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Abstract: In the current context of global urbanization and climate change, balancing ecological
protection and economic development is a particular challenge in the optimal allocation of regional
land use. Here, we propose a research framework for the optimal allocation of land use that considers
the regional ecological security pattern (ESP) and allocates space for land-use activities to areas with
low ecological risk. Taking Baicheng, China as our study area, ecological sources were first identified
by integrating their ecological importance and landscape connectivity, and ecological corridors and
functional zones were extracted using the minimum cumulative resistance difference and circuit
theory. The ecological source areas were then taken as limiting factors, and four future scenarios were
established for 2030 using the parcel-level land-use simulator (PLUS) model. The ecological corridors
and functional zones served as areas having restricted ecological conditions, and the four future
scenarios were coupled into the corresponding functional zones to optimize the land-use structure
in 2030. The results indicate that under the coupled ESP–PLUS scenario, the spatial distribution
and structure of land use in Baicheng balance the needs of ecological source area protection and
economic development, resulting in greater sustainability. By 2030, the cultivated land area will
steadily increase, but attention will also be given to the protection of ecological land (e.g., woodland
and marshland), aligning with current policy planning demands. An analysis of the landscape
indices for each future scenario found all scenarios to be effective in reducing negative changes in
landscape patterns. These findings provide a novel perspective for the rational allocation of future
land resources and the optimization of land-use structures.

Keywords: ecological security pattern; land-use optimization; PLUS model; landscape indices

1. Introduction

As the material foundation and spatial carrier for human survival and development,
the rational utilization of land resources is crucial for achieving sustainable develop-
ment [1,2]. In the 21st century, with rapid population growth and socioeconomic de-
velopment accompanied by high-intensity utilization of natural resources, the disturbance
of ecosystems by human activities has led to drastic changes in land use in China [3,4], and
the conflict between the supply and demand of land resources has intensified [5]. This
has caused many ecological security problems, such as soil pollution, land desertification
and salinization, soil erosion, and the overexploitation of resources [6–8], exposing ecosys-
tems to the possibility of imbalance and functional degradation, and threatening regional
sustainable development [9,10]. The state has responded positively to this by proposing
that initiatives such as ecological civilization construction, ecological civilization system
reform, and the construction of a “beautiful China” be carried out through work related to
ecological protection [11,12]. Consequently, against the backdrop of the upcoming imple-
mentation of the new “14th Five-Year Plan for National Economic and Social Development”
and “Master Plan for Land Use,” an urgent issue now revolves around ways in which to
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scientifically formulate land-use optimization plans, to maintain the balance of the land
ecosystem, and to promote the efficient use of land resources and sustainable development.

The optimal allocation of land use is an important path to achieve rational land use and
regional sustainability [13]. A common optimization measure is to achieve the maximum
benefit of land resource utilization by setting optimization objectives and constraints [14].
In early research on optimal land-use allocation, the maximization of economic and social
benefits was taken as the starting point [15], and attempts to solve the optimal land-use
allocation scheme were made using gray linear programming, multi-objective program-
ming, and statistical models [16–18], but this did not solve the problem of environmental
damage. In recent years, environmental degradation and pollution have led researchers to
pay more attention to the ecological security of urban development [19–21], and land-use
optimization based on ecological benefits has become a research hotspot [22–24]. With
the continuous improvement in research methodology, heuristic intelligent optimization
algorithms and uncertain mathematical optimization models are now widely used in the
field of land-use structure optimization [25,26]; these are constrained in terms of both the
land-use quantitative structure and spatial layout. These models emphasize spatial pattern
optimization; however, they do not consider the heterogeneity of development patterns
and ecological conditions in different regions, so they cannot accurately reflect the sustain-
ability of cities [10,24]. In such cases, it is necessary to separate different functional zones
and implement different optimization indicators and measures according to the current
situation and potential of different regions, regional development strategies, resource and
environmental carrying capacity, and land-use suitability. A number of studies have been
conducted on spatial structure delineation methods, including urban growth boundaries
(UGB) [27], counter-planning theory [15], pressure-state-response (PSR) modeling [28],
ecological networks (EN) [29], and land ecological suitability (LES) [30]. The ecological
security pattern (ESP) is often regarded as a spatial constraint, yet few studies have focused
on the optimal allocation of land use from the perspective of ESPs.

The ESP serves as a crucial spatial pathway to ensure regional ecological security
and achieve sustainable development [21]. It has gained widespread application and
recognition as a bottom-line constraint for protecting ecological security and controlling
urban expansion [30–33]. At present, the research framework of “source identification→
resistance surface construction→ corridor extraction” is the basic paradigm for constructing
an ESP [34]. For source identification [35], the importance of ecological patches in a region
are assessed from various perspectives, such as ecosystem service functions, ecological
sensitivity, and landscape connectivity, by establishing different indicator systems [10,36,37].
Integrating multiple evaluation index systems is currently a common screening method
for identifying ecological sources [10]. The construction of resistance surfaces is mostly
based on indicators such as land-use and land-cover change (LUCC), habitat quality,
topography, impervious surface area, population density, and nighttime light data; this
is followed by the assignment of values via expert experience or an analytical hierarchy
process [38]. For corridor extraction [39,40], the circuit theory model hypothesizes ecological
flow as a random walk of electric currents, simulating the random walk characteristics of
species [41,42], which is capable of identifying all possible paths of ecological flows moving
between ecological sources, and is not limited to identifying a single optimal path [37,43].
This model has been widely used to simulate ecological corridor processes. Additionally,
the minimum cumulative resistance (MCR) model considers the spatial distribution of
ecological sources and morphological characteristics of corridors [44], effectively identifying
ecological functional zones; in recent years, this theory has been applied to the simulation
of ecological land protection and regional land expansion [45,46]. Different simulation
scenarios are coupled by separating different ecological functional zones.

