝑊𝑆𝐴𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒. 

The 14 counties are Changping, Chaoyang, Daxing, Fangshan, Fengtai, Haidian, 

Huairou, Mentougou, Miyun, Pinggu, Shijingshan, Shunyi, Tongzhou, and Yanqing. 

2) The features and targets: The downscaled feature variables are ERA5-Land P, GLAEM 

ET, CLSM SMSA, CLSM SNSA, CLSM CNSA, and CLSM temperature. All the feature 

variables have two spatial resolutions: 0.5°×0.5° and 0.25°×0.25°. The target variable is 

GRACE-derived 𝐺𝑊𝑆𝐴𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒 in step 1), and its spatial resolution is 0.5°×0.5°.  

3) Splitting the training and testing datasets: The training set consists of time series data 

from 21 grid cells (~70%), and the test set comprises time series data from the 

remaining 9 grid cells (~30%) (Figure S2). Both training and testing periods span from 

January 2004 to December 2021. 

4) DL model training and testing: The training dataset comprises 0.5°×0.5° features and 

0.5°×0.5° targets for the 21 grid cells mentioned above, covering the time range from 

January 2004 to December 2021. The testing datasets includes 0.5°×0.5° features and 

0.5°×0.5° targets for the 9 grid cells mentioned above. The LSTM model using the 

training dataset, validated with the testing dataset to ensure proper training, and the 

well-trained model is saved for further use. 
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5) Predicting the 0.25 target: Inputting the 0.25°×0.25° features of all grid cells into the 

well-trained model to predict 0.25°×0.25° GRACE-derived GWSA 𝐺𝑊𝑆𝐴𝐷𝑜𝑤𝑛𝑠𝑐𝑎𝑙𝑒𝑆𝐼𝑀. 

6) Error estimation: The errors from both the testing (Eq (S12)) and the training (Eq (S13)) 

are concatenated by latitude and longitude, forming a complete error dataset for the 

30 grid cells. Then, using Kriging interpolation, the 0.5°×0.5° errors are interpolated to 

0.25°×0.25° resolution (Eq (S14)) (Figure S4), serving as the error for the downscaling 

model 𝑒𝑟𝑟𝑜𝑟𝐷𝑜𝑤𝑛𝑠𝑐𝑎𝑙𝑒 . The downscaling results are obtained by adding the model-

predicted 0.25°×0.25° GRCAE-derived GWSA (𝐺𝑊𝑆𝐴𝐷𝑜𝑤𝑛𝑠𝑐𝑎𝑙𝑒𝑆𝐼𝑀) to the estimated 

model error (𝑒𝑟𝑟𝑜𝑟𝐷𝑜𝑤𝑛𝑠𝑐𝑎𝑙𝑒) (Eq (S15)). 

 

3.3 Method 3 

The downscaling steps for Method 3 are as follows:  

1) Making the features variable: At the regional average scale, the correlations between 

the six 0.5°×0.5° GRACE-derived GWSAs and in-situ GWSA for Beijing were 

calculated. The one with the highest correlation was selected for downscaling, which 

turned out to be the JPL Mascon GWSA. The 0.5°×0.5° JPL Mascon GWSA was linearly 

interpolated to 0.25°×0.25°, denoted as JPL Mascon GWSA'. The 0.5°×0.5° JPL Mascon 

GWSA and JPL Mascon GWSA' are among the features used in the DL model. 

2) Making the target variable: The in-situ groundwater levels (GWL) from the 41 wells 

are transformed into in-situ groundwater storage anomaly (GWSA). For each well, the 

process involves subtracting its mean value ( 𝐺𝑊𝐿̅̅ ̅̅ ̅̅ ̅)  over the entire time period, 
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resulting in GWLA (Eq (S16)). This value is then multiplied by the specific yield (Sy) 

to obtain the in-situ GWSA for that well (Eq (S17)). The time range for the in-situ 

GWSAs from the 41 wells spans from January 2006 to December 2016. These in-situ 

GWSAs from the 41 wells serve as the target data. 

𝐺𝑊𝐿𝐴(𝑡) = 𝐺𝑊𝐿(𝑡) − 𝐺𝑊𝐿̅̅ ̅̅ ̅̅ ̅ (S16) 

𝐺𝑊𝑆𝐴 = 𝐺𝑊𝐿𝐴 ∗ 𝑆𝑦 (S17) 

Where, GWLA is the groundwater level anomaly for each well, 𝐺𝑊𝐿̅̅ ̅̅ ̅̅ ̅ is the averaged 

value for the entire time period, and Sy is specific yield, (Sy=0.06). 

3) The features and targets: The downscaled feature variables are ERA5-Land P, 

GLAEM ET, CLSM SMSA, CLSM SNSA, CLSM CNSA, CLSM temperature, JPL 

Mascon GWSA, and JPL Mascon GWSA'. Except for JPL Mascon GWSA and JPL 

Mascon GWSA', the other feature variables have two spatial resolutions: 0.5°×0.5° and 

0.25°×0.25°. The spatial resolution of JPL Mascon GWSA is 0.5°×0.5°, and the JPL 

Mascon GWSA' is 0.25°×0.25°. The target variable is the in-situ GWSAs from 41 

groundwater wells.  

