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Abstract: Our understanding of the impact of climate change on forests is constrained by a lack of
long-term phenological monitoring. It is generally carried out via (1) ground observations, (2) satellite-
based remote sensing, and (3) near-surface remote sensing (e.g., PhenoCams, unmanned aerial
vehicles, etc.). Ground-based observations are limited by space, time, funds, and human observer
bias. Satellite-based phenological monitoring does not carry these limitations; however, it is generally
associated with larger uncertainties due to atmospheric noise, land cover mixing, and the modifiable
area unit problem. In this context, near-surface remote sensing technologies, e.g., PhenoCam, emerge
as a promising alternative complementing ground and satellite-based observations. Ground-based
phenological observations generally record the following key parameters: leaves (bud stage, mature,
abscission), flowers (bud stage, anthesis, abscission), and fruit (bud stage, maturation, and abscission).
This review suggests that most of these nine parameters can be recorded using PhenoCam with
>90% accuracy. Currently, Phenocameras are situated in the US, Europe, and East Asia, with a stark
paucity over Africa, South America, Central, South-East, and South Asia. There is a need to expand
PhenoCam monitoring in underrepresented regions, especially in the tropics, to better understand
global forest dynamics as well as the impact of global change on forest ecosystems. Here, we spotlight
India and discuss the need for a new PhenoCam network covering the diversity of Indian forests and
its possible applications in forest management at a local level.

Keywords: phenology; Indian PhenoCam; forest management; long term monitoring

1. Phenology as an Indicator of the Impact of Climate Change on Forests

Phenology is the science that deals with the study of recurrent events in the biological
lifecycle and how these lifecycle events are influenced by temporal changes in biotic and
abiotic factors [1]. Plant phenology indicates significant seasonal events, such as sprouting,
leaf development, flowering, fruiting, and leaf fall in a plant’s life cycle, which influences
ecosystem functions via controlling energy and carbon through interactions between the
atmosphere and plant communities [2–4]. The climate is the major controlling factor
(temperature, water availability, and day length), although non-climatic parameters, such
as altitude, slope, shadings, soil properties, and nutrient availability, may also affect plant
phenology [5,6]. The responsiveness of phenology to the annual variability in weather
parameters serves as an essential indicator of climate change in terrestrial ecosystems [2,7].
Multiple studies across the globe have confirmed the impact of climate change on plant
phenology, such as advanced spring greenup [8,9], delayed senescence [10,11], and a shift
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in flowering and fruiting [12]. The shift in phenological timing has affected atmosphere–
vegetation interactions, the land surface energy balance, vegetation productivity, the water
cycle, and the global carbon cycle [2,13]. The increasing length of the growing season (LOS)
has generally resulted in an increased uptake of CO2, potentially increasing the annual
net primary productivity (NPP) [14]. However, the NPP also shows a negative trend with
an increasing LOS due to increasing temperature during the growing season, resulting in
increased respiration [15]. A longer LOS and increasing air temperature may also affect
plants’ transpiration rates, which influences the global water cycle [16]. In addition, the
shift in phenological parameters can also affect agriculture, human health, and forestry.
For example, on a global scale, approximately 27% of cereal crop regions have experienced
a longer LOS (2.3 days per year) since 1981, affecting food production in these areas [17].
Similarly, the increasing LOS has also affected processes related to the phenology of wood
formation [18]. Thus, monitoring the phenological dynamics of vegetation is important for
understanding the behavioral responses of the Earth’s ecosystems to future climate change.