In LUCC research, the simulation prediction of land-use change has become a hot
topic [47], and various modeling methods have been employed to optimize land-use alloca-
tion, including the Markov [48], system dynamics (SD) [49], cellular automaton (CA) [50],
and artificial neural network (ANN) models [51], among others. However, owing to the
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comprehensiveness and complexity of land systems, these bottom-up approaches rely on
their own transition rules to allocate each land-use type to appropriate locations [52], ignor-
ing the influence of land-use intensity and intrinsic drivers on the simulation process [53];
they fail to adequately describe the causation and processes of land use, resulting in the dis-
regard of competition and complex interactions between land conversion processes [21,27].
To address these issues, models have been developed based on pattern analysis strategies
(PAS), including the CA-Markov [54], conversion of land use and its effects at a small
region extent (CLUE-S) [55], and future land-use simulation (FLUS) models [53]. While
widely used, these models lack the ability to uncover the underlying causes of land-use
changes and struggle with dynamic spatiotemporal simulations of various land-use types,
especially patch-level changes in natural landscape types such as woodland, grassland,
and marshland. Liang et al. proposed the parcel-level land-use simulator (PLUS) model
that can improve the inadequacy of transition rule digging and landscape dynamic simu-
lation [56]. This model is based on and greatly improves upon the traditional CA model,
combining the advantages of transition analysis strategy and PAS, which can not only
reveal the potential drivers of land-use change, but also successfully simulate the evolution
of patches of multiple land-use types. In comparison with other models, the PLUS model
achieves higher simulation accuracy and provides landscape pattern indices that are closer
to reality [2].

Baicheng is situated in a typical arid/semi-arid ecologically fragile region of China. In
recent years, owing to socioeconomic development and population growth, a substantial
amount of ecological land, including wetland, woodland, and grassland, has been con-
verted to non-ecological uses. The area of ecologically fragile sandy and saline–alkaline
land has expanded continuously in recent years, leading to severe ecological consequences,
disrupting the balance of ecosystems, and directly impacting regional sustainable develop-
ment. Therefore, it is particularly important to scientifically and rationally plan land use in
such areas, focusing on the protection of ecological land. In light of this, we focus here on
Baicheng and propose a land-use optimization allocation method based on the ESP–PLUS
model. We attempt to incorporate the ESP as a constraining factor into land-use simulations,
aiming to optimize the land-use pattern. The specific objectives of this study are as follows:
(1) explore strategies for balancing ecological conservation and economic development
through the construction of ESPs for ecologically vulnerable areas; (2) simulate future
land use under four different scenarios in 2030 and propose comprehensive optimization
strategies under multiple coupled forecasting scenarios. The ultimate aim is to provide a
basis for the optimal management of land use, ecological space construction, and territorial
space planning.

2. Study Area and Data Resources
2.1. Study Area

Baicheng is situated in northwestern Jilin Province, China (44◦13′57′′–46◦18′N,
121◦38′′–124◦22′E) (Figure 1). It covers an area of approximately 26,000 km2, account-
ing for 14% of the total area of Jilin Province. The average annual precipitation is 399.9 mm,
indicating a typical arid/semi-arid temperate continental monsoon climate. The terrain
comprises low mountains, hills, and plains moving from northwest to southeast. The
area enjoys abundant sunlight resources and there is considerable potential for wind and
solar energy development. There are two national- and several provincial-level nature
reserves, and the area boasts diverse landscapes and abundant flora and fauna. However,
human activities have gradually encroached upon ecological patches in the region, leading
to reduced biodiversity, and seriously threatening the ESP of Baicheng. The depletion of
resources and deterioration of the ecological environment have begun to severely hamper
the prospects of future sustainable development in the region. With the implementation of
a new round of overall territorial spatial planning for Baicheng, the issues of land salin-
ization, grassland degradation, land desertification, and wetland shrinkage are gradually
being addressed. In achieving the goal of creating a “beautiful China,” how to balance the
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relationship between economic development and environmental protection in the context
of ecological security to achieve optimal resource allocation and land-use optimization in
territorial spatial planning will be a crucial question to address.
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Figure 1. Geographic location of the study area.

2.2. Data Sources and Processing

This study mainly used land-use data, digital elevation model (DEM) data, meteoro-
logical data, soil data, remote sensing imagery, and socioeconomic data. The relevant data
sources and origins are outlined in Table 1. All data were resampled to a spatial resolution
of 30 m, utilizing cubic convolution interpolation for raster data and Kriging for vector
data. The projection coordinate system employed was WGS84_Albers.

Table 1. Data and sources.

Data Types Data Sources Resolution

Land use The Resource and Environment Science and Data Center of the Chinese
Academy of Sciences (https://www.resdc.cn (accessed on 6 July 2021)). 30 m

Meteorological data Chinese National Meteorological Information Center (http://www.nmic.cn/
(accessed on 25 December 2021)) -

Road vector The OpenStreetMap website (https://www.openstreetmap.org/ (accessed on
25 December 2021)) -

Remote sensing images Geospatial Data Cloud (http://www.gscloud.cn (accessed on
20 December 2021)) 30 m

DEM Geospatial Data Cloud via ASTER GDEM products, China
(http://www.gscloud.cn/ (accessed on 25 December 2021)) 30 m

https://www.resdc.cn
http://www.nmic.cn/
https://www.openstreetmap.org/
http://www.gscloud.cn
http://www.gscloud.cn/
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Table 1. Cont.

Data Types Data Sources Resolution

Night light National Centre for Environmental Information (NCEI)
(https://www.ngdc.noaa.gov/ (accessed on 25 December 2021)) 1000 m

Soil FAO’s HWSD 1.2 Global Soil Assimilation database 1000 m

Net primary production (NPP) The US Geological Survey (USGS) website via MODIS images
(https://www.usgs.gov/ (accessed on 27 December 2021)) 500 m

Population density The WorldPop website (https://hub.worldpop.org/ (accessed on
25 December 2021)) 1000 m

Gross domestic product (GDP) The FigShare website (https://figshare.com/ (accessed on 25 December 2021)) 1000 m

Normalized difference
vegetation index (NDVI)

The US Geological Survey (USGS) website of Sentinel-2 satellite
(https://www.usgs.gov/ (accessed on 27 December 2021)) 10 m

Fractional vegetation cover
(FVC), Salinity Index (SI)

The US Geological Survey (USGS) website of Landsat 8 satellite
(https://www.usgs.gov/ (accessed on 27 December 2021)) 30 m

