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Abstract: With the widespread application and functional complexity of deep neural networks
(DNNs), the demand for training samples is increasing. This elevated requirement also extends
to DNN-based SAR object detection. Most public SAR object detection datasets are oriented to
marine targets such as ships, while data sets oriented to land targets are relatively rare, though they
are an effective way to improve the land object detection capability of deep models through SAR
sample generation. In this paper, a synthesis generation collaborative SAR sample augmentation
framework is proposed to achieve flexible and diverse high-quality sample augmentation. First, a
semantic-layout-guided image synthesis strategy is proposed to generate diverse detection samples.
The issues of object location rationality and object layout diversity are also addressed. Meanwhile, a
pix2pixGAN network guided by layout maps is utilized to achieve diverse background augmentation.
Second, a progressive training strategy of diffusion models is proposed to achieve semantically
controllable SAR sample generation to further improve the diversity of scene clutter. Finally, a
sample cleaning method considering distribution migration and network filtering is employed to
further improve the quality of detection samples. The experimental results show that this semantic
synthesis generation method can outperform existing sample augmentation methods, leading to a
comprehensive improvement in the accuracy metrics of classical detection networks.

Keywords: collaborative synthesis generation; image synthesis; diffusion model; SAR sample
augmentation

1. Introduction

Synthetic-Aperture Radar (SAR) imaging technology, known for its high resolution,
extensive coverage area, and independence from weather conditions, is extensively used
in geographic information systems, resource exploration, and civil applications. With the
development of deep learning, data-driven deep models are widely used in SAR processing
tasks such as object detection and recognition [1–4].

In the realm of object detection tasks, data-driven deep learning techniques have
showcased remarkable advancements in performance, surpassing traditional approaches
such as template matching, image processing, and machine learning methods. Through
extensive training on large-scale datasets, DNN-based methods have realized heightened
precision and robustness in object detection capabilities. High-quality training samples
constitute the foundational basis for achieving high-performance outcomes with deep
learning approaches. However, due to challenges in acquiring SAR samples and annotating
samples, SAR object detection encounters difficulties in matching the sample advantage
seen in natural scene object detection. As a solution to this challenge, two technological ap-
proaches have emerged, namely few-shot learning and sample augmentation. In contrast to
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few-shot learning, SAR sample augmentation represents a direct approach by augmenting
and generating high-quality samples to fulfill the learning requirements of deep models.

Common techniques for SAR sample augmentation can be categorized into three
groups: basic methods, image synthesis, and intelligent generation. The central premise
focuses on augmenting object diversity while retaining the intrinsic characteristics of the
samples. Basic methods include fundamental sample augmentation operations such as
random transformations [5–9] and image erasure [10]. These basic methods enhance
the diversity of SAR samples by simulating variations within them. While foundational
methods enhance model robustness against diverse deformations in tasks like detection
and recognition, their impact on the semantic distribution in SAR images is often marked
by low background diversity and high semantic information may be limited. In such
scenarios, these methods may hardly influence the object’s semantic distribution and could
inadvertently introduce noise into the augmented samples, leading to adverse impacts on
model inference [11].

The image synthesis method enhances the semantic information of the sample by
merging elements from various synthesized SAR images. Element synthesis techniques
expand the SAR dataset by generating augmented samples through whole-image fusion [12–
15] or element composition [16–20]. On the one hand, the semantic complexity of the
samples has been increased by introducing auxiliary SAR images for fusion. For instance,
Hiroshi Inoue et al. [21] randomly selected images from the dataset and fused them pairwise.
The resulting synthetic samples significantly improved the performance of the classification
network. Jiang et al. [12] adopted a different approach. They fused SAR scene images under
various spatiotemporal conditions and trained a model using these synthetic samples. The
model was able to effectively capture the changes in land cover in the images. On the other
hand, by separating the objects and backgrounds within SAR images and placing sliced
objects into backgrounds, new samples can be synthesized for semantic enhancement. This
approach provides advantages in terms of both adaptability and cost efficiency. However,
these synthesized images often overlook the diversity and complexity of real images, failing
to account for factors like imaging direction and lighting angles. Moreover, abrupt changes
in object edge intensities contribute to a lack of realism in synthesized images.

The intelligent generation method enhances SAR samples using deep generative
models. This approach [22–26] exploits semantic constraints set by input conditions to
guide sample generation, resulting in SAR images with crucial semantic information.
Generative models are categorized into two types: likelihood-based generative models [27]
and implicit generative models [28]. The former employ maximum likelihood criteria to
learn the probability distribution of a sample, such as autoregressive models [29], flow
models [30], and variational autoencoders [31]. In contrast, the latter do not explicitly
represent probability distributions and include notable examples like generative adversarial
networks (GANs) [32] and denoising diffusion implicit models (DDIMs). GANs generate
realistic images via adversarial training between the generator and discriminator, while
DDIM samples images iteratively from noise distributions. In recent years, generative
models have exhibited remarkable performance in the field of natural image augmentation.
However, generating high-quality SAR samples is challenging due to the limited quantity of
SAR detection samples, their complex distribution characteristics, and the lack of annotated
samples.