2. Methods for Monitoring Phenology

Phenological monitoring methods can be classified into three types based on the spatial
coverage of monitoring as follows: the species level, plot-regional level, and regional-global
level (Figure 1). A human observer has traditionally monitored individual organisms
to visually document changes in forest phenological parameters [2]. This method of
collecting plant phenological data is known for its long temporal resolutions, enabling
the availability of data from the 1900s in multiple locations worldwide [19]. However,
it is worth noting that the spatial distribution of these data is currently limited to a few
countries, primarily including the USA (National Phenology Network, Budburst, and
National Ecological Observatory Network), Canada (Nature Watch), Sweden (Swedish
National Phenology Network), Russia (Chronicles of Nature), Australia (Climate Watch),
Pan European Phenology database (PEP725) and the UK (Nature’s Calendar). Despite these
efforts, ground-based phenological observations face certain limitations, such as being
constrained to a limited number of species, being more prone to human errors, requiring
significant labor, and being time-consuming [20,21].
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Figure 1. Overview of different methods of phenological monitoring. (Individual level: PL: produc-
tion of young leaves, ML: maturation of leaves, AL: abscission of leaves, PF: production of young
flowers, MF: maturation of flowers, AF: abscission of flowers, Pfu: production of young fruits, Mfu:
maturation of fruits, Rfu: ripening of fruits; plot-regional level: SOS: start of season, EOS: end of
season, LOS: length of season, LE: leaf expansion, FA: flower appearance, LC: leaf coloring, LF:
leaf fall).
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Since the 1970s, satellite-based remote sensing has introduced new possibilities for
worldwide phenological surveillance at the landscape scale with the advantage of continu-
ously collecting data for large areas. Land surface phenology (LSP) is the term generally
used to represent vegetation phenology derived using satellite-based remote sensing esti-
mated from vegetation indices (VI) or biophysical variables [22,23]. Multiple studies have
confirmed the shift in phenological timing at a regional and global scale due to a shift in
climatic conditions, such as changes in precipitation, temperature patterns, and a shift in
snowfall timings [4,7]. Using satellite data, the phenological study at a global scale has
confirmed a significant advancement in the SOS by 0.38 days per year, a delay in the EOS
by 0.45 days per year, and a global increase in the LOS by 0.8 days per year [24]. Similarly,
several studies have also reported a shifting phenological period at the regional and conti-
nental levels [10,22]. However, the practical application of satellite-based remote sensing
in phenological monitoring faces several constraints, including low temporal and spatial
resolution, susceptibility to cloud cover, and the modifiable area unit problem (MAUP),
where the pixel being monitored may not correspond precisely to the ground location at
different times [25–27]. Additionally, while comparing ground observations and satellite-
based monitoring, the major difference is the footprint mismatch. Ground observations
record phenology at the individual species level, which makes it difficult to compare it with
a satellite-based phenological product at the regional scale. This pronounced disparity in
footprint size underscores the need for near-surface monitoring techniques that are capable
of capturing phenological data at the plot level.

It is interesting to note that the first fully digital camera came into existence after a
decade of the first operational earth observation satellite. In recent years, satellite-based
monitoring techniques have been complemented by near-surface remote sensing methods,
such as time-lapse digital cameras (PhenoCam) [28], in situ measurements taken with
radiometric instruments [29], monitoring based on eddy covariance (EC) data [30], and
images captured by unmanned aerial vehicles (UAV—temporal resolution depends on the
frequency of the flight) [31]. These near-surface remote sensing techniques offer high tem-
poral resolution and better spatial coverage compared to direct ground observations. They
provide valuable data that can be used to develop, calibrate, and evaluate satellite-based
phenological models and products. Among these four near-surface phenology monitoring
techniques, PhenoCam networks have garnered significant attention in the global research
community due to their simplicity in data processing and the automated continuous data
acquisition capacity at high spatial and temporal (timings pre-programmed) resolutions.

3. PhenoCam as a Promising Technology for Long-Term and Continuous
Phenological Monitoring

The PhenoCam system tracks vegetation phenology at a high spatial and temporal
resolution using images from digital cameras mounted on a tall tower [32] or small tow-
ers situated at a vantage point. This innovative technique allows for the monitoring of
vegetation phenology at both individual and local area levels with minimal atmospheric
errors. Researchers can analyze the captured images to identify data patterns or anomalies,
facilitating a deeper understanding of the vegetation dynamics [33] (Figure 2).

The PhenoCam system captures images in red, green, and blue (RGB) and, optionally,
in infrared (IR) bands. Since these images are captured under open atmospheric conditions,
fluctuations in brightness due to cloud cover and the time of day can influence the quality
of data. However, these effects can be mitigated by calibrating the images using a reference
panel kept in the field of view [34]. Data generated from PhenoCam imagery have been
utilized for various purposes, such as to assess satellite phenological products [35–37]; to
define and validate new phenological models [38]; to better understand the interactions
between canopy phenology and the dynamics of ecosystems [39]; and to study the sea-
sonal changes in leaf-level physiological processes that are connected to variations in leaf
color [40,41].
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In this review, we systematically compared observations from PhenoCam to satellite-
based phenological products, the eddy covariance tower, and the ground observation of
different ecosystems for which data are available in the literature. The comparison between
PhenoCam and various other methods in terms of their performance, as reported in the
existing literature, is depicted in Figure 3. The figure presents the correlation coefficients
(r values) collected from relevant studies, providing a visual representation of the compara-
tive performance of these methods for phenological monitoring. All the literature on global
PhenoCam work referenced in this review is included in Table S1.

