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Abstract: In this paper, a new simultaneous retrieval method of the SIRAW algorithm is introduced
and carried out on FY3D/MERSI-II satellite images to obtain the aerosol optical thickness (AOT) and
normalized water-leaving radiance (WLR) over the ocean. In order to improve the operation efficiency
of SIRAW, a machine learning solver is developed to improve the speed of forward radiative transfer
computation during retrieval. Ground-based measurement data from AERONET-OC and satellite
products from VIIRS are used for comparative verification. The results show that the retrieved AOT
and WLR from SIRAW are both in good agreement with those of AERONET-OC and VIIRS. Further,
considering the degradation of the MERSI sensor, a new calibration scheme on 412 nm and 443 nm is
adopted and an evaluation is carried out. Inter-comparison of derived WLR between MERSI and
VIIRS indicates that the new calibration scheme could effectively improve the WLR retrieval accuracy
of MERSI with better consistency to the official data of VIIRS. Therefore, this paper confirms that
a simultaneous retrieval scheme combined with effective calibration coefficients can be used for
high-precision retrieval of real aerosol and water-leaving radiation.

Keywords: atmospheric correction; FY-3D/MERSI-II; water-leaving radiance; visible light calibration
coefficients; radiometric calibration; turbid coastal region; AERONET-OC; VIIRS

1. Introduction

The rapid development of spaceborne remote sensing technology has made it the
most important means of global marine information acquisition and service. After the
networking of multiple multi-type satellites, satellites have become an irreplaceable tool
for understanding, researching, developing, and utilizing the ocean, becoming one of the
leading means of modern ocean observation. Atmospheric aerosols and oceanic water-
leaving reflectance (WLR) observations are essential in work concerning atmosphere and
water environment monitoring and assessment, being used to reveal air pollution, algal
blooms, phytoplankton community structure, primary productivity, oil spills, and seafloor
life [1]. Due to the lack of traditional observing platforms, such as ships, free-drifting floats,
and even aircraft, it is difficult to provide large-scale, high-frequency data collection to cope
with vast ocean areas. Therefore, satellite instrument observation shows its advantages.

The Fengyun meteorologic satellite system was developed by the China Meteorological
Administration (CMA) to monitor meteorological changes. It has the ability to detect
weather, climate, ocean, and other fields. By the end of 21 August 2023, nine meteorological
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satellites were in orbit, covering both stationary and polar orbits and providing data services
to 129 countries and regions around the world. FY-3D belongs to the Fengyun-3 polar orbit
satellite system, and its onboard Medium-Resolution Spectrum ImagerII (MERSI-II) sensor
is capable of processing aerosol and WLR data based on atmospheric correction (AC).

The remote sensing signals detected by the satellite over the ocean are divided into
atmospheric and oceanic contributions, which contain information concerning the con-
centrations of aerosols and water substances, respectively. AC is mainly used to extract
the WLR signal from the total signal of satellites by extracting the contribution of aerosol
scattering. The difficulty of AC is that the WLR only accounts for approximately 10% of the
satellite signal [2], indicating that a small bias of AC could introduce a large uncertainty
in terms of WLR estimation. A previous study has shown that a 5% error in radiometric
calibration and AC can lead to more than 100% inversion errors in the concentration of
water constituents [3]. Aerosol optical thickness (AOT) is an important atmospheric param-
eter for AC and ocean color (OC) remote sensing research, and their retrieval accuracy will
directly affect the accuracy of the data products of WLR.

The classic AC algorithm approach comes from the works of Gordon [4] and Gordon
and Wang [5], which clearly explain the principles in the determination of atmosphere
scattering and WLR based on multiple-spectrum observations from satellites, which have
been widely used in lots of operational satellite OC products [6–8]. This approach is based
on the assumption of zero WLR in the red and near-infrared bands, in which the spectral
AOT can be determined via the best fitting of radiance between satellite observations and
simulations via the use of pre-calculated lookup tables (LUTs) of different aerosol modes.
Then, the aerosol scattering in the shorter wavelengths can be calculated to obtain the WLR.
However, AC in coastal or turbid areas is challenging since the zero WLR assumption in
red and near-infrared bands is more questionable due to the obvious backscattering effects
of oceanic sediments in those areas, resulting in the overestimation of AOT and negative
WLR in some cases [9]. Based on the classic AC approach, some improved algorithms
have been developed by using other bands to derive aerosol scattering in coastal or turbid
waters [10–12], solving the difficulties of inversion error caused by AOT overestimation
in those regions. Wang et al. [12] extended the assumption of zero WLR in the near-
infrared band to the short-wave infrared (SWIR) band and assumed that turbid water could
be regarded as dark pixels in the SWIR band, therein proposing the SWIR atmospheric
correction algorithm. He et al. [11] developed an algorithm using the ultraviolet band to
improve AC accuracy in highly turbid water regions due to the strong absorption by detritus
and colored dissolved organic matter (CDOM) in those areas. In addition, Hu et al. [13]
proposed an AC algorithm, assuming that the types of aerosols remain unchanged within a
space range of 50~100 km from clear to coastal waters, in which the aerosol parameters are
calculated from the clean water and then transferred to the neighboring turbid water to
complete the AC. The above methods are all based on the black-pixel assumption.