Despite the success of the above methods in achieving effective data augmentation for
recognition tasks, they all have certain limitations that result in suboptimal performance in
detection tasks. An inherent issue is that synthetic methods often overlook SAR images’
distinct imaging mechanisms and traits, compromising the diversity and logical consistency
of object positioning in synthesized images. Furthermore, generative models inherently
possess randomness. In the context of object detection tasks, ensuring the accuracy of
object categories in generated images to avoid label confusion adds complexity to sample
augmentation. Additionally, generative methods often require rich conditional information
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for guidance, and the creation of paired training samples demands significant human
resources. In summary, SAR detection sample augmentation faces the following challenges:

• The synthesis of SAR images often overlooks the correlation between key elements,
such as ensuring that objects do not overlap and maintaining logical layouts between
objects and backgrounds. This lack of semantic information integration leads to a
performance drop in real-world scenarios.

• The generation process of SAR detection samples lacks clear constraints on the range
of semantic image transformations. As a result, the quality of generated images is
unstable, making it difficult to ensure consistency in object categories. This renders
the generated sample less suitable for high-reliability tasks.

To address the mentioned challenges, this study takes a semantic constraint approach
from the SAR background and combines basic methods with intelligent generation tech-
niques to optimize traditional image synthesis methods. Prior to sample synthesis, we
performed semantic layout of backgrounds to ensure the diversity and logical coherence
of the object distribution, and significantly improved synthesis efficiency. However, since
image elements are derived from the original SAR sample library, there is no substantial
variation in objects and backgrounds in the synthesized images. As a result, the diversity of
augmented samples becomes limited in scope. Consequently, we further utilize generated
synthetic samples to enhance the original dataset. Firstly, we leverage semantic layout maps
to guide the training of a pix2pixGAN model, enabling semantic-controllable SAR scene
augmentation. Moreover, we aim to feed the generative model with an increased volume
of synthetic samples via progressive training to achieve higher-quality generated objects.
At the same time, it is essential to clean the generated sample to acquire a high-quality
augmented sample. We devised a sample cleaning strategy that combines distribution
transfer and network-based filtering. This approach takes into consideration the statis-
tical distribution characteristics of SAR samples and their corresponding labels, thereby
effectively obtaining high-quality SAR samples.

In general, the main contributions of our research are as follows:
(1) A synthesis generation collaborative SAR sample augmentation framework is

proposed. The diffusion model and SAR sample synthesis method are combined to achieve
flexible and controllable SAR sample augmentation.

(2) A sample synthesis method based on a semantic layout is proposed. Prior to
synthesizing objects into backgrounds, we pre-layout each background to avoid the in-
efficiency caused by repetitive evaluations of the same background during the synthesis
process. Meanwhile, we employ a pix2pixGAN network trained on layout maps to achieve
semantic-controllable background augmentation, further enhancing the diversity of the
background in synthesized images.

(3) In order to obtain high-quality SAR-generated samples, a progressively trained
conditional diffusion model is proposed, utilizing synthetic samples. By integrating the
sample cleaning strategy of distribution transfer and network filtering, high-quality SAR
samples are efficiently acquired.

The rest of this article is organized as follows. Section 2 provides a brief overview
of related work on SAR sample augmentation. Section 3 presents a detailed description
of our efficient sample augmentation strategy. In Section 4, we conduct extensive sample
augmentation experiments and compare the results with other classical methods. Finally,
Section 5 presents the conclusions of the experiments.

2. Related Works
2.1. Basic Methods of Image Augmentation

Fundamental image enhancement methods primarily include overall image trans-
formations. These include information transformation and information fusion between
images. These methods address image enhancement from various perspectives using
direct and practical techniques. As summarized in Table 1, these methods offer diverse
approaches to image enhancement.
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Table 1. Basic methods of image enhancement and concise introduction.

Methods Transformations Introduction

Information
Transformation

Translation Moving the image horizontally or vertically
Rotation Rotating the image at a certain angle
Scaling Stretching or compressing the image in a ratio

Mirroring Flipping the image horizontally or vertically
Noise Addition Adding noise to the image

Cropping Cropping different regions from the image
Overlay Overlaying multiple images together

Illumination Adjusting the brightness, contrast, and color of the image

Information
Fusion

Image Stitching Seamlessly merging multiple images together
Image Blending Blending two or more different images together

Image Fusion Fusing two or more different images together

2.2. Sample Synthesis

Sample synthesis merges objects and backgrounds from varied sources, producing
images with distinct distribution semantics [33]. The process of natural image synthesis can
be broken down into two crucial steps: feature decomposition and feature recombination.
Feature decomposition research is primarily anchored in image segmentation and mat-
ting [34,35], targeting enhanced segmentation accuracy. Conversely, feature re-combination
research focuses on rectifying semantic inconsistencies during image synthesis, aiming for
superior synthesized image quality. These semantic inconsistencies include appearance
disparities (image incoherence) [36,37], geometric incongruities (unreasonable positions
and shapes) [38,39], and logical incongruities (unreasonable element associations) [33].