4) Splitting the training and testing datasets: The training set consists of time series data 

from 30 wells (~73%), and the test set comprises time series data from the remaining 

11 wells (~27%). Both training and testing periods span from January 2006 to 

December 2016. 

5) DL model training and testing: The training dataset comprises 0.5°×0.5° features and 

in-situ GWSAs from 30 wells mentioned above, covering the time range from January 
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2006 to December 2016. The testing datasets includes 0.5°×0.5° features and in-situ 

GWSAs from 9 wells mentioned above. The LSTM model using the training dataset, 

validated with the testing dataset to ensure proper training, and the well-trained 

model is saved for further use. 

6) Predicting the 0.25 target: Inputting the 0.25°×0.25° features of all grid cells into the 

well-trained model to predict 0.25°×0.25° GRACE-derived GWSA (𝐺𝑊𝑆𝐴𝐷𝑜𝑤𝑛𝑠𝑐𝑎𝑙𝑒𝑆𝐼𝑀). 

𝐺𝑊𝑆𝐴𝐷𝑜𝑤𝑛𝑠𝑐𝑎𝑙𝑒𝑆𝐼𝑀 represents the final downscaled outcomes (Eq (15)). 

Note: The 41 groundwater wells are concentrated in the southeastern part and cannot 

be interpolated into a complete 0.25° grid, so error estimation is not performed for 

Method 3. 

 

 

 

 

 

4. Accuracy Evaluation Metrics 

In this study, three commonly used metrics were applied to evaluate the performance 

of the model: the Pierre correlation coefficient (CC), the Nash-Sutcliffe efficiency coefficient 

(NSE), and root mean square error (RMSE). 
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where n is the number of months of training or testing or reconstruction, iy  and ˆ
iy  

represent the observed value and model simulation at month i , respectively. y  and ŷ  

represent the mean of the observed value and simulation value, respectively. The range of 

CC is -1 to 1, the larger the absolute value of CC, the stronger the correlation, and the sign 

indicates a positive or negative correlation. NSE is from negative infinity to 1, and relative 

proximity to 1 indicates a model with accurate simulative skill. In contrast, RMSE closer to 

0 suggests a model with better performance. 
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Figure S5. The accuracy of training and testing sets for Method 1 and Method 2. “x” 

reprents the training grid cells, and “o“ represents testing grid cells. (a)~(c) Method 1, 

(d)~(f) Method 2. 

Figure S5 displays the CC, NSE, and RMSE for the training and test sets during the 

downscaling process. Among these, 21 grid cells (x) represent the accuracy of the training 

set, while the remaining 9 grid cells (o) represent the accuracy of the test set. For both 

Method 1 and Method 2, whether in the training or test set, CC and NSE consistently 

exceed 0.7, and RMSE remains below 15. This indicates that the models are reasonably 

reliable. 
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6. Supplementary Tables 

Table S1. The accuracy of training set for Method 3 

Training Set (Id) CC NSE RMSE (mm) 

1 0.97 0.93 33.34 

2 0.81 0.56 43.73 

3 0.74 -0.70 117.41 

4 0.89 0.45 30.45 

5 0.99 0.98 19.40 

6 0.98 0.95 34.87 

7 0.99 0.98 11.19 

8 0.98 0.94 17.26 

9 0.98 0.81 111.48 

10 0.80 0.56 56.00 

11 0.99 0.98 25.81 

12 0.97 0.90 26.19 

13 0.96 0.90 76.71 

14 0.94 0.89 64.55 

15 0.33 -0.5 143.35 

16 0.99 0.98 17.68 

17 0.20 -0.6 375.75 

18 0.86 0.63 32.15 

19 0.99 0.98 58.61 

20 0.76 0.50 326.00 

21 0.99 0.98 22.21 

22 0.99 0.98 21.19 

23 -0.10 -2.11 163.59 

24 0.97 0.94 13.27 

25 0.85 0.60 84.87 

26 0.97 0.94 39.39 

27 0.75 -1.01 98.12 

28 0.20 -1.23 94.21 

29 0.90 0.30 211.78 

30 0.97 0.89 20.68 
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Table S2. The accuracy of testing set for Method 3 

Testing Set (Id) CC NSE RMSE (mm) 

1 0.85 0.60 148.12 

2 0.91 0.45 81.45 

3 0.99 0.99 17.30 

4 0.70 0.40 192.75 

5 0.90 0.70 137.11 

6 0.79 -1.20 171.48 

7 -0.79 0.72 41.62 

8 0.90 0.61 62.95 

9 0.98 0.97 62.81 

10 0.15 0.02 280.45 

11 0.97 0.92 36.44 

 

Table S1 and Table S2 present the CC, NSE, and RMSE for the training and test sets 

during the downscaling process of Method 3. For Method 3, we randomly selected 30 of 

the 41 wells' in-situ GWSAs for the training set, with the remaining 11 wells' in-situ GWSAs 

designated as the test set. Table S1 displays the CC, NSE, and RMSE between the in-situ 

GWSAs of the 30 wells in the training set and the simulated in-situ GWSAs from the 

downscaling model. Overall, the model shows a good fit in the training set. Only a few 

well locations exhibit less satisfactory fits, for instance, Id: 27 and 28, where NSE exceeds -

1. On the testing set (Table S2), the accuracy remains relatively high, with most CC values 

exceeding 0.70 and most NSE values surpassing 0.60. 
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