To treat non-black-pixel calculation and derive aerosols and remote sensing reflectance
(Rrs) simultaneously, another way is to construct a bio-optical model to calculate infrared
or near-infrared WLR for AC [14–16]. The bio-optical model builds on a variety of funda-
mental theories of optics and forms a rigorous set of equations to describe and predict the
bio-optical status of the ocean. These bulk inherent optical properties (IOPs) can then be
combined with appropriate boundary conditions via the radiative transfer equation (RTE)
to calculate apparent optical properties (AOPs) to complete the atmospheric correction
process. Furthermore, another approach is to minimize an error criterion between the mea-
sured top-of-atmosphere (TOA) reflectance and the simulation from a radiation transfer
(RT) model [17–20]. Compared with the Gordon classic approach, it shows the ability to
manage situations of both Case-I (ocean water body) and Case-II (coastal water body) water
regions [21]. The whole idea is to obtain the best fitting of the spectral reflectance on visible
light and near-infrared bands at the top of the atmosphere by systematically changing
the candidate aerosol model, AOT, pure aerosol backscattering coefficient, yellow matter
absorption, and chlorophyll-a concentration or a subset of these parameters iteratively. To
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improve the calculation efficiency, Brajard et al. [22] and Jamet et al. [23] propose a variation
scheme that approximates the operator associated with the RT model through a function
that executes faster processing than RT code. However, it is still a difficult problem to
separate the aerosol and water components in the presence of absorptive aerosols. Another
method regards AC as a statistical data inversion problem and uses Bayesian theory [24]
to simulate the reflectance of TOA and construct the mapping relationship between TOA
reflectance and WLR. This method extracts estimates and covariance of WLR and gives its
uncertainties. Saulquin et al. [25] used the Gaussian mixture model to represent the prior
distribution of the reference water and aerosol reflection spectra and used the maximum a
posteriori estimation method for numerical inversion. The performance of such statistical
algorithms depends on the accuracy of prior knowledge of aerosol parameters, water
reflectance, and noise in the satellite measurement.

Since the above approaches linearized the RT process into mutually independent atmo-
spheric and oceanic systems, other AC methods have been developed based on the coupled
atmosphere–ocean radiative transfer model without the zero WLR assumption [9,26–28].
These coupled models consider the multiple scattering processes between atmospheric
and ocean systems, which further improves the simulated radiance during the retrieval,
particularly for the opaque atmosphere–ocean system.

In this study, the Simultaneous Retrieval of Aerosol and Water-leaving radiance
method—SIRAW [9,20,29], which considers the coupled atmosphere–ocean process—is
used to process the AC based on FY-3D/MERSI-II data. Then, the retrieved WLR is
validated by the in situ measurement data from AERONET-OC and compared with the
VIIRS official OC product. Considering that the deviation of optical remote sensing load
calibration could lead to error transmission for the retrieval and affect the quantification
of remote sensing data and products, an integrated method for on-orbit-wide dynamic
vicarious calibration was used to calibrate FY-3D/MERSI-II L1 data and to verify the
effect of the calibration on the accuracy of AC from SIRAW. The SIRAW algorithm, its
modification, and settings used on FY-3D/MERSI-II, as well as the data and criteria for the
algorithm, are introduced in Section 2. The typical coastal region results and validations are
discussed in Section 3. Investigation of the effect of radiometric calibration error transfer
on the algorithm is explained in Section 4. The conclusions of this research are provided
in Section 5.

2. Materials and Methods
2.1. Data and Study Area
2.1.1. FY-3D/MERSI-II Satellite Data

MERSI-II is the second generation of optical imaging payload with improved per-
formance carried out by the FY-3D satellite since it was launched in November 2017. It
integrates two imaging instruments from the original FY-3 satellite—the visible and in-
frared radiometer (VIRR) and the first-generation MERSI function. FY-3D MERSI-II has a
total of 25 bands, and it has 6 channels in the visible light band, 10 channels in the visible
light/near-infrared band, 3 channels in the short-wave infrared band, and 6 channels in
the medium- and long-wave infrared band [30,31]. The instrument can obtain abundant
Earth–gas radiation images at the same time. In this study, 8 bands of visible light and
near-infrared band are selected for AC. The information for these bands is listed in Table 1.
The National Satellite Meteorological Center (NSMC) of China provides L1 data, and after
calibration correction, they are converted into apparent reflectance.