First, we compared PhenoCam-derived time series green chromatic coordinates
(GCC) with MODIS and VIIRS satellite time series data (NDVI) (low-resolution satellites)
(Figure 3a). In deciduous forests, the average correlation was found to be 0.87, while in
grasslands, it was 0.85 (n = 12). The evergreen forest showed the lowest correlation with a
value of 0.7 (n = 7). We also examined the correlation with moderate-resolution satellites
such as Landsat and Sentinel. In grasslands, PhenoCam data demonstrated an average
correlation of 0.91 (n = 9), while in deciduous forests, it was approximately 0.87 (n = 4). Fur-
thermore (Figure 3b), we evaluated the correlation between extracting SOS and EOS from
MODIS data and PhenoCam observations (n = 12). In the deciduous forest, the average
correlation for SOS was 0.89, and for EOS, it was 0.81. In grasslands, the correlation between
MODIS and PhenoCam for SOS was 0.94, while for EOS, it was 0.70. These studies show
that Deciduous forests and Grasslands exhibit a stronger correlation with satellite data,
primarily because they vividly display phenological stages. By contrast, Evergreen forests
show a relatively lower correlation, which is mainly attributed to the absence of distinct
phenological stages and the limitations in temporal resolution provided by satellite data.

Next, we compared PhenoCam time series GCC with gross primary productivity
(GPP)-based phenological monitoring using the eddy covariance tower across different
ecosystems (Figure 3c). Among the ecosystems studied, grasslands exhibited the highest
correlation, with an average R-value of 0.91 (n = 8), followed by deciduous forests with
an average R-value of 0.87 (n = 11), and evergreen forests with an R-value of 0.84 (n = 5).
Lastly, we compared ground observation data with PhenoCam-derived GCC for various
phenological metrics. In the deciduous forest, the correlation for budburst was found
to be 0.96 (n = 4); for the leaf area index (LAI), it was 0.93 (n = 2); for the chlorophyll
concentration, it was 0.95; and for leaf fall, it was 0.96 (n = 2) (Figure 3d).
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Traditionally, the observation of flowering and fruiting phenophases relied on labor-
intensive direct ground observations. However, the introduction of the PhenoCam net-
work has revolutionized this process, allowing for the more detailed monitoring of these
phenophases. For instance, Chandra et al. (2022) utilized the PhenoCam network to moni-
tor different stages of flowering (budding, initiation, and maturation) and fruiting (fruit
development and maturation) phenology in Rhododendron arboreum Sm., located in the
Himalayas. Their findings reveal a strong correlation between these phenophases and
winter soil temperature [42]. Additionally, Mann et al. (2022) developed an automated
method using time-lapse cameras to accurately extract flowering phenology (onset, peak,
and end of flowering) for two Arctic species, achieving a high accuracy rate of over 90
percent compared to ground observation [43]. Also, Delpierre et al. (2020) reported a
strong correlation (r = 0.98) between the within-population variability of budburst (WPVbb)
calculated using PhenoCam data and ground observations. This supports the reliability of
PhenoCam-derived metrics in capturing fine-scale phenological variations [44]. In addition
to this, Kurc & Benton et al. (2010) employed linear regression analysis to demonstrate
that greenness (GCC) is closely associated with soil moisture at depths ranging from 0.30
m to 1 m, which corresponds to the densest distribution of creosote bush roots [45]. This
finding reinforces the link between PhenoCam-derived observations and ecological factors.
Moreover, in the context of evergreen forests, where the correlation between PhenoCam-
based observations compared to satellite phenological products tends to be low, Liu et al.
(2020) discovered that red chromatic coordinates (RCC) offer a more precise prediction
of GPP-based SOS and EOS [46]. This indicates the potential for an improved pheno-
logical assessment in evergreen forest ecosystems through the use of RCC data. These
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studies highlight the potential of PhenoCam data, in combination with satellite data, to
accurately monitor phenological changes and bridge the gap between satellite observations
and real-world ecological dynamics.