Unlike natural imaging, SAR imaging remains impervious to lighting and atmospheric
disturbances. Consequently, objects in SAR images typically exhibit a relatively consistent
appearance, with minimal variations under different observational conditions. Further-
more, SAR objects typically manifest as reflection intensities. These differences are subtler
compared to features like color and texture in visible images. Thus, during sample synthe-
sis, an excessive focus on appearance consistency is not necessary. Given that SAR image
backgrounds, often terrains or static objects, exhibit minimal temporal or weather-induced
variations, the geometric consistency and logical interaction between backgrounds and
objects are primarily manifested through their spatial positions. Therefore, SAR sample
synthesis prioritizes bolstering the spatial relationship between objects and backgrounds
for object detection, ensuring greater sample relevance and stability.

2.3. Sample Generation

The generation of detection samples refers to the production of diverse images under
given conditional constraints [40]. The majority of SAR image generation is based on GAN
networks. For sample augmentation, CGAN [41] integrates added conditional constraints
into GANs, facilitating the generation of category-specific images. However, this approach
suffers from issues of limited diversity in generated images and recurring problems of pat-
tern collapse [42,43]. Following this, seminal models like Pix2Pix [44] and CycleGAN [45]
were developed. Pix2Pix, as the earliest image-to-image transformation model, is founded
on the principle of learning mapping relationships between paired input and output images.
Conversely, CycleGAN tackles the issue of obtaining paired training samples. In recent
years, diffusion models have gained great success in the field of natural image Artificial
Intelligence-Generated Content (AIGC) due to their powerful creativity. Diffusion models
consist of two processes: forward denoising and reverse inference. Jascha et al. introduced
the reverse diffusion process in 2015, laying the groundwork for diffusion models [46]. In
2020, the debut of the denoising diffusion probability model, which integrates the denoising
fraction matching function, brought diffusion models into prominence [47]. In the same
year, Song et al. proposed the denoising diffusion implicit model [48], greatly improving
the speed of reverse denoising. The distinct imaging techniques and inherent traits of
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SAR samples have led to the infrequent application of diffusion models in SAR sample
augmentation. However, Yuan et al. [49] have recently introduced an efficient, controllable
training strategy tailored for conditional diffusion models.

3. Proposed Method

Figure 1 presents the schematic diagram of the proposed method. The augmented
dataset comprises three subsets: IS1, IS2, and IG. IS1 denotes synthetic samples generated
using a semantic layout strategy. IS2 indicates synthetic samples augmented for background
diversity, and IG corresponds to samples generated via the diffusion model.
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training strategy for preserving more object details.

3.1. Semantic Layout Strategy

Our collection consists of n images, denoted as IO1,IO1,. . .,IOn, sampled from the object
library O. Additionally, we select a background image IB, from the background library B.
The process of image synthesis is represented as shown in Equation (1).

IS = ∑n
i=1 λi IOi + IB (1)

where IS represents the synthesized image, and λi is the positional parameter when synthe-
sizing the objects IOi.

Due to the unique imaging mechanism of SAR images, choosing appropriate positional
parameters λi can significantly enhance the visual realism of synthesized images. The arbi-
trary selection of positions using land classification masks can result in over-regularization
of λi, inefficiencies from redundant background determination, and potential time wastage
due to inadequate positioning. To address this, we initially rasterize the mask to obtain
refined positional parameters λ′ i. Then, guided by our semantic layout strategy, we allocate
selection probabilities pi to each λ′ i, adjusting the intensity for object placements across
various positions as

√
gi. Here, gi is the ratio of the mean of pixel value within a rectangular
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region (Mean(region)) to the mean pixel value of the entire background (Mean(global)).
Consequently, our enhanced image synthesis approach is described as follows:

IS1 = ∑n
i=1 piλ

′
i IOi ∗

√
gi + IB (2)

gi =
Mean(region)
Mean(global)

(3)

3.1.1. Mask Rasterization

Layout grids are created via sliding window operations on predefined boxes. The
effectiveness of these layout boxes is determined by assessing the area proportion of valid
regions and their degree of dispersion, ultimately producing the scene’s layout map.