2.1.2. Global/Regional Assimilation and Prediction Enhanced System (GRAPES) Data

The CMA independently developed the Global and Regional Assimilation and Predic-
tion System (GRAPES), which is widely used for numerical weather and climate forecasting.
GRAPES has three major systems, including the Global Medium-Range Numerical Fore-
cast System (GRAPES-GFS), the Regional Mesoscale Forecast System (GRAPES-MESO),
and the Typhoon Model Forecast System (GRAPES-TYM) numerical weather forecasting
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systems with independent intellectual property rights in China. At present, it provides the
highest horizontal resolution of 0.25◦ × 0.25◦, with 60 vertical layers [32]. GRAPES also
has a complete physical process framework for weather forecasting and has been formally
applied to the field of weather forecasting in China. Seven forecast data of satellite areas
across similar times are applied as the input source of the algorithm to participate in the
calculation (Table 2). In this study, we use the GRAPES data as the meteorological ancillary
data in the SIRAW algorithm.

Table 1. Introduction to the FY-3D MERSI-II ocean color channel.

Purpose Band Central
Wavelength (µm)

Spectral
Bandwidth (nm)

Spatial
Resolution/IFOV

at S.S.P. (m)
SNR or NE∆T (K)

Maximum
Reflectance ρ or

Dynamic Range (K)

Ocean watercolor,
plankton,

biogeochemical
remote sensing

8 0.412

20 1000

300

30%

9 0.443 300
10 0.490 300
11 0.555 500
12 0.670 500
13 0.709 500
14 0.746 500
15 0.865 500

Table 2. GRAPES data introduction.

Data Dataset Name Unit Size

101 layers of pressure value plev pa 101 × 720 × 1440
surface pressure (PRES) psfc pa 720 × 1440

Mean sea level pressure (PRMSL) pmsl pa 720 × 1440
10 m u-component of wind (UGRD) u-sigma m/s 720 × 1440
10 m v-component of wind (VGRD) v-sigma m/s 720 × 1440

Total column ozone O3col Du 720 × 1440
Relative humidity (RH) rhlev % 101 × 720 × 1440

2.1.3. AERONET-OC In Situ Measurement Data

The AErosol RObotic NETwork (AERONET) is a worldwide system of autonomous
solar photometers set up in the early 1990s to support atmospheric research at various
scales by standardized measurements of direct Sun and sky radiation [33]. AERONET has
played an important role in the study of the optical properties of aerosols, the creation of
global climate aerosols, and the validation of atmospheric remote sensing products. Since
2006, the network has been extended by a new component called AERONET ocean color
(AERONET-OC), which provides additional capacity for identifying ocean WLR, and the
data are collected by an improved solar photometer installed on a fixed offshore platform.

Data observation is based on the CIMEL CE-318 automated Sun photometers. It
shows the ability to perform marine radiometric measurements for determining WLR in
addition to the regular measurements for retrieving aerosol optical properties. A system
based on the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) and Photometer Revision
for Incident Surface Measurements (SeaPRISM) performs multiple sky and sea radiance
measurements at given viewing and azimuth angles at eight center wavelengths in the
412–1020 nm spectral range [34,35].

The newest version 3 level 2.0 data are obtained to validate the retrieved SIRAW WLR,
because after completing pre- and post-field calibration with differences smaller than 5%,
automatic cloud removal, and manual inspection, they have been fully quality-controlled.
Compared to the same sea area as shown in the study area map, the 2021 whole-year WLR
data are downloaded to carry out the validation (Figure 1).
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2.1.4. Visible Infrared Imaging Radiometer Suite (VIIRS) OC Satellite Data

In October 2011, the Suomi-NPP US watercolor satellite equipped with VIIRS sensors
was successfully launched, which is the mainstream of current international ocean color
observation. The Suomi-NPP orbits the Earth at an altitude of approximately 834 km and
completes a single orbit in approximately 101 min. It completes daily global coverage
after about 14 orbital flights. VIIRS is one of 5 sensors carried by Suomi-NPP for Earth
observation. It collects visible light and infrared bands in the 0.4~12 µm range and combines
some of the key capacities of traditional instruments, such as Medium Resolution Imaging
Spectroradiometer (MODIS), Advanced Very High-Resolution Radiometer (AVHRR), and
Operational Line Scanning System (OLS) [36]. The open-access VIIRS WLR product covers
from 410 nm to 671 nm, so we chose a similar MERSI-II band to carry out the comparison.
Therefore, this study only shows 5 bands’ comparison results among 412 nm, 443 nm,
490 nm, 555 nm, and 670 nm. The description of these wavelengths is shown in Table 3.

Table 3. The VIIRS visible light and near-infrared band names, positions, full widths at half maximum
(FWHMs), and characteristics of the corresponding MODIS ocean color bands.

Band Wavelength (µm) FWHM (µm)

M1 0.410 0.020
M2 0.443 0.018
M3 0.486 0.020
M4 0.551 0.020
M5 0.671 0.020

2.1.5. Match-Up Procedure

In this study, data from 2021 from the ground-based observation station AERONET-
OC are selected to carry out verification work. In the model retrieval scheme, we select the
data without the Sun glint contamination when the reflected solar angle is over 36.0 degrees
in the clear sky. The cloudy pixels are excluded from the validation when the standard
deviation of 550 nm apparent reflectance within 5 × 5 pixels is less than 0.0025, and the
standard deviation of 490 nm apparent reflectance is less than 0.4. In addition, the data of
ground observation and satellite transit time difference within 1.5 h are selected to ensure
the time matching of the two kinds of data. The average WLR of 3 × 3 pixels is selected as
the verification data of satellite inversion. We compared the relative error (RE) and root
mean square error (RMSE) to analyze the comparison between SIRAW and ground-based
measurement data.