3. Methodology

A comprehensive framework integrating the ESP and PLUS model for optimizing
land-use allocation is proposed herein (Figure 2), consisting of three main technical steps.
(1) Construction of the ESP: initially, a background diagnosis of natural elements in the
Baicheng region was conducted, and ecological importance and landscape connectivity
were selected. By performing an overlay analysis, regions of the utmost significance
were designated as ecological sources. Resistance surfaces were constructed from three
perspectives: natural factors, anthropogenic disturbance factors, and land-use types. On
the basis of the MCR surfaces and ecological sources, corridors were extracted using the
electric circuit theory, and ecological functional zones were delineated based on differences
in expansion resistance. (2) Using the ecological sources as areas of ecological restriction,
the PLUS model was used to simulate land use under the four chosen scenarios in 2030, and
the ecological functional areas were coupled with the corresponding simulation scenarios.
(3) An analysis of landscape patterns was performed and optimized land-use configuration
results were obtained.

3.1. Constructing the ESP
3.1.1. Identification of Ecological Sources

Ecological sources are habitat patches that take on the main radiating functions of
the region [35], forming the foundation of the ecological security pattern. In this study,
ecological sources were determined by integrating ecological importance and landscape
connectivity. This approach not only considered the process of responding to external
environmental changes but also maintained the integrity of ecological processes. The
process of identifying ecological sources is illustrated in Figure 3.

(1) Ecological importance assessment. On the basis of the ecological background of the
study area, the habitat quality, biodiversity, wind erosion sensitivity, land desertification
sensitivity, and salinization sensitivity were selected for the ecological importance assess-
ment. The ecological importance assessment method is detailed in Table 2. Five types of
importance factors were overlain with equal weight and divided into four levels using the
natural break method. High-value area patches (level 4) were extracted and after excluding
patches with an area of <5 km2, these were used as the evaluation results.

(2) Landscape connectivity. The morphological spatial pattern analysis (MSPA) method
was employed to identify suitable core landscape patches [57]. The patch connectivity
(PC) and integrated index of connectivity (IIC) were used to quantify the importance
of patches and maintain landscape continuity [58,59]. The key steps were as follows:
Natural ecological land types, such as forest, grassland, water bodies, and wetland, were
designated as the foreground. GuidosToolbox 3.0 software was utilized for the MSPA

https://www.ngdc.noaa.gov/
https://www.usgs.gov/
https://hub.worldpop.org/
https://figshare.com/
https://www.usgs.gov/
https://www.usgs.gov/
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analysis to identify patches with core areas > 10 km2. The optimal distance threshold
for the patches was determined to be 2000 m, and Confor 2.6 software was employed to
calculate dIIC and dPC. Ecological patches with dIIC and dPC indices > 0.1 were selected
as ecological sources.
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3.1.2. Construction of Ecological Resistance Surfaces and Division of Ecological
Functional Zones

The construction of resistance surfaces is a crucial element in identifying ESPs [60];
this involves the selection of resistance sources, establishment of resistance assessment
systems for ecological sources (ES) and living sources (LS), and calculation of minimum
resistance costs. This drew on relevant research findings [38,61,62], and fully considered
the characteristics of the ecological environment and current land-use situation in Baicheng,
while following the principles of systematicity, data accessibility, and operability. Ten indi-
cators were selected from three aspects—socioeconomic, natural environment, and location
factors—to serve as resistance sources for ES and LS. The resistance factors were catego-
rized into five levels, with higher values indicating stronger resistance. For factors with
unknown classification thresholds, a combination of natural breaks and expert knowledge
was used for the definition [63]. The weight of each resistance factor was determined using
the analytic hierarchy process, as illustrated in Table 3. Finally, the weighted summation
method was used to obtain the comprehensive resistance surfaces for both ES and LS.
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The MCR model is widely employed in studies simulating urban land evolution
processes and landscape security patterns. This model assumes that during expansion from
an ES, higher resistance values favor construction, while higher resistance values during
expansion from an LS favor ecological protection. These two aspects mutually constrain
each other, and the role of the MCR model lies in harmonizing this expansion process [64].
Utilizing the cost distance tool, the MCR surfaces for ES and LS were calculated separately.
The difference between these surfaces was calculated using a raster calculator, which
represents the ecological or living suitability zoning of the area and is also the basis for
ecological function zoning [3]. The formula is as follows:

MCRdi f f erence = MCRES −MCRLS.

when MCRdi f f erence < 0, the region has little resistance to ES expansion and is suitable for
ES expansion. Conversely, if MCRdi f f erence > 0, it is more suitable for LS expansion. When
MCRdi f f erence = 0, this represents the boundary between ES and LS expansion.
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Table 2. Ecological importance assessment method.

Type of Assessment Formula/Parameter Meanings

Habitat quality

Qxj = Hj

[
1−

(
Dz

xj

kz+Dz
xj

)]
where Qxj is the habitat quality of grid x in land-use type j; Dxj is the habitat degradation degree,
which represents the habitat degradation degree in grid x for land-use type j; k is the
semi-saturation constant, that is, half of the maximum degree of degradation; Hj is the habitat
adaptability of grid x for land-use type j; z is a normalized constant, and generally the value
is: 2.5.

Importance of biodiversity
protection

Sbio = NPPmean × Fpre × Ftem × (1− Falt)
where Sbio is the service ability index of biodiversity; NPPmean is the annual average net primary
productivity; Fpre is the annual average precipitation; Ftem is the annual average temperature; Falt
is the elevation factor.

Wind erosion sensitivity

Q f a = 0.018(1−W)
24
∑

j=1
Tjexp

{
−9.208 + 0.0198

Z0
+ 1.955

(
0.893Uj

)0.5
}

Q f g = 0.018(1−W)
24
∑

j=1
Tjexp

{
2.4869− 0.0014V2 − 61.3935

Uj

}
Q f s = 0.018(1−W)

24
∑

j=1
Tjexp

{
6.168− 0.0743V − 27.9613ln 0.893Uj

0.893Uj

}
where Q f a, Q f g, and Q f s represent the wind erosion modulus for cropland grassland, and sandy
land, respectively (t·hm2·a−1); W is the surface soil moisture factor, with a range of values
between 0 and 1; Tj represents the cumulative time of wind erosion occurrence for different wind
speed levels during the year (min); Z0 is the surface roughness (cm), dimensionless; Uj signifies
the average wind speed for the j-th level (m/s); j is the index of wind speed levels; V is the
vegetation coverage percentage (%).