In object detection tasks, sample augmentation often focuses on small objects or those
with limited representation in specific classes. As a result, variations in object size are
usually constrained. The dimensions of the layout boxes are set to match the largest
object instance. The mask of the background image B, denoted as Mb, is also considered.
Additionally, preset position boxes are defined as ai. A column-major sliding window
traversal is executed on the background image, as shown in Figure 2. Mi is defined as the
mapping region of ai on Mb, and the effective occupancy ratio Fi of this region is calculated
as shown in Equation (4):

Fi = area(mi)/area(Mi) (4)

where Fi quantifies the proportion of the effective region mi within the position box Mi.
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When Fi exceeds the threshold ε, indicating the object placement condition is met,
we proceed to calculate the dispersion D of the effective region within Mi. As described
by Equation (5), we count the pixels in the effective region, denoted as n, and compute
the centroid (X0, Y0) of this region. We calculate the mean squared Euclidean distances li
between these pixels and the centroid, determining the dispersion D of Mi. An appropriate
dispersion threshold allows us to generate a refined set of layout position boxes.

D =
∑n

i=1 li
2

n
(5)

3.1.2. Semantic Constraints

Employed mask rasterization not only improves synthesis efficiency but also enhances
the quality of the resultant images by imposing constraints on key semantic dimensions.
The semantic layout strategy incorporates constraints in three key dimensions: object
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positioning, distribution density, and scattering intensity. Specifically, it includes the
following strategies.

To boost the robustness of the synthesized sample, edge mirroring augmentation is
applied before initiating scene layout. Objects positioned at the edges are then cropped
back, resulting in what we term ‘incomplete objects’. To mitigate the adverse impact of
too many ‘incomplete objects’, placement boxes are classified into two categories during
scene layout: edge boxes (marked in red) and interior boxes (marked in green), as shown in
Figure 2. The likelihood of successful object placement within edge regions is intentionally
reduced. Furthermore, to prevent the clustering of small objects, the placement probability
pi for each layout box is modulated. Specifically, the probability of placing an object
successfully in edge regions is to be 0.5 × pi.

pi = e−
di
t (6)

where, di represents the distance from the center of each rectangle to the discrete center P,
which is the center of the rectangle in the layout closest to the region center (X0, Y0). The
hyperparameter t is used to adjust pi.

A greater distance between the ith rectangle and point P increases the likelihood
of successful object placement, thus promoting object dispersion. Lastly, the scattering
intensity for SAR objects is calibrated using the ratio pli. This ratio is derived from the
mean pixel value Rmean of the background for that region relative to the global background
mean Bmean. The complete algorithm is shown in Algorithm 1.

Algorithm 1: The Semantic-Layout Strategy.

Input: background B and mask M, object slice I
Output: layout map, position box information
Process:
1: The size of M is (w0, h0), perform edge mirroring augmentation to obtain M1(w, h). Preset the
size of position boxes as (m, n) and perform grid-based layout on M1:
2: for j in 1, 2, . . ., w do
3: for k in 1, 2, . . ., h do
4: Calculate the effective occupancy ratio Fi.
5: if Fi > ε do
6: Calculate the center point (X0, Y0) of the effective region.
7: Calculate the dispersion D according to Equation (5).
8: end if
9: Record the rectangular position information λ′ i, including center (x, y),
width–height (h, w), and category (whether it is located on the edge)
10: end for
11: end for
12: Count the number of position boxes (num), calculate the probability pi based on Equation (2).
13: start composing:
14: for each B in the background dataset do
15: Perform edge mirror augmentation on B to match the same augmentation as M.
16: Randomly select IOi from the object library, where i ∈ [1,num]
17: Place the objects in the position boxes at random positions based on pi.
18: Synthesize samples according to Equation (2).
19: Restore B by cropping the edges.
20: end for

3.2. Diverse Scene Generation

The Pix2pixGAN [44] model, built upon the foundation of Conditional Generative
Adversarial Networks (CGANs) [41], is used for image-to-image translation. Its network
structure is shown in Figure 3. Its core objective is to perform supervised translations
between different image domains. Training Pix2pixGAN networks can be challenging,
particularly with a scarcity of training samples. To overcome this, a series of strategies
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are employed to simplify the complexity of cross-domain transformation tasks. One key
strategy involves replacing the input mask with a layout map, streamlining the task’s
complexity. This approach helps alleviate the training difficulty, especially when dealing
with limited samples. Additionally, the grid-based layout map provides extra spatial
structure, aiding the network in learning the texture information within object regions.
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To better control background generation, we introduced region-wise gradient loss
(Llaplacian) and region position loss (Lposition) into the generator’s training, as shown in
Equations (7) and (8).

Lposition =
1
N ∑N

i=1|G(A)i − Bi| (7)

Llaplacian =
1
N ∑N

i=1 (L(G(A) i)−L(B i))
2 (8)

where N represents the total number of elements, G(A)i and Bi denote the ith elements of
the generated and the real images, and L(.) is the Laplacian operator, used for computing
Laplacian gradients of images.