For the inter-comparison with VIIRS, satellite images are down-sampled to 4 km,
excluding pixels where the viewing and solar zenith angles exceed 60 and 75 degrees, re-
spectively. Spatial and temporal matching of the SIRAW retrieval and VIIRS WLR are based
on the same locations and similar overpass times. VIIRS- and SIRAW-retrieved WLRs are
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converted to Rrs as Equation (1). All samples are compared in this research. The difference
is quantified by the following statistical parameters: the coefficient of determination (R),
the RMSE, the bias, the mean bias error (MBE), MRB represents bias/mean (VIIRS), and
r_RMSE stands for RMSE/mean (VIIRS).

Rrs =
nLw
F0

(1)

To compare the spatial distribution of retrieved AOT and WLR from MERSI, we make
an inter-comparison with those of VIIRS in different oceanic areas. There are 8 coastal sea
areas chosen for the inter-comparison in the global scale on 11 March 2020, around Mexico,
the southwestern United States, the Caspian and Black Seas, the northwest Arabian Sea,
the Mozambique Channel, the Bohai Sea of China, south China, and Australia, of which
the spatial region is shown in Figure 2. The FY-3D/MERSI-II L1 5 min 1 km orbital data
images of these 8 turbidity CASE-II water bodies are selected as the input data. The area of
these images depends on the orbital data obtained by the satellite at the transit time there.
In addition, to investigate the effects of calibration coefficients on the retrieval, we conduct
the inter-comparison of retrieved WLR between MERSI and VIIRS around the South China
Sea (see Figure 3), where the high-value condition of WLR occurred according to the VIIRS
observation on 30 August 2022. The research flowchart is shown in Figure 4 below.
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2.2. Methods

The SIRAW method was jointly constructed by Shi et al. [9,20,29]. It has been applied to
the Japan Aerospace Exploration Agency (JAXA) scientific research platform, Greenhouse
gases Observing SATellite-2 (GOSAT-2), and Global Change Observation Mission-Climate
(GCOM-C) and proved to have a high ability to retrieve the aerosols and WLR [9,29,37,38].

The forward radiation calculation was performed by the improved vector radiative
transfer model named Pstar [9,20,37,39]. In this model, a three-component bio-optical
module was used for the turbid waters and a full-physical WLR calculation scheme was
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developed [20]. Pstar is a vector-coupled atmosphere–ocean RT model for forward RT
simulation combined with discrete ordinate and matrix operator methods proposed by
Ota et al. [39], which inherits from the classic Nakajima–Tanaka scheme [40–43]. The result
has proved to be precise in simulating radiation in atmospheric and ocean systems [44,45].
The source function term in the RTE increases the effect of direct solar beams reflected or
transmitted by the ocean surface, as shown below in Equation (2):

µ
dL(τ; µ, ϕ)

dτ
= −L(τ; µ, ϕ) + ω

∫ 1

−1

∫ 2π

0
P
(
µ, ϕ; µ′, ϕ′

)
L
(
τ; µ′, ϕ′

)
dϕ′dµ′ + S + (1−ω)B(τ) (2)

where τ is the optical depth measured from the top of the atmosphere (TOA), µ is the
cosine of the viewing zenith angle, ϕ is the azimuth angle. The scalar ω represents the
single scattering albedo, which is defined as the ratio of the scattering coefficient to the
extinction coefficient. Additionally, P is the phase matrix, and S is the source function for
single scattering. It is defined differently in atmospheric and oceanic systems. These two
systems’ formulas are listed below in Equation (3) and Equation (4), respectively.

S = ωP(µ, ϕ; µ0, ϕ0)F0e−
τ

µ0 + ωP(µ, ϕ;−µ0, ϕ0)Rs(−µ0, ϕ0; µ0, ϕ0)F0e
2ra−τ

µ0 (3)

S = ω
µ0
∼
µ0

P(µ, ϕ; µ0, ϕ0)Ts

(∼
µ0, ϕ0; µ0, ϕ0

)
F0e

τa
µ0 e

τ−τa∼
µ 0 (4)

where F0 is the solar flux vector, τa is the optical thickness of the whole atmosphere, and
∼
µ0 is

the refraction cosine of the solar zenith angle in the ocean. Rs and Ts represent the reflection
matrix and transmission matrix of the sea surface, respectively. These two parameters can
be calculated using Nakajima and Tanaka’s [43] algorithm for rough ocean surfaces.
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the attenuation of two blue bands and brings them into the model for calibration optimization and
verification, corresponding to Section 4.