Land desertification sensitivity
D = 4

√
I ×W × K× C

where D is the desertification sensitivity; I is the dryness index; W is the factor representing the
number of days with sandy winds; K is the soil texture factor; C is the vegetation cover factor.

Salinization sensitivity

SDI =
√
(NDVI − 1)2 + SI2

SI =
√

ρ1 × ρ3
where SDI is the salinity degree of the vegetation index; SI is the soil salinity index; ρ1, ρ3 are the
blue and red bands of the Landsat TM and OLI imagery, respectively.

Table 3. Resistance coefficients and weights of resistance factors.

Resistance Coefficient

Types Classification of Resistance Factors

WeightES 1 10 30 50 100

LS 100 50 30 10 1

Slope (◦) >25 15–25 8–15 2–8 <2 0.0506
FVC (%) >65 50–65 35–50 20–35 <20 0.1136

LUCC Woodland,
water

Grassland,
marshland

Cropland,
saline land

Sandy land,
bare soil, and

other

Construction
land 0.1863

Distance to water (km) <1 1–3 3–5 5–10 >10 0.0678
Habitat quality index 0.9–1.0 0.8–0.9 0.4–0.8 0.1–0.4 0–0.1 0.1337

GDP Using the natural break method for classification 0.0942
Population density Using the natural break method for classification 0.1279

Distance from road (km) >5 2–5 1–2 0.5–1 <0.5 0.0973
Distance to city (km) >2.5 1.5–2.5 1–1.5 0.5–1 <0.5 0.0812

Night lights <300 300–700 700–1500 1500–3000 >3000 0.0474

When the MCR difference was −114,561.77 and −53,847, there were abrupt changes
in the number of grids. The threshold of functional zoning was determined according to
the mutation and demarcation points. The MCR difference surface was then reclassified,
and in conjunction with the “14th Five-Year Plan” of Baicheng City, four types of ecological
functional zones were established: the ecological core area, ecological buffer area, ecotone
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area, and living-productive area (Tables S1 and S2). The identification process is illustrated
in Figure 4.
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3.1.3. Extraction of Ecological Corridors

Ecological corridors are low-resistance pathways for the flow of material and energy in
ecosystems, which help improve the connectivity potential between ecological sources and
can be planned as urban green infrastructure [44]. In this study, we used circuit theory to
assess the connectivity of ecological corridors. Circuit theory views ecological landscapes
as conductive surfaces [43], assigning low-resistance values to landscape components
that facilitate species movement, and high-resistance values to landscape components
that impede the flow of material and energy for ecological processes; thus, ecological
flows in heterogeneous landscapes are modeled based on the random walk properties of
charges [37]. Circuit theory calculations were performed using Circuitscape 4.0.3 software,
and the Linkage Mapper tool was used to identify regional ecological corridors. A total
of 102 potential ecological corridors were identified. Given that the width of ecological
corridors is typically determined through empirical methods, we referred to the relevant
literature and set the ecological corridor width at 120 m [3,41,61]. The identification process
is illustrated in Figure 4.

3.2. Land-Use Change Simulation
3.2.1. Design of Four Development Scenarios

Considering the functional stability and security of the ecosystem, the functional
zoning of the ESP served as the basis. Four simulation scenarios were established corre-
sponding to the ecological functional zones: business as usual (BAU), ecological priority
restoration (EPR), ecological development priority (EDP), and ecological land protection
(ELP). Here, ecological sources were defined as non-developable or restricted regions. The
correspondence between ecological functional zones and land-use simulation scenarios is
illustrated in Figure 5. To ensure that future LUCC changes in various scenarios aligned
with the characteristics of each ecological functional zone, we adjusted the raster demand
for each type of land use under the planning constraint scenario; this was completed with
reference to existing studies and relevant policy documents [24,65], such as the Baicheng
City Urban Overall Plan (2014–2030) and Baicheng City Territorial Spatial Overall Plan
(2021–2035). The specific adjustments for each scenario were as follows.
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BAU scenario: Taking socioeconomic development and food security as the starting
point, stable industrial spatial patterns and a certain level of cultivated land utilization
demand were maintained. This scenario was set according to current trends. The 2030
land-use requirements were simulated using the Markov chain model, and then the PLUS
model was employed to simulate the 2030 land use. This scenario was applied to the
living-productive area.
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EPR scenario: This scenario served as a transition zone between the concentrated area
of production–living expansion and ecological space development. Cultivated land and
unused land were the primary land-use types. The focus was on ecological restoration, with
a particular emphasis on the protection of grassland and forested areas within the research
area. In this scenario, the probability of cultivated land being converted to construction land
was reduced by 10%, and the probabilities of forested and grassland areas being converted
to construction land were reduced by 20%. Additionally, the probability of unused land
being converted to other land types was increased by 20%. This scenario was applied to
the ecotone area.

EDP scenario: This scenario emphasized rational development and utilization while
safeguarding environmental quality. The primary focus was on maintaining the health of
the ecosystem. In this scenario, the probability of forested, grassland, water, and wetland ar-
eas being converted to construction land was reduced by 20%. Additionally, the probability
of construction and unused land being converted to other land types (excluding cultivated
land) was increased by 20%. This scenario was applied to the ecological buffer area.

ELP scenario: This scenario took ecological benefits as an optimization goal, strength-
ened ecological land protection, prohibited any construction activities, and appropriately
reduced rural residential land. In this scenario, the probability of forested, grassland, and
water areas being converted to construction land was reduced by 30%. Additionally, the
probability of cultivated and unused land being converted to forested, grassland, water,
and wetland areas was increased by 30%. This scenario was applied to both the ecological
core area and ecological corridors.

A transition matrix was used to represent the likelihood of land conversion between
different land-use types, where 1 indicates that a certain land type can transition to another,
and 0 indicates that a certain land type cannot transition. According to the land-use
planning documents of the study area, actual land-change situation, and development
requirements under the different scenarios mentioned above, different land-use transition
matrices were established (Table S3).