However, RCC, GCC, and NDVI may not reveal the same timings of SOS or EOS as
the physical processes associated with these indices are different. RCC and GCC reveal
normalized energy from the red and green band from the PhenoCam RGB images, and
they reveal that chlorophyll absorbed and reflected energy, hence revealing more about the
chlorophyll pigment content in plants. On the other hand, NDVI uses red and NIR bands,
and hence, it reveals more about the biomass as well as the health of the plant. During the
senescence, the NIR value depends more on fiber content (intercellular arrangements of cells
and pigment concentration, respectively), and the red reflection increases due to the absence
of chlorophyll absorption and, hence, the magnitude of the NDVI value becomes low as
the difference between NIR and RED is diminished [41,46]. Due to these reasons, RCC and
GCC may show an early SOS, but NDVI may show a delayed SOS. Additionally, NDVI and
other satellite-derived indices are influenced more by the soil background, atmospheric
conditions, topography, etc., while GCC and RCC are relatively free (or negligible) from
these influences. GCC and RCC could better demarcate leaf phenology, including SOS/EOS
stages, while NDVI and other indices represent more plant growth and vigor with a better
correlation of photosynthetic variables such as FAPAR/PAR [47,48]. This justifies the use
of PhenoCam images for (leaf) phenological studies.

The comparison of ground-based observations with PhenoCam data consistently
demonstrates a strong correlation (90%) across various ecosystems. The versatility of
PhenoCam technology allows for the focused monitoring of specific species or multiple
species, enabling the visual identification of various stages of plant life cycles, such as
leafing (leaf buds, mature leaves, abscission of leaves), flowering (flower buds, anthesis
of flowers, abscission of flowers), and fruiting (fruit buds, maturation of fruits, abscission
of fruits). This review highlights the potential of PhenoCam as a promising alternative
to labor-intensive ground observations. By utilizing PhenoCam cameras, researchers and
environmentalists can streamline their data collection processes and contribute to a more
comprehensive understanding of ecosystem dynamics. PhenoCam cameras, by replacing
labor-intensive ground observation methods, represent a valuable tool for advancing
ecological research and conservation efforts in poorer countries in the tropics.

4. Global Distribution of PhenoCams

PhenoCam is a viable alternative to the present method of ecosystem phenological
monitoring that combines ground-based data with satellite observations [49]. Time-lapse
and fixed digital cameras have demonstrated remarkable potential at capturing phenolog-
ical metrics across a diverse range of biomes. These include high Arctic vegetation [50],
North American grasslands [51], Amazon rainforests [52], grasslands in Japan [53], Aus-
tralian grasslands [33], deciduous and evergreen forests of North America [54], tropical
forests of Malaysia [55], and croplands [56]. In this review, we looked at only peer-reviewed
articles that had the word “PhenoCam” in their titles or keywords. We carefully read
each article and collected important information from them (see Table S1). From this
list of 72 studies, we observed that a significant proportion of studies using PhenoCam
were conducted in deciduous forests (31.5%), followed by grasslands (19.8%), evergreen
forests (17.1%), and shrublands (8.1%) (Figure 4). This diverse distribution of research sites
highlights the versatility and broad applicability of PhenoCam in different ecosystem types.

The recognition of the significance of PhenoCam systems in monitoring plant phe-
nology has led to the establishment of several phenological networks worldwide. These
networks include the PhenoCam Network—USA [32]—the Phenological Eyes Network—
Japan [57]—the National Ecological Observatory Network—USA [58]—the EURO-Pheno
Network—Europe [59]—the European Integrated Carbon Observation System (ICOS)
Network—Europe [59]—and the Australian PhenoCam Network—Australia [60] (Table S2).
When considering the spatial distribution of PhenoCam studies, it is notable that 53 percent
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of the studies were from North America, followed by 28 percent from Europe and 11
percent from East Asia. This highlights a significant gap in PhenoCam-based monitoring in
regions such as Africa, South America, South Asia, Central Asia, and Australia. There is a
need to expand the PhenoCam network in these geographies to better understand their
global forest dynamics and the impact of global change on forest ecosystems [61].
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Here, we spotlight India as a case study and discuss the need for a PhenoCam network
in India and its potential role in improving forest management in this country. The experi-
ences from the Indian PhenoCam network could be useful in the expansion of PhenoCam
networks in geographies with similar socio-economic circumstances, such as the other
countries of South Asia, Africa, etc. By expanding the reach of PhenoCam networks to
currently underrepresented regions, we can enhance the comprehensive monitoring of
vegetation phenology worldwide. This could enable a more holistic perspective on the
impact of climate change and contribute to a deeper understanding of ecological processes
on a global scale.