Equation (8) calculates the Mean Square Error (MSE) between the Laplacian gradients of
the generated and real images. Integrating these dual loss functions has proven effective in
optimizing the generator’s performance. These loss functions more accurately capture local
structural nuances in the generated images, enhancing background generation quality. The
refined background set is then used for sample synthesis, as shown in Equations (9) and (10).

IBA = LG(Ilm) (9)

IS2 = ∑n
i=1 piλ

′
i IOi ∗

√
gi + IBA (10)

where LG(input) represents the pix2pixGAN model output, IBA is the augmented back-
ground, and IS2 the synthesized sample with background augmentation.

3.3. Progressive Training of Synthetic Data-Driven Diffusion Models
3.3.1. Progressive Training of a Diffusion Model

In contrast to natural scene images, SAR scene clutter features a more intricate and
diverse array of characteristics, encompassing various forms of interference, spatial cor-
relations, and non-Gaussian statistical distributions. The Denoising Diffusion Probabilis-
tic Model (DDPM) is a state-of-the-art generative model effective in capturing the com-
plex clutter features of SAR scenes. It preserves spatial correlations and offers flexibility
and controllability.

Noise addition in the diffusion model follows a Markovian procedure. In this model,
αt is the weight parameter for noise addition, and Z represents Gaussian noise sampled
from a standard normal distribution. In each successive step of the forward noise addition
process, denoted as Xt, the computation involves noise addition weight αt and Gaussian
noise Zt.

Xt =
√

αtXt−1 +
√

1− αtZ
=
√
δtX0 +

√
1− δtZt

(11)
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where δt is the product of the noise addition weights from previous steps (αt·αt−1···α2·α1).
In each forward diffusion step, standard Gaussian noise is added until the image is
full noisy.

Conversely, the denoising process functions as a contrasting operation to the noise
addition process, aiming to systematically eliminate noise. This process iteratively removes
noise to generate a new image. The noise addition process derives Xt from Xt−1, while

the denoising process estimates
∼
Xt−1 from

∼
Xt. Moreover, the conditional diffusion model

includes a conditional input c for constrained denoising. In our experiment, the multi-class

mask and distribution map serve as the condition c, the model fθ

(∼
Xt, c, δt

)
estimates the

added noise δt in the forward diffusion. Therefore, the conditional diffusion model can be
expressed as Equation (12).

∼
Xt−1 =

1√
αt

(∼
Xt −

1− αt√
1− δt

f θ

(∼
Xt, c, δt

))
+
√

1− αZt (12)

Although diffusion models have shown excellent performance in image generation
tasks, they require significant data support for training. Drawing inspiration from semi-
supervised deep matting networks, we synthesis large datasets using masks instead of
trimaps for model training, achieving high-quality matting masks [13]. Guided by this
approach, we first use a synthesis method to obtain the constraint condition c, and then
apply a diffusion model for image generation.

Our methodology begins with using synthesis techniques to create multi-class masks
and distribution maps, as shown in Figure 4. In the multi-class mask, different pixel
values represent various object categories. And the distribution map includes real object
information, not just masked regions. We start with the multi-class mask for pre-training,
focusing on constraining position and resolution information. Subsequently, the distri-
bution map is used for transfer learning to further constrain the texture and category
information. Through a progressive conditional learning approach, our model becomes
capable of generating SAR samples with predetermined positions and categories.
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3.3.2. Cleaning Generated SAR Samples

Outputs from the generative model can have issues like excessive background noise,
object distortions, and semantic inconsistencies, reducing the utility of generated samples
for augmentation tasks. Therefore, cleaning these generated SAR samples is essential to
ensuring their quality and usability. SAR images often deviate from the conventional
Gaussian distribution in pixel values with their intricate terrains and complex scattering
mechanisms. Instead, their pixel values typically follow the K-distribution (Kappa distri-
bution). The K-distribution effectively models these complex scattering mechanisms and
noise characteristics, as illustrated in Equation (13).

f (x; k, θ) =
2k|x|

2k−1
2

Γ(k)θk exp

(
−|x|

k

θ

)
(13)
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The K-distribution is defined by two parameters: k, representing degrees of freedom,
and θ, the scale parameter. Based on the labels of the synthetic sample, the slices of
objects from the generated images are extracted. As shown in Figure 5, we fit these object
slices to the K-distribution and adjust their pixel values based on discrepancies in the k
parameters. Next, we use a yolov5 model trained on the original samples to identify the
generated samples. The detection results are cross-verified with actual labels to facilitate
sample cleaning.
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4. Experimental Results and Analysis

This section introduces the SAR dataset used and compares our method with other
SAR sample augmentation methods.