3.2.2. Parameter Settings of the PLUS Model

(1) Selection of driving factors: Land-use changes are influenced not only by nat-
ural and socioeconomic factors but also by the comprehensive impact of geographical
spatial location factors [23]. In this study, we referred to existing research [21,27], and
selected the following driving factors: DEM, slope, annual average temperature, annual
average precipitation, wind erosion, and other natural elements. Additionally, we included
transportation- and location-related factors, such as distances to water bodies, railways,
highways, provincial roads, national roads, county roads, township roads, and urban areas.
Moreover, socioeconomic factors were also considered, including nighttime light data,
gross domestic product (GDP), and population (Figure 6). To ensure consistency in the row
and column numbers of raster data, a resolution of 30 m was set.

(2) Restricted area: The restricted area was comprised of 48 identified ecological
sources from the ESP recognition. It was transformed into a binary image containing only
0 and 1 values.

(3) Neighborhood weight parameters: The neighborhood weight represents the expan-
sion capability of land-use types driven by external factors, and ranges from 0 to 1. A higher
value indicates a stronger expansion capability of that land type and less susceptibility to
occupation by other land uses [27]. In this study, we calculated the expansion intensity
based on the changes in land-use areas from 2010 to 2020. The formula is as follows, and
the resultant neighborhood weight values are shown in Table S4.

Wi =
TAi − TAmin

TAmax − TAmin
,
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where Wi represents the neighborhood weight of the i-th land-use type; TAi is the expansion
area of the i-th land-use type; and TAmax and TAmin represent the maximum and minimum
expansion areas, respectively.
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(4) Model accuracy validation: To validate the simulation accuracy of the PLUS model,
land-use conditions for the year 2020 were simulated based on land-use data for the years
2000 and 2010. The simulated 2020 land-use results were then compared with the actual
2020 land-use data for accuracy validation. A sample of 10% of the units was selected, and
the overall accuracy and Kappa coefficient were calculated. According to previous research,
a Kappa coefficient > 0.8 is generally considered to be at a good level. In this study, the
simulated Kappa coefficient was 0.89, and the overall accuracy was 0.92. Therefore, the
parameters set for the PLUS model can be used to simulate and optimize the spatial layout
of future land use in Baicheng. Using the 2020 land-use data as a base, the model simulated
future land use under different development scenarios.

3.3. Landscape Pattern Index

Landscape indices can reflect information on landscape patterns of land-use types
within a region. By utilizing targeted landscape indices, it is possible to quantitatively and
rapidly depict the structural and spatial configuration characteristics of land-use landscape
patterns [66]. Landscape pattern indices were computed using FRAGSTATS 4.2 software
(raster version). We selected nine indices that offer insight into landscape structure and
spatial configuration: number of patches (NP), patch density (PD), edge density (ED),
land shape index (LSI), largest patch index (LPI), splitting index (SPLIT), patch cohesion
index (COHESION), Shannon’s diversity index (SHDI), and aggregation index (AI). The
definitions and formulae for each of these indices have been thoroughly discussed in
Wu et al. [67].
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4. Results
4.1. Land-Use Change Simulation Results

Using the PLUS model and our four predefined development scenarios, the simulated
land-use situations for the year 2030 were obtained (Figure 7). Then, using the ArcGIS spa-
tial overlay analysis, the transition matrices of land-use area changes for the four scenarios
were derived.
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In the BAU scenario, the land-use pattern in Baicheng for the year 2030 continued the
trend from 2010 to 2020. The comprehensive dynamic degree of land use decreased from
0.37% (2010–2020) to 0.14%. The expansion of cultivated land was rapid and primarily
sourced from unused land and forest, contributing 1.81% and 0.38%, respectively. The
increase in built-up land area remained consistent with the previous period and was mainly
derived from grassland and unused land. Forest, swampland, water bodies, and unused
land all experienced some decline, with the most substantial reduction seen in unused land,
decreasing by 6.43% compared with 2020.

In the EPR scenario, the built-up land area increased by 39.38 km2, a 4.84% increase
compared with 2020: the major source was unused land, contributing 8.88%. The cultivated
land area increased by 2.28% and the grassland area increased by 4.05 km2. The forested area
expanded, primarily sourced from unused land, accounting for 0.65%. The unused land,
water body, and swampland areas decreased by 333.44, 9.74, and 3.64 km2, respectively.

In the EDP scenario, the built-up land area increased by 30 km2, primarily sourced
from unused land, constituting 3.73%. Compared with 2020, the cultivated land area
increased by 1.86%, grassland area by 3.33%, forested area by 2.74%, and swampland area
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by 1.49%. The unused land area decreased by 8.03% and the water body area decreased
by 0.5%.

In the ELP scenario, the expansion of built-up land was significantly restricted, result-
ing in a notable slowdown in growth. The cultivated land area increased by only 163.28 km2,
mainly sourced from unused land. Compared with 2020, the areas of grassland, forest, and
swampland increased by 4.85%, 3.23%, and 1.90%, respectively. Correspondingly, the areas
of unused land and water bodies decreased by 7.80% and 0.76%, respectively.

4.2. Coupled ESP–PLUS (CEP) Scenario

Based on the ESP model, simulations primarily identify and divide ecological source
areas in specific regions by considering ecological significance, landscape connectivity, and
circuit theory. In this study, ESP simulations were based on the ecological environment
characteristics of ecologically fragile areas and identifying and defining regions with
significant ecological functions. These regions were set as limiting factors, coupled with
the PLUS model, forming specific scenarios for optimized land use referred to as the
CEP scenario. Contrasting the CEP scenario with four other development scenarios, the
findings indicate the following: under the BAU scenario, there was a noticeable increase
in cropland and construction land areas, following past trends in land-use change. Both
cropland and construction land occupied a significant portion of ecological land, greatly
impacting regional ecological functions negatively (Figure 7(B1)). In the EPR scenario, the
priority of ecological land protection was raised, reducing cropland and construction land
occupation on ecological land (Figure 7(B2)). However, the protective effort was relatively
weak, leading to the transformation of some woodland into grassland or construction
land. This shift towards land-use types with higher economic benefits might be due to
the pursuit of elevated economic development values, observed in both the BAU and EPR
scenarios. EDP and ELP scenarios showed a similar distribution. The aforementioned
conditions were somewhat restrained, with increased protective measures for ecological
land. Cropland and construction land increased less; the primary difference lay in EDP
having a higher growth in cropland than ELP, while grassland areas were notably lower
in EDP compared to ELP (Figure 7(A3)). However, the protection of ecological land has
not reached an optimal state. In the ELP scenario, the expansion of construction land and
cropland was restricted. Woodland, grassland, and marshland underwent apparent mutual
transformations, resulting in drastic changes in the land-use structure. Ecological land
received optimal protection, with significantly lower cropland and construction land areas
compared to the other scenarios in the same period, leading to a substantial decline in the
economic development potential.