5. The State of Phenological Monitoring in India

India is a country that has enormous diversity and endemism of plant species, with a
total forest cover of 713,789 sq. km, which is about 21.71% of its total geographical area [62].
According to Champion and Seth, Indian forests have been classified into 16 different forest
types and 255 sub-forest types [63]. Each of these forest and sub-forest types exhibits a
distinct phenological behavior, necessitating enhanced phenological monitoring in Indian
forests. Currently, forest phenological monitoring in India is mainly carried out using
traditional ground observations and satellite remote-sensing techniques [20,64,65]. Ground-
based phenological studies mainly focused on deciduous forests (tropical moist deciduous
forests and tropical dry deciduous forests) and evergreen forests (tropical wet evergreen
forests) [66–69] and a few on tropical and subtropical moist forests in the north-east of
India [70–72] (Figure 5). The first-ever formal (from the available literature) phenological
study in India was conducted from 15 April 1975 to 20 December 1976 and from 14 February
1978 to 15 September 1979 in the dry deciduous forests of Bandipur [64].
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However, only a few studies have been published for phenological observations over
a long period (more than five years), such as the study by Datta & Rane at Pakke Wildlife
Sanctuary and Tiger Reserve, Arunachal Pradesh, which lasted six years from 1997 to 1999
and 2009 to 2011, and the study by Suresh & Sukumar at Mudumalai Dry Forests, Tamil
Nadu, which lasted from 2000 to 2008 [73,74].

Even though India has 37 (Figure 6, Table S3) distinct ground-based phenology ob-
servation sites, it has been reported that there are only six long-term forest phenology
monitoring sites in India (most of them are ongoing, and only a few are published):
Mudumalai-Tamil Nadu (30 years), Pakke Tiger Reserve-Arunachal Pradesh (1997–2000
and 2009–ongoing), dry forest in Rishi Valley-Andhra Pradesh (10 years), Kalakkad Mun-
danthurai Tiger Reserve-Tamil Nadu (20+ years), Anamalai Hills-Tamil Nadu (4 years) and
dry tropical forest in Nigdale-Maharashtra (7 years) [75]. In addition, India has a long-term,
large-scale citizen science initiative for plant monitoring called SeasonWatch. Hitherto,
SeasonWatch (https://www.seasonwatch.in/, accessed on 15 October 2023) has registered
over 24,617 plants and collected over 6.6 lakh observations on the phenology of these trees.

In addition to this, several satellite-based phenological monitoring studies have been
conducted since 1980 [76–78]. However, nationwide ground validation is not possible for
satellite-based phenological products due to a lack of ground observations. The published
literature provides information for ground validation in a few locations; however, it is
difficult to identify the exact date of the year (DOY) from these linguistic distributions
(such as early spring, the end of the dry period, and the post or pre-monsoon period).
In addition, most of the ground-based phenological studies in India have monitored the
major nine phenological stages in the cycle, such as leaves (bud stage, mature, abscission),
flowers (bud stage, anthesis, abscission), and fruit (bud stage, maturation, and abscission).
However, it is impossible to monitor all these nine phenological stages with a high level of
accuracy using satellite data, which is one of the significant limitations of satellite remote
sensing in phenology monitoring.