4.1. Experimental Data and Evaluation Indexes

(1) Experimental Data. To establish a robust baseline for sample augmentation, we
used the MSTAR dataset to generate synthetic samples and created more representative
and diverse samples for training and testing. We focused on ensuring the coherence of
background and object resolution and the semantic authenticity of small object distribu-
tion. We selected 10 object classes, including 2S1, bmp2, BRDM_2, among others, and
employed various image enhancement strategies. This process results in a dataset com-
prising 1000 high-resolution SAR images, serving as the baseline for our experiments.
Moreover, we prepared a test set of 311 SAR images with corresponding masks, matching
the specifications of the baseline dataset. This test set covered 10 different object types
and 8 land cover types, such as barren land, grassland, farmland, shrubbery, forest, roads,
buildings, and ocean.

(2) Evaluation Metrics. This experiment employed two primary sets of evaluation
metrics to assess the performance of the generated images and the effectiveness of the
augmented datasets for the given task. Initially, well-established quality evaluation metrics
were used, such as the Inception Score (IS) and Fréchet Inception Distance (FID). They were
utilized to assess image quality and quantify the quality of images generated by the models.
Secondly, the precision (P), recall (R), and mean average precision (mAP) metrics were
employed to evaluate the performance of the augmented datasets generated by different
methods for a specific task. By comprehensively using these metrics, the experiment
provides a more comprehensive assessment and comparison of various augmentation
samples, ensuring more reasonable and accurate evaluation results.

• IS↑: Inception Score. IS consists of two components: the first value is the mean of the
KL divergence, where a larger value indicates higher data quality. The second value is
the standard deviation of the KL divergence, indicating richer sample diversity as the
value increases.

• FID↓: Fréchet Inception Distance. FID is a metric used to measure the difference
between generated images and real images. The lower the FID indicates the smaller
difference between generated images and real images.
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• P↑: Precision. The precision rate refers to the ratio of the truly positive samples among
the positive samples detected by the model. The higher the precision rate indicates the
lower the probability of the model predicting negative samples as positive samples.

• R↑: Recall. The recall rate refers to the proportion of truly positive samples detected
by the model among all positive samples. A higher recall rate indicates a stronger
ability of the model to correctly detect positive samples.

• mAP↑: mean Average Precision. The overall performance evaluation index of the model.
A higher mAP value indicates superior model performance in object detection tasks.

• F1-score↑: F1-score is a performance metric that provides a comprehensive evaluation
of the accuracy of a classification model by considering both precision and recall.

(3) Experimental environment. All experiments were executed on a uniform hardware
configuration, with detailed environmental settings enumerated in Table 2.

Table 2. Basic experimental environment settings.

Platform Windows 11

CPU Intel Core i7-12700 k
Memory 16 G

GPU Nvidia GeForce RTX 3070
Video memory 8 G

4.2. Comparison with Other Advanced Methods

To evaluate the quality of the augmented samples, we performed qualitative and
quantitative comparisons with samples produced by leading generative networks. The
models for comparison are as follows:

• Pix2pixGAN [44]: An improved generative adversarial network that achieves real-
time transformation from input images to object images by learning the mapping
relationship between them.

• CycleGAN [45]: An unsupervised generative adversarial network that maintains the
original image’s content using cycle consistency loss.

• BicycleGAN: By introducing additional consistency loss and mutual information loss,
it enhances controllability and diversity in image generation tasks.

• DDPM [47]: A generative model that transforms random noise into a coherent image
by simulating the reverse of diffusion, providing a unique way to create high-quality
and diverse samples.

To evaluate the quality and label alignment of the generated sample, we conducted
both qualitative and quantitative comparisons. The yolov5 model was employed to evaluate
label alignment in the generated samples, with results detailed in Figure 6 and Table 3. The
original training dataset consisted of 1000 images, and the test set contained 311 images.
We generated 1000 images separately using three different GAN networks. The generated
samples originated from three datasets: one synthesized with a semantic layout strategy
(Ours-SL, 500 images), one blending synthetic backgrounds with real objects (Ours-BA,
500 images), and one created through progressive training of a diffusion model (Ours-GE,
1000 images). These datasets collectively form our augmented dataset (Ours-all).

Our qualitative and quantitative analyses revealed key insights: CycleGAN-generated
images exhibit noticeable artifacts, particularly around object areas and suffer from limited
diversity and low realism. In contrast, pix2pixGAN showed superior performance in image-
to-image translation compared to CycleGAN. However, it tends to produce images with
more background noise, lower resolution, and limited background diversity, evidenced by a
KL (std) of only 0.038. While BicycleGAN excels in generating realistic backgrounds, it faces
significant object distortions, resulting in a high FID score of 32.07. It also encounters issues
of mode collapse in background generation. Compared to other GAN-based methods,
DDPM generates higher-quality images, achieving a KL (mean) of 1.871 and a significantly
lower FID score of 25.93. Nonetheless, it faces challenges in object generation distortions
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and does not meet the label matching requirements for data augmentation. Our generative
model (Ours-GE) outperformed the benchmarks, achieving an FID score of 25.54, and
produced images with higher resolution and fewer object distortions. However, it does not
match pix2pixGAN in terms of background complexity.
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Figure 6. Qualitative comparison between Ours-GE and other generative models. There are four
sets of example images, including five classes of MSTAR objects: 2S1, BMP2, BRDM_2, BTR_60, and
BTR_70. The red boxes highlight severely distorted portions in the generated objects.