In the CEP scenario, the expansion of construction land mainly concentrated on
areas within key development zones and optimized development zones, trending towards
major urban centers. Marshland, woodland, and grassland experienced some expansion
within protected areas. The regional economic development and ecological protection
achieved a relatively balanced state, ensuring a minimized impact on ecological land while
promoting socioeconomic development, thus achieving the optimization for economic–
ecological development. In the CEP scenario, cultivated land remained the dominant land
type, occupying 48.23% of the total area (Figure 7). Compared with the year 2020, the
CEP scenario exhibited substantial changes in spatial distribution and quantity structure.
There were reductions in the areas of unused land and water bodies. Notably, the area of
unused land sharply decreased by 414.48 km2, mainly converting to cultivated land and
grassland, with conversion rates of 3.6% and 1.9%, respectively. This transformation was
particularly evident in Da’an City, aligning with the policies of Baicheng aimed at enclosing
pastures, improving grassland, and reclaiming saline–alkaline land, thereby increasing
the areas of cultivated land and grassland. The water body area decreased by 8.22 km2,
primarily converting to forest and grassland. In addition, there were increases in the areas
of cultivated land, grassland, construction land, wetland, and forest. The cultivated land
area saw the highest increase, growing by 216.86 km2 compared with 2020. This expansion
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can mainly be attributed to the conversion of unused land. By renovating low-yield
farmland and saline–alkaline land, the supplementation of high-quality cultivated land
can be ensured. The areas of grassland and forest increased by 102.99 km2 and 22.02 km2,
respectively. Construction land expanded by 43.74 km2, with considerable expansion in
areas such as Tongyu County and Taobei District. This trend aligns with the development
plan of Baicheng, which indicated that more industrial zones will be established in these
areas in the future. Swampland areas increased by 37.19 km2, with concentrated expansion
in regions such as Momoge in Zhenlai County and Xianghai in Tongyu County. This
growth likely resulted from Baicheng’s ongoing implementation of wetland protection and
restorative ecological measures.

4.3. Comparison of Land-Use Area Changes under Different Scenarios

As shown in Figure 8, in the land-use changes from 2000 to 2030, cropland and unused
land have consistently remained the two main land-use types in Baicheng. Compared to the
actual land-use area in 2000, cropland expansion was most evident across all scenarios, with
an increase of approximately 3%, while the decline in unused land was most pronounced,
ranging between 2 and 3% across the scenarios. The woodland area was on an increasing
trend in the EDP, ELP, and CEP scenarios, while it showed a declining trend in the BAU
and EPR contexts. Grassland showed an increasing trend across all scenarios, with the most
significant increases observed in the ELP and CEP scenarios. The water area displayed a
decreasing trend in all scenarios, with the most substantial decrease observed in the BAU
scenario. The most significant increase in construction land occurred in the BAU and CEP
scenarios. Swampland decreased the most in the BAU and EPR scenarios. Compared to
the actual land-use area in 2010, the trend in land-use area changes remained consistent
with 2000, with the most significant expansion observed in cropland, increasing by about
2% across all scenarios, with the BAU scenario showing the highest increase, followed by
the EPR scenario. Woodland and grassland areas showed a declining trend in the BAU
and EPR scenarios. Water areas demonstrated an increasing trend in all scenarios, with the
highest increase observed in the EDP scenario, followed by the CEP scenario. Construction
land changes were consistent with 2000, showing the most significant increase in the BAU
and CEP scenarios. Unused land exhibited a decreasing trend in all scenarios, with the
most substantial decreases observed in the EDP and CEP scenarios. The two scenarios with
the least reduction in the swampland area were the ELP and CEP scenarios.

Using 2020 as the baseline, land-use types experienced varying degrees of areal
change across the different scenarios (Figure 8). Swampland showed a decreasing trend
in simulations of the BAU and EPR scenarios, and the forested area in the BAU and EPR
scenarios was markedly different from that in the other scenarios. Decreases in swampland
and forested areas will adversely impact the sustainable development of Baicheng. In
the ELP scenario, the expansion of ecological land resulted in a reduction of the cropland
area, posing a threat to food security. Moreover, there was a pronounced conflict between
ecological land and built-up land, leading to a notable imbalance in the LUCC structure.
Changes in the quantity structure were relatively similar and stable in the EDP and CEP
scenarios, but the spatial distribution directions differed substantially. For example, in the
EDP scenario, owing to greater ecological constraints, the allocation of built-up land became
more compact, constraining development strategies and directions, and thus preventing
urban expansion. In the CEP scenario, there was considerable expansion of the built-up
land area and scope; the development of the Taobei District was constrained by cropland
areas to the north and south, resulting in expansion towards the east and west, while the
area of built-up land in Tongyu County experienced a substantial increase. Grassland and
swampland areas were higher in the CEP scenario compared with the EDP scenario, but
lower compared with the ELP scenario. The area of reduction in unused land was much
higher in the CEP scenario compared with the ELP scenario. Progressing towards the
goal of “development through protection and protection within development,” a win–win
situation of conservation and development is emerging. These findings suggest that under
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the CEP scenario, land-use spatial structure optimization in Baicheng will become more
prominent in the future.
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4.4. Comparing Differences in Landscape Indices under Different Scenarios