Scientists have employed near-surface digital cameras to circumvent these impedi-
ments for phenological monitoring. Sharma et al. (2021) installed a camera in the Western
Himalayas to track Betula, utilize phenological temporal trends, and record snow cover
patterns [79]. They effectively tracked the phases of greenup, leaf maturity, senescence,
and dormancy and reported that greenup occurred four days earlier in 2018 than in 2017,
whereas dormancy occurred one day later. Parihar et al. (2013) used digital cameras to
monitor forest phenology in Madhav National Park in Madhya Pradesh and compared
their findings to satellite data [80]. However, the use of digital cameras for phenology
monitoring in India is limited, with studies often focusing on a restricted range of plant
species and short monitoring periods.

https://www.seasonwatch.in/
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It is crucial to establish a long-term phenological monitoring network to better un-
derstand the drivers and responses to climate change. Short-term studies of 3–5 years
(the average period of most financed research projects or a university doctorate thesis)
are profoundly inadequate to capture the intrinsic unpredictability of natural systems
caused by environmental stochasticity, as evidenced by numerous recent studies conducted
worldwide. Indeed, the results of such short-term research can be quite deceiving. Given
the absence of a comprehensive long-term ground-based phenological monitoring system
across India’s diverse forest types and the limitations of satellite-based monitoring, there
is a pressing need for a new monitoring network. Daily phenological observations using
time-lapse digital cameras, such as PhenoCam, offer a solution to address these challenges.
This approach provides high temporal and spatial resolutions, allowing for cost-effective,
labor-efficient data collection, long-term monitoring, and reliable canopy phenological mon-
itoring. Adopting digital repeat photography techniques can facilitate the establishment of
an extensive and reliable phenological monitoring network in India [54,81,82].
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6. Role of the PhenoCam Network in Supporting Forest Management in India

Long-term datasets on ecosystem dynamics are crucial for effective forest manage-
ment and biodiversity conservation. Unfortunately, in the case of India, there is currently a
limited number of long-term observation sites, and access to such datasets is restricted [83].
Introducing a PhenoCam network across various forest types in India could be a valuable
addition to forest management efforts. PhenoCams are widely used globally to under-
stand and predict changes in vegetation patterns and phenology, which have significant
implications for ecosystem health and climate research.

Gross primary productivity is an important indicator of forest health as well as an
indicator of climate change [84]. Wang et al. (2020) showed that GPP derived from
PhenoCam shows a higher correlation (R2 varied from 0.80 to 0.87) with GPP derived
from an eddy covariance tower with high statistical significance (p < 0.01) [25]. Similarly,
PhenoCam-based analysis (Excess green index and GCC) on plant health shows a significant
relation to the ground-based metrics of stand health, which includes vigor, mortality,
foliar disease occurrence, and root disease symptoms at both the plot and tree level [85].
Several studies have also indicated that camera-derived LAI and chlorophyll concentration
correlate with ground-based observations [40,86,87]. Similarly, PhenoCam-derived GCC
demonstrates a significant correlation with aboveground green biomass (AGB) in grassland
ecosystems [53].

PhenoCam data have proven valuable in tracking global climate events. For instance,
Cremonese et al. (2017) effectively utilized time series PhenoCam data from grasslands in
the Western European Alps to monitor the impact of heat waves [7]. Similarly, Gonçalves
et al. (2020) examined the response of forests to an unexplained drought triggered by El
Nino in 2015–2016 and observed post-drought fluctuations in leaf demography using multi-
year PhenoCam data [88]. In light of the changing climatic conditions, the introduction
of PhenoCam in India’s forests holds great promise for enhancing our understanding of
ecosystem dynamics, facilitating informed decision-making, and supporting proactive
conservation strategies.

In addition to direct monitoring, PhenoCam data can be also used to validate satellite-
based products, which are highly used for forest management and decision making in
the current scenario. Validating satellite-based phenological products is important for
understanding variations in seasonal and inter-annual biome responses due to climatic
variability [89]. The following are some of the most widely used satellite-based vegetation
products to understand forest dynamics: (a) the Normalized Difference Vegetation Index
(NDVI), (b) the Enhanced Vegetation Index (EVI), (c) MODIS LAI, and (d) MODIS and
AVHHR Fraction of Absorbed Photosynthetic Active Radiation (fPAR). Currently, data from
the eddy covariance tower (EC) [87,90], ground-based measurements of LAI, time-lapse
digital photographs, and tower radiation sensors (PAR) are being used to calibrate these
products. However, in India, the number of active eddy covariance sites is very limited.
Therefore, the establishment of the Indian PhenoCam Network could significantly increase
the number of calibration points for satellite-based products, addressing the current gap
in phenological monitoring in the South Asian region. Additionally, this could help in
validating satellite-derived phenological matrices (e.g., MCD12Q2) and proceed one step
closer to qualifying phenological matrices with products from satellites to become one of
the essential climate variables (ECVs).