In the inhomogeneous atmospheric and oceanic layers, the solutions of RTE are
computed based on the discrete ordinate and matrix operator methods [38], as well as a
highly accurate and efficient truncation method [41]. Pstar has been shown to have good
accuracy in simulating radiation processes in both the atmosphere and the ocean [20]. In
the atmosphere system, three aerosol types, including fine, sea salt, and dust particles,
are considered. In addition, the fine particles are assumed to be an internal mixture
of water-soluble, soot, and dust-like particles. In the ocean system, a three-component
bio-optical ocean module is developed to simulate the inherent optical properties of the
water constituent concentration (WCC), which includes chlorophyll-a (CHL-a), suspended
sediment (Ss), and colored dissolved organic matter (CDOM). The ocean surface is modeled
using the Nakajima and Tanaka scheme [43], of which the reflection and transmission
matrix consider the effect of wind-generated waves on the solar radiation transfer in the
atmosphere–ocean system.

The SIRAW algorithm uses the optimal estimation theory to construct the inversion
module. In non-linear atmospheric and oceanic systems, the measurement vector y, such
as the observed radiance or reflectivity, can be divided into the expression of the forward
radiative transfer model F(x) and error ε which consists of the measurement error and the
model error (Equation (5)). Then, under the condition of prior information constraints, the
maximum a posteriori optimization method is used to minimize the cost function in an
iterative way (Equation (6)).

y = F(x) + ε (5)

xi+1 = xi +
[(

KT
i S−1

ε Ki + S−1
a

)]−1[
KT

i S−1
ε (y− F(xi))− S−1

a (xi − xa)
]

(6)
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where xi is the state vector to be retrieved at the i iteration, which includes the AOTs of fine,
sea salt, and dust particles, soot fraction of fine particles, Chl-a, Ss, and CDOM; xa is the
prior state vector, Sε is the measurement error covariance matrix, Sa is the prior state value
determined error covariance matrix; K denotes the Jacobian matrix or weighting function,
which is derived from the forward model to the state vector, and can be defined as the
equation K = ∂F(x)/ ∂x.

To improve the calculation efficiency of the SIRAW algorithm, a radiative transfer neu-
ral network (NN) solver is constructed to perform the forward radiation calculation. In this
study, we randomly generated a huge training dataset based on the coupled atmosphere–
ocean radiative transfer model. The training dataset covers various atmospheric and
oceanic parameters, including AOT of fine particles, AOT of sea salt, AOT of dust, soot frac-
tion, Chla, Ss, CDOM, sea level pressure, 10 m height wind speed from ocean surface, total
column ozone, relative humidity, solar zenith angle, satellite zenith angle, relative azimuth
angle, and simulated satellite reflectance and WLR at the wavelength of MERSI OC chan-
nels from 412 nm to 865 nm. To further improve the learning efficiency of the NN solver,
we use an advanced self-adoption varied learning scheme developed by Shi et al. [29] to
adjust the learning rate of each neuron.

Then, the simulated apparent reflectance of the top atmosphere is solved by using the
deep-learning-based fast radiative transfer solver described above. Based on the Bayesian
optimal estimation theory, the relevant parameter information is constantly optimized
through several iterations. The error of the apparent reflectance of satellite observation and
NN solver simulation is minimized, and the retrieved state vector is determined. Finally,
the WLR is calculated based on the retrieved atmospheric and oceanic parameters through
the NN radiative transfer solver.

In the full physical technology model of WLR and underwater light field, the algorithm
from Shi et al. [9] is used to solve Lw. The equations are shown below in Equation (7):

Lw
(
λ; µ, ϕ; [Chl], Ss, ay(440), AOT, Wind

)
=

M−1
∑

m=0
Lm

W(λ; µ; [Chl], Ss, ay(440), AOT, Wind) cos mϕ
π(1+δ0m)

(7)

where λ is the wavelength, δ0m is Kronecker’s delta; µ is the cosine of the viewing zenith
angle and ϕ is the cosine of the relative azimuth angle. [Chl], Ss, and ay (440) represent the
concentrations of chlorophyll, sediment, and absorption coefficient of CDOM at 440 nm,
respectively. Lw in a single direction can be decomposed into Equations (8) and (9).

Lm
W
(
λ; µ; [Chl], Ss, ay(440), AOT, Wind

)
=

Ns
∑

i=1
Lm

u
(
λ; τ0− ; µi; [Chl], Ss, ay(440), AOT, Wind

)
Tm(λ; µ, µi)

(8)

Tm(λ; µ, µi) =
1
µi

∫ µi+
1
2

µi− 1
2

µ′dµ′
∫ 2π

0
T
(
λ; µ, µ′; ϕ

)
cos mϕ dϕ (9)

T(λ; µ, µ′; ϕ) is the rough sea surface’s diffuse transmission function and is related to
the incident zenith angle and the exit zenith angle µ and µ′ above and below the sea surface.
Tm is the M-order Fourier component of the diffuse transmission matrix of the rough ocean
surface. According to the sea surface model of Nakajima et al. [43], T(λ; µ, µ′; ϕ) can be
derived from model inversion wind speed parameters. Finally, obtaining the value of Lw,
after parameter derivation, the WLR data of 412 nm, 443 nm, 490 nm, 555 nm, and 670 nm
are generated.