Table 3. Quantitative comparison of various augmented samples. Bold words represent the best
results. ↑ and ↓ indicate the optimization direction of the indicator.

Method KL (Mean)↑ FID↓ KL (Std)↑ Matching Degree (%)↑
Original 1.866 - 0.163 92.9

CycleGAN 1.349 28.42 0.070 18.5
Pix2pixGAN 1.252 28.47 0.038 15.1
BicycleGAN 1.126 32.07 0.056 10.2

DDPM 1.871 25.93 0.084 48.6

Ours-SL 1.782 - 0.010 92.7
Ours-BA 1.300 30.17 0.042 87.8

Ours-GE 1.774 25.54 0.090 78.2
Ours-all 1.884 18.83 0.180 81.8

To further validate the effectiveness of our augmented data, we trained a yolov5 net-
work on the original dataset to assess the alignment between generated sample and object
labels. In our study, we utilized the YOLOv5 model to perform detection on generated
samples. Subsequently, we compared the detection results with ground truth labels, as
depicted in Table 3. The term “Matching degree” is employed to indicate the degree of
correspondence between the test results and the ground truth labels, represented as a
percentage. As shown in the last column of Table 3, GAN networks perform poorly in
generating specified-category small objects, with matching rates ranging from 10% to 20%.
DDPM demonstrates improved performance in generating specified-class targets, though
its matching percentage remains below 50%. In comparison, datasets synthesized using
real objects and real backgrounds have nearly identical label matching rates to the original
dataset. However, with the introduction of generated backgrounds in Ours-BA, there
is a slight decrease in the alignment between synthesized samples and labels. Notably,
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samples generated by Ours-GE achieve a label matching rate of 78.2%, indicating that
they retain crucial feature information from real samples. This characteristic renders them
highly suitable for sample augmentation purposes. Finally, our augmented dataset, which
amalgamates three distinct enhancement techniques, exhibited improved sample diversity
compared to the original dataset when evaluated using the KL divergence metric.

4.3. Ablation Analysis of Different Sample Augmentation Strategies

Throughout the experiments, we maintained consistent training parameters across all
network models and utilized a uniform validation dataset. We evaluated the effectiveness
of different augmentation schemes proposed in classic detection models Yolov5, RetinaNet,
and VarifocalNet. This involved contrasting the detection results of different augmentation
schemes on these classic networks.

(1) Semantic Layout Strategy. Our dataset, synthesized via a semantic layout strategy,
demonstrated superior performance in multiple metrics when compared to a dataset gener-
ated through random placement across various parameters of RetinaNet and VarifocalNet,
particularly achieving a notable 7.3% improvement in accuracy P for VarifocalNet. This is
attributed to the fact that the semantic layout strategy rigorously constrains the distribution
of objects on the background during instance placement, enhancing the association be-
tween objects and backgrounds. Consequently, the synthesized images demonstrate better
semantic consistency between objects and backgrounds, enabling the model to distinguish
between objects and backgrounds more effectively. However, for the yolov5 model, while
we observed gains in Precision (P) and mean Average Precision (mAP), there was a decline
in Recall. We speculate that this could be related to the dense prediction nature of the
yolov5 network, where sparse object distribution may have adversely affected detection
performance.

(2) Diverse Background Generation. Our comparative experiments (SL vs. SL + BA,
as detailed in Table 4) indicated that background enhancement led to significant improve-
ments across multiple detection metrics. As shown in Figure 7, the diverse background
images generated from layout maps relax strict spatial constraints while ensuring accurate
generation of land cover types within the position boxes. This flexibility allows for the
generation of various terrains outside the position boxes. Consequently, the introduction of
two additional loss terms, Llaplacian and Lposition, enhances the background details beyond
the position boxes. This enhancement, specifically in texture and lighting, is depicted in
Figure 7. After augmenting the background diversity, the detection network’s feature map
outputs during training are illustrated in Figure 8. By synthesizing diverse backgrounds
with real objects, the model has been exposed to samples from various environmental con-
texts. This exposure has contributed to the enhancement of its robustness and its capacity
to successfully differentiate objects from backgrounds in various environmental settings.

Table 4. Comparison of detection results on classical networks with different augmentation strategies.