Indian forest calendar for management. Presently, available information about the
Indian forests is limited to broad and sporadic measurements (monthly observations in field
plots). Such data are inadequate for generating spatial maps on phenology, health, biomass,
and other essential datasets. The Forest Survey of India (FSI) conducts satellite-based
mapping and monitoring, producing a national forest area assessment report every two
years. However, it is insufficient to meet the needs of managing Indian forests effectively.
To address this limitation and enhance forest management strategies, the establishment of
a long-term PhenoCam network across various Indian forests is crucial. By implementing
PhenoCams, which provide continuous and accurate data on shifting phenology, health
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indicators, biomass estimation, and gross primary productivity, researchers can gain a
deeper understanding of the ecological impacts of climate change on different species.
Moreover, phonologically informed forest management is crucial for arresting increasing
forest fire events in Indian forests, which see surface fires starting with the accumulation of
litter during EOS (senescence). The predictive modeling of meteorological variables crucial
for defining EOS is the need of the hour.

Improvements in the Dynamic Global Vegetation Models (DGVMs) and understand-
ing the impact of climate change on forest ecosystems in India. Vegetative phenology holds
significant importance in DGVMs. These models utilize information on plant biogeography
and biogeochemical processes to predict ecosystem fluxes and climate fluctuations in the
context of global change scenarios [91]. One crucial input for DGVMs is GPP), which is cur-
rently estimated using satellite data and still requires validation in the South Asian region.
Recent studies have demonstrated the potential to estimate GPP [25] and LAI [86] using
PhenoCam data. This indicates that PhenoCam technology can contribute to improving and
strengthening satellite-derived GPP data, enhancing the accuracy of DGVM predictions,
and making them more applicable to the unique conditions of the South Asian region.
By integrating PhenoCam data into DGVMs, researchers can gain a better understanding
of the impacts of climate change on forest ecosystems in India and refine management
strategies accordingly.

7. Conclusions

Ground-based phenological observations, as well as PhenoCams, are mainly concen-
trated in developed and temperate regions, leading to a paucity of observations in the
global south, especially across tropical forests. The expansion of long-term forest monitor-
ing, especially the monitoring of phenology, is necessary for improving our understanding
of the impact of global change on forest ecosystems globally. Ground-based phenological
observations are constrained by a number of limitations, including high recurring costs.
PhenoCam represents a cost-effective, efficient, and reliable alternative for ground-based
phenological observations. We propose setting up a PhenoCam network covering different
forest types in India. This network not only helps in filling a crucial data gap in the South
Asian region, but it also provides a template for the expansion of the PhenoCam network
in similar geographies across the tropics.

The establishment of an Indian PhenoCam network has the potential to support
forest management in India. By providing continuous and accurate data on phenology,
health indicators, biomass estimation, and gross primary productivity, this network can
enhance our understanding of ecosystem dynamics and conservation strategies and enable
informed decision making. Through the integration of PhenoCam data with Dynamic
Global Vegetation Models, we can improve future predictions at a local level and refine
management strategies in response to the impacts of climate change on forest ecosystems.
The implementation of PhenoCam technology could be a valuable addition to India’s forest
management efforts, addressing the limitations of current monitoring approaches and
contributing to the sustainable management of forest resources.

The PhenoCam network has already been successfully implemented in other countries,
and it has shown promise in improving our understanding of forest ecosystems and their
response to climate change. In India, the network could be particularly valuable for
monitoring the impact of heatwaves and droughts on ecosystems, which are becoming
increasingly common in the country. By providing detailed insights into how forests adapt
to these challenges, this network could help us prioritize conservation efforts and ensure
the long-term sustainability of India’s forests.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs15245642/s1, Table S1: PhenoCam studies world-wide [92–133].
Table S2: PhenoCam networks worldwide. Table S3: Indian Ground based forest phenology monitor-
ing sites [134–164].

https://www.mdpi.com/article/10.3390/rs15245642/s1
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