Lw converts into WLR in Equation (10):

WLR
(
λ; [Chl], Ss, ay(440)

)
=

(
d0

d

)2 Lw
{

λ; Nadir; [Chl], Ss, ay(440), AOT, Wind
}

E0+
d (λ)

F0(λ) (10)

where d0 is the Earth–Sun average distance, F0 is solar irradiance, d is the Earth–Sun
distance at the time of measurement, E0+

d is the downward solar irradiance over the sea.
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SIRAW makes up for the shortcomings of the large uncertainty of traditional coastal
region AC schemes in a complex environment. By constructing a fast coupled atmosphere–
ocean radiation transmission model and combining it with the optimal estimation theory,
the coastal region AC method with multi-parameter synchronous inversion is developed to
meet the physical mechanism requirements of the combined influence of atmospheric and
ocean parameters on satellite spectra. At the same time, it solves the bottleneck problem
that the calculation efficiency of traditional optimal estimation theory is too low to meet the
demand of the practical application. In addition, the WLR is calculated by using the fast RT
solver, avoiding the inefficient problem based on the traditional physical-based optimal
estimation (OE) method, which further avoids the negative phenomenon of the short-wave
WLR retrieved by the traditional algorithm.

3. Results
3.1. Validation of NN Radiative Transfer Solver

In the SIRAW algorithm, the retrieved AOT and WLR are determined based on the
optimal estimation method in an iterative way, as shown in Equations (5)–(10). Compared
with the traditional LUT method, the optimal estimation method is more feasible in the
retrieval of multiple parameters from multiple observation information, which has been
commonly used in the remote sensing of aerosols, gases, ocean color, etc. However, studies
indicate that the calculation efficiency of the optimal estimation method is much lower
than that of the LUT-based method [21] due to the frequent operation of forward radiative
transfer calculation during the retrieval, which constrains its performance in the operational
process of satellite imager data.

In this study, we develop an NN radiative transfer solver to replace the coupled radia-
tive transfer model for the forward radiation calculation. Compared with the LUT method,
the NN technique is more flexible and efficient for forward calculation when multiple input
parameters are varied coordinately, particularly in the non-linear system. In contrast, it
has to take a huge calculation loading in the LUT method since a high-dimensional LUT
volume needs to be constructed to make the LUT-based radiation calculation unpractical.

To develop the NN solver used in the AC of FY-3/MERSI, 2 million simulated datasets
are produced based on the full physical radiative transfer model, combined with the
developed adaptive learning rate neural network algorithm. We constructed an individual
NN solver for each OC channel of MERSI. Each NN solver has one input layer, three hidden
layers, and one output layer with 14, 120, 80, 50, and 1 neuron in each layer. We randomly
split the entire prior dataset and divided it into training, test, and validation data in an 8:1:1
ratio. A large amount of training data are used to iteratively optimize the weight and bias
of the neural network. At the same time, test data are used to control the reliability of the
simulation parameters of the neural network to avoid overfitting in the training process.
Finally, the optimal NN solver is obtained based on the validation data.

Figure 5 shows the accuracy of the NN radiative transfer solver validated by the
full-physical coupled radiative transfer model, i.e., Pstar. Results show that a very good
consistency between the NN solver and RT model is identified. The relative errors of
simulated TOA reflectance below 600 nm are generally less than 0.5%, and those above
600 nm are less than 0.7%, which are significantly lower than the uncertainties of MERSI
observation. As for the calculation efficiency, the running speed of a single pixel is less than
0.00002 s, which greatly improves the radiation calculation efficiency. In comparison, the
calculation time of the original full physical radiation model is about 3.9 s. Based on the
NN solver, we adopted it in the SIRAW algorithm for the forward radiation calculation, i.e.,
F(xi) in Equation (5), during each iteration.

3.2. Validation with AERONET-OC

Based on the developed NN radiative transfer solver for the forward radiation calcula-
tion, combined with the MERSI-measured observation spectrum, the inversion results of
the SIRAW are validated with the ground-based observation network of AERONET-OC in
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different coastal regions around the world in 2021 (see Figure 6). This validation involves
412, 443, 490, and 555 nm, and the number of matching verification points is 30. The reason
for choosing validated wavelengths from 412~555 nm is that those bands are mostly used
in the retrieval of chlorophyll concentration, which is the most significant parameter in the
OC. In addition, observation of WLR from AERONET-OC also indicates a typically below
5% uncertainty at 412~551 nm and approximately 8% uncertainty at 667 nm [46]. As can be
seen from Figure 6, there is generally good consistency of WLR in each channel between
MERSI and in situ measurement. In detail, 490 nm showed the best WLR retrieval results
with a deviation of 23% and an RMSE of 0.191. The inversion results at 412 nm and 443 nm
were also good, with deviations of about 28% and RMSE of 0.188 and 0.204, respectively,
while a slight underestimation is identified in the high-value condition. To sum up, the re-
sults show that the inversion error Re of WLR below 600 nm is generally within 35%. There
is no extreme deviation in the SIRAW inversion results compared with AERONET-OC,
with a generally good agreement with the observed values, which support the availability
of SIRAW in the retrieval of aerosols and WLR in coastal water and performance of MERSI
for monitoring the aerosols and OC signals.
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3.3. Inter-Comparison with VIIRS Images