On the basis of the characteristics of the study area, several representative landscape
indices were chosen to compare the differences in landscape patterns among the five
scenarios. From a landscape perspective (Table 4), the LPI was highest, and the SPLIT was
lowest in the CEP scenario. The NP value in the CEP scenario was only lower than that in
the EPR scenario. This indicates that landscape fragmentation was low, and aggregation
was high in the CEP scenario, suggesting that this optimized scenario does not lead to
significant degradation in the integrity of patches. The ELP scenario exhibited the lowest ED
value, followed by the CEP scenario, implying that the continuity of landscape types was
not weakened, and land-use distribution became more simplified. Furthermore, in the CEP
scenario, the decrease in the LSI and increase in the AI were second only to those in the ELP
scenario, indicating a favorable spatial distribution of the landscape. Higher SHDI values
indicate a greater abundance of patch types and distributions in the landscape. In this
study, the ELP scenario had the highest SHDI value. However, it should be noted that the
ELP scenario exhibited the highest SPLIT and lowest LPI, suggesting relatively high levels
of landscape fragmentation. The BAU scenario exhibited the most notable disadvantages,
with the highest NP and largest ED and LSI values, indicating poor land aggregation and
substantial landscape fragmentation; this was followed by the ERP scenario. The CEP
scenario had lower NP, ED, LSI, and SPLIT values compared with the EDP scenario. These
landscape indices collectively indicate that the CEP scenario had a lower overall level of
landscape pattern fragmentation, stronger aggregation, more balanced distribution, and
better overall performance.
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Table 4. Comparison of landscape indices under five different scenarios.

NP LPI ED LSI SPLIT SHDI AI

BAU 17,477 21.53 25.06 102.39 16.95 1.514 96.24
EPR 14,932 21.37 24.42 99.83 17.25 1.517 96.34
EDP 16,240 21.32 23.91 97.78 17.34 1.523 96.42
ELP 15,035 21.01 22.99 94.14 17.86 1.526 96.55
CEP 16,023 22.98 23.74 97.13 15.35 1.524 96.45

5. Discussion
5.1. Methodological Advantages

Guided by the “beautiful China” policy and sustainable development objectives,
and based on the understanding of ecological security and optimization of urban spatial
structure and function, we applied a new research framework to the optimal allocation
of land resources in this study. This approach aims to better coordinate the relationship
between ecological preservation and economic development. Existing research on land-use
structure optimization has often focused on selecting different optimization objectives or
quantities or improving optimization methods and models. However, few studies have
combined hierarchical ecological constraints with different simulation scenarios. Different
spatial units exhibit varying ecosystem services and socioeconomic characteristics, which
play important roles in land-use optimization. Therefore, urban planning simulations
should not be limited to a single scenario; instead, they should consider the characteristics
of different spatial units to establish the most reasonable optimization goals and constraints.
In urban development areas, optimization simulations should prioritize the sustainability
and benefits of urban space. Conversely, in ecological environment zones, optimization
simulations should prioritize ecological balance and environmental protection. Therefore,
we designed four ecological functional zones based on ESP, coupled with four future
scenarios from the PLUS model, to optimize the land-use structure, achieving spatial and
quantitative constraints on future LUCC changes.

We applied a land-use optimization model to Baicheng in Jilin Province. To verify the
feasibility of optimized ecological corridor protection, we overlaid LUCC with 120 m wide
ecological corridors to analyze the proportions of LUCC before and after optimization. The
results show that in the CEP scenario, 60.75% is cultivated land, 14.68% is grassland, and
9.19% is forest land. Compared with 2020, there is an increase in the areas of cultivated land,
forest land, grassland, and swampland, while the areas of unused land and construction
land have decreased, accounting for 8.48% and 0.21%, respectively (Table S5). This indicates
the feasibility of ecological corridor protection in the CEP scenario. The comparison of
landscape indices for each scenario demonstrated favorable optimization results. This
shows that the ESP–PLUS model is both feasible and logical for regional planning and
reduces the negative impact of regional development on the ecological environment. The
predictions of this model can provide technical support for planners and decision-makers
to formulate targeted land-use plans and achieve sustainable regional development.

5.2. Uniqueness of the Study Area

Baicheng is an ecological barrier area in Jilin Province and a dry/semi-arid ecologically
fragile area. Its unique geographical location makes it more susceptible to the impacts of
climate change and human activities, as shown in Figure 1. Whether it is the construction
of the China-Mongolia-Russia Economic Corridor or the development of the Western
Ecological Economic Zone in Jilin Province, Baicheng is a crucial key city leading the
green rise in the western part of Jilin. It has become an important central city and an
ecological civilization demonstration area in the ecological economic belt of northeast China,
representing both enormous opportunities and challenges. Baicheng is also the main grain-
producing area in northeast China. However, the region suffers from severe wind and sand,
aridity, and salinization, with saline–alkali land covering about 23.3% of the total land area.
The underdeveloped ecological connectivity pattern of forests, grasslands, and wetlands
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severely threatens the region’s space for agricultural land development and the pace of
ecological construction. The area is experiencing various changes such as urbanization
and agricultural development, posing challenges to sustainable development. Therefore,
to achieve a balance between socioeconomic development and environmental protection,
it is essential to focus on the ecological spatial pattern of Baicheng, emphasizing regional
economic (grain) growth and ecological optimization. Simulating the changes in land use
in Baicheng under multiple scenarios based on the ecological security pattern can provide
a balanced approach for scientific urban planning and sustainable development strategies.

5.3. Recommendations for Land-Use Policies

On the basis of our optimized results, the following recommendations are proposed
for future land use in the study area.

(1) Enhance policies and regulations. To ensure regional ecological security, the gov-
ernment should establish and refine land policies and regulations from the following
perspectives. Firstly, the government should strengthen the protection and management
of ecological land, clarify the types and functions of ecological functional zones, and im-
plement rigorous control measures. Secondly, it must establish corresponding ecological
compensation mechanisms to encourage farmers or entities to convert land in ecological
core areas, ecological buffer areas, and ecotone areas into ecological land such as forests,
grasslands, or wetlands; this will compensate for any economic losses incurred. Simulta-
neously, the government should formulate relevant land taxation policies, implementing
differential tax policies for ecological core areas, ecological buffer areas, and ecotone areas
to incentivize ecological land use. Lastly, the government should enhance the monitoring
and assessment of ecological functional zones, promptly identify problems and risks, and
take punitive actions and rectification measures against any violations, ensuring regional
ecological security.