Network Method P (%) R (%) mAP (%) F1 (%)

Yolov5

Baseline 78.8 79.8 66.6 79.30
Random 80 80.3 67.3 80.15
Ours-SL 81.1 80.1 68.7 80.60

Ours-SL+ BA 82.9 81.5 69.7 82.19
Ours-all 85.5 86.3 73.6 85.90

RetinaNet

Baseline 69.2 78.9 54.3 73.73
Random 70.2 79.5 54.8 74.56
Ours-SL 70.5 79.8 55.2 74.86

Ours-SL+ BA 71.9 81.9 57.1 76.57
Ours-all 73.2 83 58.3 77.79

VarifocalNet

Baseline 74.4 81.9 59.5 77.97
Random 76.7 82.6 61.6 79.54
Ours-SL 81.7 83.4 66.4 82.54

Ours-SL+ BA 82.2 83.8 67 82.99
Ours-all 85.6 84.6 70.4 85.10
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Figure 8. Comparation of the output feature maps before the SPP layer of the yolov5 network. The
yellow pixels represent the most attended regions, followed by green and light green. The SL method
reduces the network’s focus on the background, the BA method further reduces the attention to the
background and more accurately concentrates on the object regions. (a) Baseline dataset, (b) SL,
(c) SL + BA.

(3) Progressive Training Strategy. Utilizing solely the multi-class mask as a constrain-
ing condition, the diffusion-model-generated images demonstrated commendable results,
especially in object placement and overall scene composition in terms of object placement
and scene generation. However, these images fell short in constraining object scattering in-
tensity and preserving texture details, resulting in severe deformation and distortion issues
in the generated samples, as shown in Figure 9a. Conversely, leveraging the distribution
map as a guiding condition during transfer learning resulted in generated samples that
more closely mirrored the appearance of genuine objects, as illustrated in Figure 9b, and
possess power spectra closer to real SAR samples (Figure 10).
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Figure 10. Power spectrum comparison. Compared to the power spectrum distribution of SAR
sample images (a), the power spectrum of a sample generated by the single-step diffusion model
(b) lacks side-lobe distribution. However, the power spectrum of our multi-condition progressive
generated sample (c) is more concentrated in the low-frequency region, with more pronounced
side-lobes.

We simultaneously observed a significant difference in frequency information between
our generated samples and their real counterparts. Consequently, we applied K-distribution
fitting to both real objects and generated objects separately. We then adjusted the pixel
values of the generated objects in accordance with the K-distribution of real objects, aiming
to retain more frequency information from the original data. Lastly, we utilized the yolov5
model for sample cleaning, inputting generated samples, comparing object detection results
with real labels, and discarding samples showing significant discrepancies.

The study results indicate that generated samples, refined through progressive training
and sample cleaning, surpass those from mere background augmentation in augmentation
tasks. Our approach, Ours-SL + BA, resulted in an improvement of model accuracy by
0.5% to 1.8%, recall by 0.4% to 2.1%, mAP by 0.6% to 1.9%, and F1-score by 0.45% to
1.59%. Additionally, incorporating GE samples further improved model accuracy, with
increases ranging from 1.3% to 3.4%, recall from 1.2% to 3.8%, mAP from 1.2% to 3.9%, and
F1-score from 1.22% to 3.71%. These findings suggest that the generated images exhibit
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significant semantic diversity, highlighting the overall improvement achieved through data
augmentation in the context of the detection task.

4.4. Discussion

The proposed synthesis-generation collaborative method presents a novel framework
for SAR sample augmentation. The method synthesizes samples effectively, ensuring visual
consistency and logical coherence through semantic layout strategies. The integration
of synthetic samples and generative models further enhances the semantic diversity of
objects and backgrounds within the samples. However, the method faces challenges,
particularly in improving its processing efficiency and versatility. On one hand, due to the
method being primarily designed for MSTAR objects, it is less effective in generating large
objects with complex structures and rich textures. On the other hand, the introduction
of diffusion models brings relatively high computational costs. Therefore, developing
lightweight approaches for this framework is crucial and will be our future research focus.
Nonetheless, the sample augmentation method based on the mutual promotion of synthesis
and generation still provides a new and meaningful research perspective for the remote
sensing image processing field.

5. Conclusions

We propose a synthesis-generation collaborative SAR sample augmentation frame-
work. Firstly, we introduce a semantic-layout strategy that enhances the correlation be-
tween objects and backgrounds through semantic constraints on layout boxes, resulting
in semantically enhanced synthetic sample. To increase background diversity, we train a
pix2pixGAN network to generate semantically controlled backgrounds. Finally, we progres-
sively train a conditional diffusion model, coupled with distribution transfer and sample
cleaning strategies, to obtain high-quality SAR samples. Comprehensive experiments
indicate that our image synthesis intelligent generation framework outperforms existing
sample augmentation approaches.
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