Figure 7 shows the verification and inter-comparison results of SIRAW-retrieved AOT
and WLR with VIIRS official products and shows the two types of data have a strong spatial
consistency. The traditional algorithm used for the VIIRS official product still presents the
phenomenon of “over-correction”, and many WLR values less than 0 are shown in the
scatter plot, i.e., 410 nm and 671 nm of VIIRS. On the contrary, the SIRAW effectively avoids
this phenomenon, and there are no WLR values less than 0 in the result. AOT inversion in
550 nm has a deviation of about 0.04 compared with VIIRS. On the basis of this precision, we
invert the WLR and, additionally, further solve the Rrs to make the comparison. The result
shows that the SIRAW-retrieved Rrs strongly correlates with VIIRS Rrs among eight typical
Case-II water regions, and the best matching results appear at bands 490 nm and 555 nm.
Of which, the fitting results of 555 nm are the best, with the highest correlation at 0.95. The
RMSEs of 490 nm, 555 nm, and 670 nm are around 0.001, showing only minimal data bias
from the validated data. For the remaining two bands, RMSE is around 0.002, and this
inversion result still shows a relatively reliable data statement. From the data distribution
of the scatter plot, it can be seen that the scatter distribution of 443 nm, 490 nm, and 555 nm
bands is more concentrated. On the whole, the WLR retrieval capability of the SIRAW
algorithm is close to that of VIIRS retrieval in typical near-shore muddy waters around
the world, and the spatial state distribution of the two data is similar. Inter-comparison of
Rrs at the near-ultraviolet channel, i.e., 412 nm of MERSI and 410 nm of VIIRS, indicates
that there are still negative Rrs values of the VIIRS official product. In comparison, the
SIRAW-based MERSI Rrs product is promising to avoid this phenomenon. The existence of
negative Rrs on band 443 nm further confirms the difficulties of the AC algorithm in the
coastal areas due to the overestimation of aerosols.
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4. Discussion

This section discusses the influence of the radiometric calibration coefficient correction
for the FY-3D/MERSI visible light bands on the accuracy of SIRAW WLR inversion.

To obtain an accurate oceancolor signal, the detection ability of the sensor needs to
reach a very high level. Due to the detection sensitivity of the traditional satellite sensor
not being enough, auxiliary optical remote sensing load calibration needs to be carried out.
In the field of water constituent inversion, the uncertainty of TOA reflectance is required
to be better than 0.5%, and to achieve this accuracy level, the contribution of uncertainty
caused by polarization, stray light, response non-linearity, and other factors needs to be
controlled in the order of 0.1% [47]. Radiometric calibration mainly refers to the process of
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converting the remote sensing values observed from the satellite sensor into absolute values
of physical quantities. Outside the atmosphere, the irradiance of the Sun can be identified as
a constant, so the Sun can be selected as the reference light source to carry out radiometric
calibration of the space-borne imaging spectrometer through the solar calibration system,
that is, on-board calibration, such as MODIS data. The radiometric calibration coefficients
for this type of data are provided in the header file, the same as FY-3D.

The FY-3D satellite launched on 15 November 2017, and it has been in operation
in orbit for more than 5 years. NSMC provides the MERSI-II L1 calibration coefficients,
which were calibrated in January 2019. Due to the influence of instrument attenuation
and atmospheric environment factors, the calibration ability of calibration parameters
deteriorates, which makes the radiation correction deviation and the product accuracy
not as high as that of the satellite launch [48]. It is necessary to evaluate the absolute
radiometric calibration accuracy of MERSI-II’s visible light bands for the purpose of the
possible influences of calibration uncertainties on WLR products.

4.1. Calibration Coefficient Correction

Normal methods of atmospheric–ocean AC use visible light and near-infrared bands.
For MERSI-II, 412 nm to 865 nm bands are designed to study ocean water color, plankton,
and biogeochemicals. Section 3 shows the results of the SIRAW algorithm on the FY-
3D/MERSI-II sensor in early 2020, and demonstrates that SIRAW had a better performance
in eliminating the effect of aerosol scattering to obtain a more accurate watercolor signal.
However, in the test of the South China Sea WLR retrieval work in August 2022 (the study
area is shown in Figure 3), it is found that the accuracy of the algorithm has attenuated
recently, which probably depends to a certain extent on the attenuation of the MERSI-II
blue light channel, when considering that lots of research proved that 412 nm and 443 nm
bands are confirmed to damp gradually [49–51]. In order to explore the relatively poor
inversion accuracy results and the recent attenuation of verification results of these channels,
calibration correction of visible light band coefficients was carried out for the bands 412 nm
and 443 nm of FY-3D.