(2) Implement ecological connectivity projects. Baicheng has unevenly distributed
ecological sources, and high edge fragmentation, leading to disruptions in the connectivity
and integrity of the ecological system. By implementing ecological connectivity projects, a
biodiversity protection network can be established to ensure the migration of species and
habitat connectivity. This can be achieved through afforestation, the creation of ecological
corridors, wetland conservation, and other methods to connect ecological land of different
types and functions. Enhancing the spatial connectivity of the ecosystem will prevent the
occurrence of ecological islands.

(3) Address saline–alkaline and sandy soils to improve farmland quality. Baicheng
has a substantial quantity of saline–alkaline and sandy soils, which are often of poor
fertility and result in low agricultural productivity. This severely restricts local agricultural
production and economic development. Measures such as rational allocation of water
resources, soil improvement, and adoption of technological approaches can be employed to
gradually transform such land into fertile fields suitable for cultivation. This transformation
can enhance food production capacity and the income of farmers, without encroaching on
ecological land to expand the cultivated areas.

(4) In the comprehensive land-use management plan, differentiated governance mea-
sures should be formulated. Traditional administrative territorial management measures
should be abandoned to establish a new governance model based on an ecological security
pattern. This can alleviate the adverse impacts of unreasonable urban construction and
agricultural activities on the ecological system diversity in the region. For natural ecological
areas, the implementation of policies such as returning farmland to forests and grasslands,
along with ecological governance, can enhance the overall quality of the ecological envi-
ronment. This approach consolidates the status of ecological functional zones, ensuring
the sustainable development of ecological land. Moreover, restoring forests and grass-
lands can increase ecological connectivity, providing more diversified ecological system
elements for the regional ecological network. Upholding the red line for arable land and
improving its quality are essential. With the acceleration of urbanization, the continuous
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occupation of arable land leads to a reduction in its area, intensifying the conflict between
construction land and arable land. Protecting arable land involves guiding the rational
development of construction land, controlling urban growth boundaries, and implementing
strict policies for protecting basic farmland. Improving the arable land quality requires
adjusting agricultural planting structures according to local suitability to enhance land-
use efficiency. In the implementation of returning farmland to forests and grasslands in
natural ecological areas, emphasis should be placed on the development and utilization
of unused land in production and living areas. The loss of arable land will inevitably
hinder socioeconomic development; hence, there should be strict control to prevent further
reduction of arable land, while actively promoting smart agriculture and increasing the
level of agricultural mechanization.

5.4. Limitations and Future Research Directions

Using the ESP–PLUS model, we can constrain future LUCC in terms of quantity
and spatial distribution, thus effectively balancing the relationship between ecological
conservation and urban development. This approach avoids the limitations of using
multi-scenario simulations of LUCC. However, there are some shortcomings that need
to be addressed to promote practical application. (1) The identification of ecological
sources and ecological functional zones is a crucial step in optimizing LUCC. Determining
the optimal area of ecological sources within the entire study area remains a challenge.
(2) Policy interventions have a considerable impact on the simulation accuracy of the
PLUS model. It is difficult to quantify and spatially represent relevant policies; hence, the
simulation accuracy is somewhat compromised. (3) The PLUS model, used to simulate the
optimization of the land-use quantity structure in various scenarios in Baicheng, predicts
land demand in the BAU scenario using the Markov model. This model considers only
two historical periods of land-use data, and adjustments for other scenarios are made
based on related research experiences. The influence of subjective human factors in this
process can lead to considerable errors in the results. Future improvements should focus
on refining constraint settings to make the area optimization results more aligned with
regional development requirements. Additionally, different factors affecting land-use
changes will have varying degrees of impact on land changes. The selection of these
factors is subjective, and some data collection and quantification processes are challenging,
inevitably affecting the accuracy of the simulation results. Currently, there is no scientifically
established calculation method for the land-use parameter matrix. Parameter settings are
heavily influenced by subjective human factors, and future research should explore more
scientifically reasonable approaches for setting model parameters. While the accuracy of
the future land use simulated in this study meets the basic requirements, there still exists a
certain discrepancy compared to the actual land-use situation. (4) The ecological functional
zones and corridors defined in this study have not been surveyed on-site. Additionally,
factors such as land ownership, community quantity and distribution, industrial structure,
and layout have not been fully considered. Therefore, while the results provide new
insights into land-use optimization, there is still a disparity between these results and their
practical application.

In the context of urbanization and climate change, the material needs of human society
will continue to evolve. There is considerable uncertainty about the future benefits of LUCC
optimization. Therefore, it is necessary to further explore and study the rules for assessing
the ecological and economic benefits of LUCC under different scenarios. While ESPs can
provide quantitative support for landscape planning, the threshold quantification remains
unclear [30], necessitating further exploration of the balance between supply and demand
in ESPs. There are currently conflicts of land-use types in given areas between different
scenarios; finding ways to weigh the land-use patches and comprehensively integrate
multiple scenarios will promote the rational allocation of land resources and further the
optimization and adjustment of the land-use structure.
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6. Conclusions

This study proposes a method that combines ESPs and the PLUS model. By con-
sidering ecological importance, landscape connectivity, and circuit theory, an ESP was
constructed, establishing four distinct levels of ecological functional zones. The four simu-
lation scenarios generated by the PLUS model were then coupled with their corresponding
functional zones to optimize the land-use structure of Baicheng in 2030.

Our research findings indicate the following: (1) ESP–PLUS coupled (CEP) scenarios
have considerable application potential in regional land-use optimization. By implementing
ecological zoning simulations according to local conditions, ecological land degradation
can be effectively mitigated, and the area of arable land can be increased. (2) From the
perspective of landscape indices, the CEP scenario efficiently mitigates negative changes in
landscape patterns. The outcomes of this study effectively balance the relationship between
ecological conservation and economic development, and reasonably establish development
orientations for various ecological functional zones, providing comprehensive and targeted
support for urban planning and sustainable development.
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