Excluding the reason of the method itself, the state of MERSI-II L1 data in different time
periods will also affect the reliability of the SIRAW. The instrument’s radiation detection
error will propagate with the extrapolation calculation and directly affect the inversion
result. In order to ensure the accuracy of remote sensing data, radiometric calibration
of satellite-borne sensors should be carried out regularly. Therefore, we carried out the
accuracy check of the calibration coefficients of the MERSI-II L1 data. It can be seen from
Table 4 that the calibration accuracy at 412 nm decreases sharply from 2.35% to 19.32%, and
the calibration accuracy at 443 nm decreases from 1.86% to 11.31%. Both blue bands show
at least 10% scaling accuracy attenuation. In order to verify whether the algorithm accuracy
attenuation is caused by the MERSI L1 data calibration accuracy reduction, the subsequent
re-calibration is carried out and the verification accuracy is compared.

Table 4. Original Calibration Coefficient Accuracy Table for Different Periods.

Calibration Relative Deviation (%)

March 2020 August 2022

Band 8 −2.35 −19.32
Band 9 −1.86 −11.31

The integrated method for on-orbit-wide dynamic vicarious calibration [52] is used
for FY-3D/MERSI-II reflective solar bands. This method integrates a variety of alternative
schemes that do not rely on ground synchronization measurement and uses the multi-
level reflectance characteristics of the calibrated samples by each scheme to realize the
radiometric calibration of remote sensors in a wide dynamic range. The calibration samples
of each scheme were fused with equal weights by the piecewise average method, and the
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final calibration coefficient was obtained by weighted fitting regression based on the fused
samples. The non-linear features were corrected using the quadratic coefficients analyzed
in outdoor calibration experiments before launch, and the calibration slope and intercept
were calculated in orbit.

The coefficient changes are shown in Table 5.

Table 5. Coefficient Change Table.

Wavelength (nm) K0 K1

Original 412 −1.682800 0.010300
443 −1.573260 0.008719

Newest
412 −2.230508 0.012328
443 −1.755604 0.009795

4.2. Inversion of Water-Leaving Radiance Based on FY-3D Data

The scatter density plots below (Figures 8 and 9) show the comparison of Rrs retrieval
results using old and re-calibrated coefficients, respectively, and present the accuracy
improvement of the AC work in the South China Sea area before and after correction.
Compared to the output AOT and 5-band retrieval WLR, the correlation of all channels is
increased significantly, and the RMSE shows an obvious decreasing trend. Table 6 shows
that each accuracy index has been greatly improved in each band. This proves that the
inverted WLR after re-calibration is more consistent with VIIRS than before, and the re-
calibrated coefficients are more accurate. Figure 10 is the Rrs spatial distribution map of
SIRAW inversion, which shows that the spatial state of the inverse performance of the new
calibration coefficients is closer to VIIRS products. All indicators revealed that WLR derived
from the optimized calibration coefficients has obvious correlation improvement and error
reduction compared with VIIRS’s official OC product. In addition, although only 412 nm
and 443 nm were calibrated, the accuracy and error have been significantly enhanced and
reduced for all channels of the WLR. The results confirm that re-calibrated coefficients can
improve retrieval accuracy and that the accurate blue light band calibration coefficients of
FY-3D/MERSI can effectively avoid the inversion error caused by error transmission.
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5. Conclusions

This article presents a simultaneous retrieval algorithm of SIRAW and utilizes it in
the FY3D/MERSI-II bands 8~15 to retrieve aerosols and WLR. The SIRAW algorithm uses
a neural network-based radiative transfer solver and Bayesian optimal estimation theory,
considering the coupled radiation process in the atmosphere–ocean system. After validation
and inter-comparison with the ground-based measurement data from AERONET-OC and
VIIRS WLR products, it is confirmed that the retrieved aerosols and WLR data have high
accuracy and reliable results in different Case-II turbid ocean areas. The SIRAW algorithm
avoids the negative phenomenon of the WLR retrieval that classic AC algorithms have,
even for the current VIIRS OC products. The application of SIRAW in FY-3D/MERSI-II
is promising for estimating the influence of aerosol scattering on the satellite signal by
providing reliable aerosol and WLR. At the same time, this paper takes the South China
Sea as an example to demonstrate the sensitivity of radiometric calibration to reduce error
transmission and obtain accurate watercolor signals in AC work. The optimization of the
visible light calibration coefficients of 412 and 443 nm bands has a significant improvement
in the accuracy of each band in the WLR inversion for the MERSI sensor. This result also
gives strong evidence to prove that the correction of the blue band calibration coefficients
can reduce the error transmission via inversion, and proves the radiometric calibration is
of great significance for the SIRAW inversion of aerosol and WLR data.

In the future, orbit-by-orbit and day-by-day WLR data will be regularly produced
by SIRAW, and these datasets will continue to be validated and inter-compared with
AERONET-OC in situ measurement data and VIIRS satellite product data, respectively. We
will continue to pay attention to the stability of the inversion of SIRAW on the FY-3/MERSI
series data, check and evaluate the state of the algorithm, and calibrate MERSI on the
aerosols and OC detection.
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